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The SU(N) ct/iral invariant Gross-Neveu hamiltonian is diagonalized using iterated Bethe-ans~itze. This extends to 
arbitrary N the results previously obtained for SU(2), and reproduces the spectrum obtained by assuming factorizability of 
the S-matrix. 

In a previous article [1 ] * 1, we used Yang's version [2] of  the Bethe-ansatz [3] to determine exactly the spec- 
trum of  the SU(2) chiral invariant Gross-Neveu model, with lagrangian 

22 = i~a ~f ~a + g[(~a~a)  2 -- (t~a75 l/ta)2] " (1) 

We now use Sutherland's generalization [4] of  the Bethe-Yang technique to extend our results to arbitrary SU(N), 
obtaining the spectrum of massive particles found in refs. [ 5 - 7 ] .  

We begin by summarizing the SU(2) case. There, one diagonalizes a hamiltonian H for a cut-off theory, in which 
the basic fields are canonically quantized on a line segment of  length L and with momentum cut-off K. The energy 
eigenvalue problem is found to be equivalent to that of  an Of-body hamiltonian describing Of+- colored pseudopar- 
ticles of  chirality c~ = -+ 1. Pairs o f  pseudoparticles of  opposite chirality interact via a chirality exchanging delta- 

. 1 + function potential. Eigenstates of  H of  chirality c~+ _ c~ -  and color spin ~(Of + °t~- - 23/) are labeled by sets 
of  "momenta"  {k;, kT: ] = 1 ..... Of+, l=  1 .... Q'~-) and "rapidities" {A~: ? = 1 ..... m) ,  satisfying 

M 

c~+ 0(2A.r _ 2) + Of-0(2A~ + 2) = -2r rJ (A~)  + ~ 0(A~ - A~),  (2) 
6=1 

where 0 (x) = - 2 t a n - l ( x / e ) ,  -rr  < 0 < rr, c = 4g/(1 - g2), the J(A~) are half-integers (integers) for M even (odd), 
and 

k~] = L -1 2rrn~J + cxjc~(-~])~o + c~j(Of(a]) _ 1) 7r + ~ [0 ( 2 / ~  - 2czj) - ¢xflr] , (3) 
3,=1 

Research supported in part by National Science Foundation Grant No. PHY78-21503. 
,1 Similar results in a related model were obtained independently by A. Belavin (communicated to us by L.D. Fadeev). 
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where n] is an integer, ~! = -+1, and ¢ = tan -11c .  The energy and momentum of such a state are 

E=~k+- ~l k ~- P= ~] k;+ ~l k 7 (4) ] ~ • " 

The vacuum of  the SU(2) model is characterized by (i)c~+ = c g - = M, (ii) all A~ are real, and (iii) the pseudo- 
particles occupy the lowest possible levels, forming the Dirac sea. Excitations consist of  (i) massless excitations 
analogous to those of  the massless Thirring model and (ii) massive, color doublet particles of  zero chirality, corre- 
sponding to holes and strings in the set of  A~. Holes occur where there is a jump in the sequence of  J(A~), i.e. 

J(A'i'+ 1 ) = J(A~,) + 1, A v =/= A h, 
(5) 

+ 2, A =A h 

Strings are families of  complex A. r which, for c~ tending to infinity, have the same real part. For an n-string, these 
are located at 

Av(n)] _- A. r(n) + ~l ic (n + 1 - 2/'), ] = 1, .... n . 

To compute the contribution to the energy of  holes at A/h and n-strings at A], one makes the replacement (for 

... ~ r j d A  o(A)... + ~ .... 
A,, t n-strings 

n > l  

in eqs. (2) and (3). One can solve eq. (2) for the Fourier transform of  o(A), obtaining 

holes sizings 

o(p)=osea(p)+ ~. oh(p)+ ~ @(P) 
l ] 

(6) 

(7) 

holes strings 

=CE+exp( - ip )+C~-exp( ip )  expc 'p  ~ exp(--iAhp) - ~ exp[-(n/-1)c'lPl]exp(-iA]p), e '=1  
- 2cosh c'p 2 c o s h c ' p  i ] ~c. 

Computing k /us ing  eq. (3) and substituting into eq; (4) yields 

Ei h°le =9"lL - I  [ fdp~exp(-c'lPl)@(p)+lrl2}=C~L -1 tan-l[cosh(Ahilrlc)lsinh(rrlc)], ,(8) 

E~n'  = 9ZL-1 [ fdpsinPexp(-e'lPl)°J(P)] + ~  ~gtL-lro(2A]L \ - - - Z ~ s , - O t ~ s , J  = 0 " -  2] i' 2A]+2 }? (9) 

Taking the limit K -> : ,  e(K) --> O, with m = (4Kl~r)e - ' ic and ×i = AhrU c fixed then yields for E h°le the spectrum 
of  a mass m particle: 

E h°le -+ m cosh Xi" (10) 

Sutherland's method [4] of  iterative Bethe-Yang ans~'tze makes possible a straightforward extension of  the 
above results to arbitrary SU(N). The color symmetry is now described by a Young diagram with rows o f  lengths 
Mi- 1 - Mi, with M 0 = c~ and M N = 0. In addition, the state is labeled by "momenta"  k~, i = 1, 2 .... c~-* and 
"rapidities" Ar~, r = 0, 1, q.., N - 1,3' = 1 ,2  ..... M r, where, by convention, A0~ -- a, t - chirality = -+1,3' = 1,2,  
... q ' l .  According to ref. [4],  these parameters satisfy a chain of  coupled equations, analogous to eq. (2) : 
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Mr+ 1 Mr- 1 

0 (2Ar~ - 2Ar+ 1,~ ) + ~ 
6=1 e=l 

M r 

0 (2At. t - 2Ar_ 1 , e ) -  ~ 0 (Ar.y - Ar~ ) =-27rJr(Ar.r) .  
~=1 

For 9t  + oo we introduce densities Or(Ar), r = 0, 1 ..... N - 1. Moreover, for each r there may be holes, at A r 
and n-strings of  complex A r with real parts AS/. Making the substitution (6), eq. (11) becomes 

-- strings 0 ( 2 A t _  2irS+l,])l 
[ f dA Or+ l ( A ) O ( 2A r 2A)+ / ~  ( n 7 + 1 Z  113 

÷[fdAo~-l(A)0(2&-2A)+ / 0 t -n~-~- d- 

(11) 

= 

su:mgs [ 2 A t _  2ArS/~ 0 (2A r _ 2ArSi~ 1 = 
- [  f dAor(A)O(2Ar-A)+ ~-~/ O[ n r /+ l  J+ \ nr7-  1 ]J -2?rJr(Ar)" (12) 
Differentiating eq. (12) with respect to A r and taking the Fourier transform leads to a simple recursive formula: 

2 cosh c'p Or(p) = o r_ 1 (P) + Or+ 1 (P) - hr (P), (13) 

where 

or(p ) = Or(P ) + ~. exp(-iArS/p)exp [-(nrj - 1)e ' lp II 
I 

t oN(P ) -- O, oO(P) --= C~+exp(--ip) + C~-exp( ip) .  

hr(P) = exp(c ' lp  I ) ,~  e x p ( _ i A h p ) ,  
I 

System (13) may be solved for any Or: 

{ r  
-1 ~ - ~ • Or(P ) = s i n h ( N -  r)c'p Oo(p ) _ [sinh(N¢'p) sinh(c'p)] hs(P)slnh(sc p)smh(N - r)c'p) 

sinh Nc'p s= 1 

N - 1  

hs(p)sinh[(N- s)c'p] sinh(rc'p) I - ~ exp(-iArS]p)exp [-(nr] - 1)c' IP II • (14) + 

s=r+l ) ] 

Eq. (14) is the generalization to SU(N) of eq. (7). We observe that there are now contributions to o r from 
holes of  all ranks, whereas the explicit string contributions are limited to rank r. Having determined o 1 , the en- 
ergy may be calculated from eqs. (4) and (3), with A~ replaced by AI~. 

We are now in a position to discuss the vacuum and low-lying excited states of the model. The vacuum is char- 
acterized by (i) 

e~+ =c~- =1c~, Mr_Mr+ 1 =C~/N, r = 0 ,  1 ..... N -  1 (15) 

(assum~ c~ is an even number divisible by N),  (ii) the Ar.y are real, and (iii) the pseudoparticles occupy the mini- 
mum energy levels, with 27r~]/L = -ct/K. The vacuum energy may be computed from eqs. (3), (4) and (14): 

1 Q~2(~ + Ir/N)/L (16) E 0 = - ( K +  n/L)CK + ~ 
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where 

N - 1  = ~0 + ct{ -1  f dA o~ac(A)[0(2A - 2) - 0(2A + 2)1 - ~ T r  

and, from eq. (14) 

o~ae(p) = c~ {sinh [ ( N -  1)c 'p]/sinh(Nc'p)}cos p .  

The pseudoparticle number cr~ 0 is obtained by minimizing E 0 (dropping terms of  order L 0) 

c~ 0 = NKL/(n  + N~) .  (17) 

We note that for c ~ O, ~ ~ c/2N, cE oIL ~ NK/Tr. 
The simplest excitation, as in the SU(2) case, consists of  raising one pseudoparticle from its vacuum level to a 

higher level, without changing the Ar. r. This produces a massless boson spectrum analogous to that occurring in 
the Thirring model. A more interesting excited state is obtained by adding r < N  pseudoparticles to the vacuum, 
such that cE -+ = i c ~  0 1  + r  e and M s = M 0 + r - s. To the c~ O/M × N rectangular Young diagram describing the 
color symmetry of  the vacuum has been appended a column of  length r. This generates a hole of  rank r, say at 
A 0, and we have 

s i n h ( N -  1)c'P(r+e_iP + r_eip) s i n h ( N -  r)c'p eClp le_iAO p 
A°l  (P) = sinh Nc'p sinh Nc'p " 

(18) 

The change in energy is readily calculated, yielding for K ~ 0% c(K) ~ 0 ,  

r + r -  r + ? ' -  

i ~  1 ( r T r )  cosh(AOrc/Nc ') ~ = q++ i ~  1 msin(rTr/N)coshx A E ~ i = I  ~ q+ + .= q i  +C~0L-1  sin~- sinh(n/Nc')  i=1 "= q i  + , (19) 

where m = (2NK/Tr)e-'~/Nc' and X = AOTr/Nc ' are taken to be cut-off independent. The state thus describes; in addi- 
tion to r Thirring-like excitation carrying the chirality and charge (c't~ - c~ 0), a color-bearing particle of  nonzero 
mass 

m r = msin(rTr/N). (20) 

The massive particles of  rank r and N - r have the same mass and transform contragrediently to one another 
under SU(N); they may thus be considered antiparticles of  one another. Moreover, it is clear from our construc- 
tion that an appropriate interpolating field for a particle of  rank r is an antisymmetrized normal product of  rffa_+ 
fields, and thus, in a field-theoretic sense, the particle of  rank r is a bound state of  r fundamental particles of  rank 
one. In particular, the antiparticle of  the fundamental particle is a bound state o f N  - 1 such particles. This inter- 
pretation was used recently, in refs [6,7] to derive the S-matrix of  the model (assuming factorizability), including 
the mass formula (20). 

+ a a n d M r = ( N - r ) ( C ~ o / N - 1 ) , r - 1 ,  , N - l .  I thas  Another low-lying excited state has cE - = ~cE 0 ... 
Nholes  of  rank one, at A t, l = 1 ..... N. Thus 

N 
AO 1 = _  sinh(N - 1)c'p e c ' lp l  ~ e-iAlP (21) 

sinh Nc'p l= 1 

and, in the infinite cut-off limit, 

N 

aXE = ~ m 1 cosh(Alrr/Nc').  
l=l 

(22) 
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The state is thus one of  N unbound fundamental particles, transforming as a symmetric tensor of  r a n k N  under 
SU(N). 

There are, of  course, hosts of other excitations. They all may be classified, however, in terms of  Thirring-like 
massless excitations and the family of  massive particles described above. 

Conclusion. In refs. [6,7],  the spectrum of  the chiral invariant Gross-Neveu model was obtained assuming the 
factorizability of  the S-matrix. In the present note we have given a constructive, non-perturbative derivation of  
the spectrum without making assumptions about the S-matrix. In fact, we intend to show, in a forthcoming pub- 
lication, that the factorizable S-matrix of  refs. [6,7] is a straightforward consequence of  our construction. 
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