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Abstract 

This work is concerned with various aspects of the formulation of the quantum inverse scattering 
method for the one-dimensional Hubbard model. We first establish the essential tools to solve the 
eigenvalue problem for the transfer matrix of the classical "covering" Hubbard model within the 
algebraic Bethe ansatz framework. The fundamental commutation rules exhibit a hidden 6-vertex 
symmetry which plays a crucial role in the whole algebraic construction. Next we apply this 
formalism to study the SU(2) highest weights properties of the eigenvectors and the solution of 
a related coupled spin model with twisted boundary conditions. The machinery developed in this 
paper is applicable to many other models, and as an example we present the algebraic solution of 
the Bariev X Y  coupled model. @ 1998 Elsevier Science B.V. 

PACS: 05.20.-y; 05.50.+q; 04.20Jb; 03.65.Fd 
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1. Introduction 

The discovery of  the quantum version of  the inverse scattering method in the late 

seventies was undoubtedly a remarkable contribution to the development of  the field 

of  exactly solvable models  in ( 1 + 1) dimensions [ 1 ]. This method provides a means 

for integrating models  in two-dimensional classical statistical mechanics and (1 + 1) 

quantum field theory, unifying major achievements such as the transfer matrix ideas, the 

Bethe ansatz and the Yang-Baxter  equation. Nowadays detailed reviews on this subject 

are available in the literature, for instance see Refs. [ 2 -5 ] .  

We shall start this paper illustrating the essential features of  this method in the 

context of  lattice models  of  statistical mechanics. For example, consider a vertex model 

0550-3213/98/$19.00 (~) 1998 Elsevier Science B.V. All rights reserved. 
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on the square lattice and suppose that its row-to-row transfer matrix can be constructed 
from an elementary local vertex operator £.ai(A).  This operator, known as the Lax 
operator, contains all information about the structure of the Boltzmann weights which 
are parametrized through the spectral parameter A. The operator £.ai(A) is frequently 

viewed as a matrix on the auxiliary space A, corresponding in the vertex model to the 
space of states of the horizontal degrees of freedom. Its matrix elements are operators 
on the Hilbert space 1-I~=l ®~, where Vi corresponds to the space of vertical degrees 
of freedom and i denotes the sites of a one-dimensional lattice of size L. In this paper 
we shall consider the situation in which the auxiliary space ..4 and the quantum space 
V/ are equivalent. A sufficient condition for integrability of ultralocal models, i.e. those 
in which the matrices elements of the operator £Ai(A) commute for distinct values of 
index i, is the existence of an invertible matrix R(A,/z) having the following property: 

R(A,/z)£Ai(A) ® £Ai ( I z )  = £•i( tz)  ® £ ai( A)R(  A, Iz),  ( 1 ) 

where the tensor product is taken only with respect to the auxiliary space ,.4. The matrix 

R(,~, # )  is defined on the tensor product Jt  ® A and its matrix elements are c-numbers. 
A ordered product of Lax operators gives rise to the monodromy operator T(A)  

T(A)  = £ .aL(a)E.aL-I  (a )  . . .  £.al (A). (2) 

It is possible to extend property (1) to the monodromy matrix, and such global 
intertwining relation reads 

R ( A , / z ) 7 - ( A )  ® 7-(/z) = 7-(/z) ® 7- (A)R(A ,  ix). (3) 

The transfer matrix of the vertex model, for periodic boundary conditions, can be 
written as the trace of the monodromy matrix on the auxiliary space A 

T(A)  = TrAT(A).  (4) 

From the above definition and property (3) we can derive that the transfer matrix is 

the generating function of the conserved currents. Indeed, after multiplying this equation 
by the inverse of R(A,/z),  taking the trace on the tensor .,4 ® A space and using the 
trace cyclic property we find 

[:r(a) ,  T(U)]  = 0. (5) 

Consequently, the expansion of the transfer matrix in the spectral parameter yields an 
infinite number of conserved charges. We recall that local charges are in general obtained 
as logarithm derivatives of T(A)  [6,7]. Furthermore, the compatibility condition of 

ordering three Lax operators £.AI ( '~1 ), /~,A.2 ('A2) and E~,3 (A3) through the intertwining 
relation ( 1 ) implies, under a plausible assumption, the famous Yang-Baxter equation 

R23(AI, A2)RI2(AI, A3)R23(A2, A3) --- RI2(A2, A3)R23(AI, A3)RI2(AI, A2), (6) 

where R,,/, (A, # )  denotes the action of matrix R(A,/z) on the spaces Va ® Vh. 
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Eq. (3) is the starting point of solving two-dimensional classical statistical models by 
an exact operator formalism. This equation contains all possible commutation relation 
between the matrix elements of the monodromy operator 'T(A). The diagonal terms 
of 7-(,~) define the transfer matrix eigenvalue problem and the off-diagonal ones play 
the role of creation and annihilation fields. The eigenvectors of the transfer matrix 
are constructed by applying the creation operators on a previously chosen reference 
state, providing us with an elegant formulation of the Bethe states. For this reason this 
framework is often denominated in the literature as the algebraic Bethe ansatz approach. 
This situation resembles much the matrix formulation of (0 + 1 ) quantum mechanics. 
It is well known that the harmonic oscillator can either be solved by the Schr6dinger 
formalism or by the Heisenberg algebra of creation and annihilation operators. The 
latter approach, however, is conceptually much simpler provided the relevant dynamical 
symmetry has been identified for a given quantum system. One successful example is 
the solution of the hydrogen atom through the SO(4) algebra [8]. 

In this paper we are primarily interested in applying the quantum inverse scattering 
method for the one-dimensional Hubbard model. We recall that, after the Heisenberg 
model, the second one-dimensional lattice paradigm in the theory of magnetism solved 
by Bethe ansatz method was the Hubbard model. The solution was found by Lieb and 
Wu in 1968 [9] using the extension of the coordinate Bethe ansatz to the problem of 
fermions interacting via ~-functions [ 10]. Considering the success of the solution of the 
Heisenberg model by the inverse method [3], the next natural target for this program 
would then be the Hubbard model. However, it turns out that the solution of this problem 
followed a more arduous path than one could imagine from the very beginning. Indeed, 
nearly 18 years were to pass before it was found the classical statistical vertex model 
whose transfer matrix generates the conserved charges commuting with the Hubbard 
Hamiltonian. This remarkable step was done by Shastry [11-13] who also found the 
R-matrix solution and thus proved the integrability of the Hubbard model from the 
quantum inverse method point of view. Shastry himself attempted to complete the inverse 
scattering program, but he was only able to conjecture the eigenvalues of the transfer 
matrix guided by a phenomenological approach which goes by the name of analytical 
Bethe ansatz [ 13 ]. Subsequently Bariev presented a coordinate Bethe ansatz solution for 
the classical Shastry's model, however on the basis of the diagonal-to-diagonal transfer 
matrix method [ 14]. 

One of the main results of this paper is the solution of the one-dimensional Hubbard 
model by a first principle method, namely via the algebraic Bethe ansatz approach, l For 
this purpose we will use Shastry's R-matrix as well as the modifications introduced by 
Wadati and co-workers [ 15 ]. Apart from the fact that the solution of the one-dimensional 
Hubbard model by the algebraic Bethe ansatz framework remains an important unsolved 
theoretical challenge in the field of integrable models, there are also other motivations 
to pursue this program. Recent developments of new powerful methods to deal with 
finite temperature properties of integrable models (see for e.g. Refs. [ 17-19]) show 

I A brief  s u m m a r y  o f  some of  our  results has appeared in Ref. [ 16]. 
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clearly that the central object to be diagonalized is the quantum transfer matrix rather 
the underlying one-dimensional Hamiltonian. The transfer matrix eigenvalues provide us 

with the spectrum of all conserved charges, a fact which could be helpful in the study 
of transport properties [20] and level statistics behaviour [21]. Lastly, there is a hope 
that this program is the first step towards the formulation of a general approach for 
computing lattice correlation functions [5]. 

We would like to remark that the ideas developed in this paper transcend the solution 

of the one-dimensional Hubbard model. In fact, the original basis of our approach might 
be traced back to the solution of the supersymmetric spl(2[ 1) vertex model [22]. Very 

recently, we have shown that this method provide us with a unified way of solving a 
wider class of integrable models based on the braid monoid algebra [23]. Here we also 

will see that the lattice analog of the coupled X Y  Bariev chain [24] can be solved by 
this technique. The unusual feature of the Hubbard and Bariev models is that they both 
have a non-additive R-matrix solution. 

We have organized this paper as follows. To make our presentation self-contained, 
in the next section we briefly review the basic properties of the embedding of the 
one-dimensional Hubbard model into a classical vertex model, originally due to Shas- 

try [11-13].  In Section 3 we discuss the commutation rules coming from the Yang- 
Baxter algebra. In particular, a hidden symmetry of &vertex type, which is crucial for 

integrability, is found. We use these properties in Section 4 in order to construct the 
eigenvectors and the eigenvalues of the transfer matrix of the classical statistical model. 
Lieb's and Wu's results as well as the spectrum of higher conserved charges can be ob- 
tained from our expression for the transfer matrix eigenvalues. In Section 5 we present 
complementary results such as extra comments on systems with twisted boundary con- 
ditions and a discussion on the SU(2) highest weights properties of the eigenvectors. 
Section 6 is dedicated to the solution of the classical analog of the coupled X Y  Bariev 
model. Our conclusions are presented in Section 7. Finally, four appendices summarize 
Boltzmann weights, extra commutation rules and technical details we omitted in the 
main text. 

2. The classical covering Hubbard model 

We begin this section reviewing the work of Shastry [ 11-13] on the identification 
of the classical statistical model whose row-to-row transfer matrix commutes with the 
one-dimensional Hubbard Hamiltonian. Originally, Shastry looked at this problem con- 
sidering the coupled spin version of the Hubbard model, since in one-dimension fermions 
and spin-½ Pauli operators are related to each other via Jordan-Wigner transformation. 
In the context of statistical mechanics, however, the latter representation is sometimes 
more appealing. Here we will consider the coupled spin model introduced by Shastry 
with general twisted boundary conditions. Its Hamiltonian is 
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L- I  
_ _ _ U ~ z 

H :  Z + + + + 
i=1 

. . . .  U z z +e- '¢ 'o '+o ' l  + e'¢lO-Ltr + + e-- '¢2r+rl + e'4'2r-[7 "+ + -~trLr L (7) 

where {o-~, o -z } and {r~, r z } are two commuting sets of Pauli matrices acting on the 
site i of a lattice of size L. The second term in (7) stands for the boundary conditions 

~ L ,  = e+i¢'tril '  T~L+I = e±i¢2r~l ' tr~.+l = try, and r~+, = r~ where ¢,  and ¢2 are 
arbitrary angles 0 ~< ¢1, ¢2 < 27r. The coupling constant U represents the Hubbard 
on-site Coulomb interaction. 

In order to relate the coupled spin model to the Hubbard model we have to perform 
the following Jordan-Wigner transformation [ 11 ] : 

i - - I  L i--1 

k = l  k = l  k = l  

where ci~ are canonical Fermi operators of spins o- =T, 1 on site i, with anti-commutation 
relations given by {c[,~, cj~, } = 8i,j6~.~,. Defining the number operator ni,~ = c~,~ci~ for 
electrons with spin o- on site i and performing transformation (8) we find that 

L - - 1  L - - I  

n=-- Z Z [C~o.Ci+lo- ~-C~+lo.Cicr] - ~ U Z ( F l i T  - - l ) ( F l i *  - 1  ) 
i=l o'=T,.[ i=1 

--e-i~br CtLTClT - -  eiet  C~TCLT -- e-i4,~ C~LI C1 ~ -- eie+ C~TCL. [ 

+U(nLT -- ½ )(nL+ -- ½), (9) 

where the angles eT and ¢~ are given by 

eT = ¢ '  + ~ + ~N~, ¢~ = ¢2 + ~ + ~'N~ (10) 

and g~l~ is the number of holes (eigenvalues of the operator ~-]L=, cio_c~o. ) of spin tr 
of a given sector of the Hubbard model. Therefore, the Hubbard model with periodic 
boundary conditions (¢1 = ~bl) is related to the coupled spin model with dynamically 
(sector dependent) twisted boundary conditions imposed. This was the reason why we 
started with a more general coupled spin model, since the two representations are fully 
equivalent only for free boundary conditions. 

From the point of view of a vertex model, twisted boundary conditions correspond to 
the introduction of a seam of different Boltzmann weights along the infinite direction 
on the cylinder. In practice this is accomplished by multiplying one of the elementary 
vertex operator, /~.AL(,~.) say, by a "gauge" matrix GA (see Section 5). Such matrix is 
usually related to additional hidden invariances of the R-matrix [25]. Hence, although 
twisted boundary conditions may affect eigenvalues and Bethe ansatz equations in a 
significant way, the relevant features of the integrability still remain intact. Since this 
section is concerned with the latter point, we can assume periodic boundary conditions 
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without losing generality. As Shastry [ 11-13] pointed out, the mapping of the Hubbard 
model (modulo the above subtlety) into a coupled spin system is quite illuminating 
in searching for a "covering" vertex model. It is known that the decoupled spin model 
(U = 0) can be derived in terms of a pair of uncoupled free-fermion 6-vertex models. 
This suggests that, for the interacting model, we have to look for a copy of two free- 
fermion 6-vertex models coupled in an appropriate way. Shastry [ 11-13] determined 
the nature of this coupling by demanding that it should reproduce the higher conserved 
charges [11] 2 when the corresponding transfer matrix T(,~) was expanded in powers 
of the spectral parameter A. The solution found by Shastry for the Lax operator is given 
by [12,13] 

£Ai( a ) = £~ti(a) £~ti(a) e h(a>'~G,*t'. (11 

and 

The lorm of operators £~i(a) and £~i(A) obey the 6-vertex structure 

,~ a (a )  - b(A) 
£Ai(A) _ a (a )  + b(,~) + o-~4o- ~ + (o-~cr~ + o'~o -+) (12) 

2 2 

£~ai(A ) _ a(a) +2 b(A) + a(h)  -2 b(A)r~tr ~ + (r~ar? + r~ar+) ' (13) 

where the weights a(h) and b(/l) satisfy the free-fermion condition a2(,,i) + b2(a) = 1 
Furthermore, the constraint h(,~) is determined in terms of the weights and the coupling 
U by 

U 
sinh[2h(A) ] = ~a(h)b(A) (14) 

A second important result due to Shastry [12,13] was the solution of the Yang-Baxter 
algebra for the Lax operator (11), and thus determining the form of the R-matrix. The 
matrix R(a , /z)  is a 16 x 16 matrix whose non-null elements are given in terms of 
10 distinct Boltzmann weights a i ( h . , / J , ) ,  i = 1 . . . . .  10. For practical calculations it is 
helpful to display its matrix form 

R ( A ,  t z )  = 

'c~ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 a 5 0 0 - a 9 0 0 0 0 0 0 0 0 0 0 
0 0 0' 5 0 0 0 0 0 - a  9 0 0 0 0 0 0 
0 0 0 a 4 0 0 otlO 0 0 alO 0 0 --or 7 0 0 
0 a 8 0 0 a 5 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 a I 0 0 0 0 0 0 0 0 0 
0 0 0 a l 0  0 0 o' 3 0 0 0% 0 0 all.) 0 0 
0 0 0 0 0 0 0 ~5 0 0 0 0 0 a 8 0 
0 0 a 8 0 0 0 0 0 a 5 0 0 0 0 0 0 
0 0 0 OtlO 0 0 ot 6 0 0 o' 3 0 0 Ot[o 0 0 
0 0 0 0 0 0 0 0 0 0 a l  0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 ae 5 0 0 a 8 
0 0 0 - - a  7 0 0 otlO 0 0 otlO 0 0 a 4 0 0 
0 0 0 0 0 0 0 - - a  9 0 0 0 0 0 ot 5 0 
0 0 0 0 0 0 0 0 0 0 0 --or 9 0 0 a 5 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

0'2, 

15) 

2 For further discussion on Hubbard's  conserved charges see Ref. 126]. 
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where the expressions for the weights ai(,~,/x) in terms of the free-fermion weights 
a(,~), b(A) and the constraint h(A) can be found in Appendix A. The striking feature of 
this solution is that R-matrix (15) is non-additive with respect the spectral parameters. 
In fact, after an unitary transformation, R(,~,/x) can be written in a more compact 
form [13] which shows that it depends on both the difference and the sum of the 
spectral parameters. As far we know, it is still an open question whether or not there 
exists an embedding for the Hubbard model having the standard difference property. 
As a final remark we mention that an analytical proof that R(A,/.t) indeed satisfies the 
Yang-Baxter equation (6) has been recently presented in Ref. [27]. 

We close this section presenting the graded Yang-Baxter formalism [28] for the 
Hubbard model. This interesting approach was pursued by Wadati and co-workers [ 15 ] 
and it has the advantage of making real distinction between bosonic and fermionic 
degrees of freedom. In the Hubbard model, the empty and doubly occupied sites play 
the role of bosonic states while the spin up and down states are the fermionic ones. This 
formalism is an elegant mathematical procedure 3 of avoiding the subtlety on boundary 
condition raised in the beginning of this section. In other words, the graded version 
of the inverse scattering method guarantees that the "non-local" anticommutation rules 
of fermionic degrees of freedom is satisfied for any lattice sites. In general, the basic 
changes we need to perform is to consider the analogs of the trace and the tensor 
product properties on the graded space. For example, the graded Yang-Baxter for the 
monodromy matrix now reads [28] 

Re(A,/z)7-(h ) ~ T( /z )  = 'T(/z) @ " ~ V ( A ) R g ( A , / z ) ,  (16) 

where the symbol @ stands for the supertensor product 

( A @ B)~i d = ( - - l  )P(b)tp(a)+l'(C)l AacBbd . 

The index p(a) is the Grassmann parity of the ath degree of freedom, assuming values 
p(a) = 0 for bosonic specie and p(a) = l for fermionic ones. Other important change 
is on the transfer matrix definition, which is now given in terms of the supertrace of the 
monodromy matrix 

T(A) = StrA'T(A) = ~(-1)P(a)7-aa(a). ( 17) 
aE.A 

There is no extra effort to obtain the matrix Rg(A,/z) from the original solution found 
by Shastry. One just have to perform a Jordan-Wigner transformation on the Lax operator 
( l  l ) ,  taking into account the gradation of the space of states [ 15]. It turns out that the 
graded R-matrix is related to Shastry's solution (15) by a unitary transformation, and 
its explicit form is given by [ 15 ] 

3 This scheme accommodates a particular class of models having "non-ultralocal" Yang-Baxter relations. For 
more general implications of non-ultralocality see the recent review [29]. 
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'0"2 0 0 0 0 0 0 0 0 0 0 0 0 
0 0"5 0 0 - i a  9 0 0 0 0 0 0 0 0 
0 0 0"5 0 0 0 0 0 -ice 9 0 0 0 0 
0 0 0 0"4 0 0 --i0"1(} 0 0 io'111 0 0 0" 7 0 
0 --i0"8 0 0 a 5 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0"1 0 0 0 0 0 0 0 0 
0 0 0 i0"10 0 0 0"3 0 0 --0"6 0 0 --i0"10 0 
0 0 0 0 0 0 0 0"5 0 0 0 0 0 --ia8 
0 0 --i0" 8 0 0 0 0 0 0"5 0 0 0 0 0 
0 0 0 -- i0"11) 0 0 - -a  6 0 0 0"3 0 0 i0"ll I 0 
0 0 0 0 0 0 0 0 0 0 a I 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 a 5 0 0 
0 0 0 a 7 0 0 ialo 0 0 -- ialo 0 0 o: 4 0 
0 0 0 0 0 0 0 -- i0" 9 0 0 0 0 0 0"5 
0 0 0 0 0 0 0 0 0 0 0 --ia 9 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 
0 0 
0 0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 
0 0 

- i a 8  0 
0 0 
0 0 

a 5 0 
0 a 2 

(18) 

where here we assumed that the first and the fourth degrees of  freedom are bosonic 
( p ( l )  = p ( 4 )  = 0) while the remaining ones are fermionic ( p ( 2 )  = p ( 3 )  = 1). 

In the next sections we are going to use the graded formalism in order to find 

the appropriate commutation rules, the eigenvectors and the eigenvalues of  the transfer 
matrix (17) .  Afterwards, we will get back to the standard quantum inverse formalism, 

but now with twisted boundary conditions. 

3. The fundamental  commutat ion rules 

In addition to the Lax operator and the R-matrix the existence of  a local reference 
state is another important object in the quantum inverse scattering program. This is a 
vector 10)i such that the result of  the action of the Lax operator on it is a matrix having 

a triangular form. We choose 

IO)i = 0 i i 

as the standard spin up "ferromagnetic state", which in the fermionic language corre- 
sponds to the doubly occupied state. The action of  the vertex operator in this state has 

the following property: 

0 w2 (//)IO)i { ' (19)  

0 0 o-,3 (a )  [0)i 

where the symbol :~ represents arbitrary non-null values and the functions o~l (,~), o)2(a) 
and w3(/l)  are given by 

wl(A) = [a(A)]2e h(a), w2(k) = a(A)b(/l)e -h(a), w3(A) = [b(A)]2e h(a). 

(20 )  
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The global reference state 10) is then defined by the tensor product ]0) = I~i~l ® [0)i. 
This state is an eigenstate of the transfer matrix since the triangular property is easily 
extended to the monodromy matrix. In order to construct other eigenstates it is necessary 
to seek for an appropriate representation of the monodromy matrix. By this we mean a 
structure which is able to distinguish creation and annihilation fields as well as possible 
hidden symmetries. The triangular property of the Lax operator suggests us the following 

B(A) B(A) F(A) ) 
T(A)  = C(A) A(A) B*(A) , (21) 

C(A) C*(A) D(A) 4×4  

form: 

where B(,~), C* (.~) and B* (A), C(A) are two component vectors with dimensions 1 × 2 
and 2 × 1, respectively. The operator A(A) is a 2 × 2 matrix and we shall denote its 
elements by -~,,b (a ) .  The remaining operators B (A), C (A), D (A) and F (A) are scalars. 
In this paper we will use the symbol ABCDF to refer to the above way of representing 
the elements of the monodromy matrix. We recall that such ansatz is quite distinct from 
the traditional ABCD form proposed originally by Faddeev and co-workers [ 1-3]. 

In the ABCDF representation the eigenvalue problem for the graded transfer matrix 
becomes 

,) 

a =  l 

where A(A) and ]4) correspond to the eigenvalues and to the eigenvectors, respectively. 
As a consequence of the triangular property we can derive important relations for the 
monodromy matrix elements. For the diagonal part of 7-(A) we have 

B(A) ]0) = [Ogl(A)]L ]0), DiA) ]0) = [o)3(A)] L ]0), 

A,,a(A) 10) = [w2(,~)] L 10) for a = 1,2. (23) 

Also one expects that the operators B(/I),  B*(A) and F(A) play the role of creation 
fields over the reference state 10). It also follows from the triangular property the 
annihilation properties 

c(a) Io) =o, c*(a) IO)=o, 

C ( A ) [ 0 ) = 0 ,  Auh(A)]0)=0 f o r a  4: b. (24) 

To make further progress we have to recast the graded Yang-Baxter algebra in the 
form of commutation relations for the creation and annihilation fields. In general it is 
not known how and when such job can be performed for a particular representation, and 
one could surely say that the "artistic" part of the algebraic Bethe ansatz construction 
begins here. Within the ABCDF formalism, the solution of this problem turns out to be 
more complicated than a similar situation occurring for the 6-vertex model [ 1-3] and 
its multi-state generalizations [30,31]. The new feature present here is that we have a 
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mixture of two classes of creation fields, the non-commutative vectors B(A) or B*(a )  

and one commutative operator represented by F(,~). We shall start our discussion by the 
commutation rule between the fields B ( a )  and B(/x). In this case the relation that comes 
out from the Yang-Baxter algebra is not the convenient one for further computations. 
It turns out to be necessary to perform a second step which consists in substituting the 
exchange relation for the scalar operators B(,~) and F ( # )  (see Eq. (38)) back on the 
original commutation rule we just derived for the fields B(h)  and B(/z).  The basic 

trick is to keep the diagonal operator B ( a )  always in the right-hand side position in the 
commutation rule [22]. After performing this two step procedure we are able to get the 

appropriate commutation rule, which is 

cq (a,  tz) 
B( ,~ )  ® B ( / z )  - - - [ B ( / z )  ® B ( A ) ]  • ? ( ,~ , / z )  

a2(a ,  p~) 

.O/10(a ,/.g) {F(A)B(/.*) - F( t z )B(A  ) }~:, (25) 
- l  Cry(a, I ,)  

where ~: is a 1 x 4 vector and ? ( a , # )  is an auxiliary 4 x 4 matrix given by 

a(~l,/z) b(h, tz) (26) ~:= (o ~ -J o ) ,  ~ ( a , , , ) =  b (a ,~ )  a(a,/~) 

0 0 

and the functions a (h ,  # )  and b(,~,/z) are given in terms of the Boltzmann weights by 

Cr3(A,/.*)a7(h,/.* ) q- a20(A,/.*) 
a (a ,  tz) = 

Ct' 1 ( l ,  /../,)~'7 (A,/g) 

b(a,~)= cr6(A,/.z)a7(A,/*) +oe~0(a,/.z) (27) 
cr 1 ( ,~,/.1,) n'7 ( ~.,/.z) 

It turns out that the auxiliary matrix P(a , / , )  is precisely the rational R-matrix of the 
isotropic 6-vertex model or the XXX spin chain. In order to see that, we first simplify a 
bit more the auxiliary weights a ( a , / , )  and b(,~,/,) with the help of identities (A.10)-  
(A.12). We find that they satisfy the following relations: 

a ( a , / , )  = 1 - b ( a , l , ) ,  b (a , / z )  = a8 (a , / z )a9 ( ,~ , / , ) .  (28) 
al (a,  Iz)cry (a , /z )  

Next we simplify the ratios a g ( a , / z ) / a l ( a , / z )  and a s ( a ,  t z ) / a7 (a , / z )  in terms of 
the free-fermion Boltzmann weights and the constraint h(A) as much as possible. After 

some algebra we write these ratios as 

a9(,~,/z) _ a(tz)b(  a)e 2Ih~)-h~a~l - a( ~)b(Ix) (29) 
al  (a ,  tz) b(h)  b(/z) + a ( h ) a ( t z ) e  2[h(tz)-h(a)l '  

ots(,~,/z) b(A)b(tz)  + a(A)a(Iz)e2[hc~)+h~a~l (30) 
ce7 (A,/z) a(t~)b(A)e 2lhCu)+h~a)l - a ( a ) b ( i z )  

Now if we take into account the identity 
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a(A) e2h(a) b ( a )  e_2h(a ) = a(A) e_2h(a ) b(A) e2h(a) + U (31) 
b(A) a(A) b(A) a(A) 

and perform the following reparametrization: 

a ( a )  b(a)  U 
= b - - ~ e  2h(a) e -2h(a) (32) 

a(A) 2 '  

we finally can rewrite the auxiliary weights as 

a ( A , # )  = U b(A,/2) - / 2 - ~  
/ 2 -  A+ U'  / 2 -  ] +  U (33) 

Clearly, these are the non-trivial Boltzmann weights of the isotropic 6-vertex model. 
This is an important hidden symmetry, which is known to play a decisive role on the 
exact solution of the Hubbard model since the work of Lieb and Wu [9]. The derivation 
of this symmetry in the context of the quantum inverse scattering program is however 
a rather non-trivial result. One of the virtues of this result is that it becomes valid 
for the generator of the commuting conserved charges and not only for the Hubbard 
Hamiltonian. Moreover, we also recall that this symmetry is of relevance to the Yangian 
invariance of the Hubbard model which emerges in the thermodynamic limit [32,33]. 

To solve the eigenvalue problem (22) we still need the help of several other commu- 
tation relations. For instance, the commutation rules between the diagonal and creation 
operators play an important role in the eigenvalue construction. It turns out that in some 
cases we have to take into account similar trick discussed above. This is specially im- 
portant for the field f i ( a ) ,  where we have to use an auxiliary exchange relation between 
the operator B (/z) and B*(A), in order to obtain a more appropriate commutation rule 
with the creation operator B(A). In general, the task is quite cumbersome and here we 
limit ourselves to list the final results. The commutation relations between the diagonal 
fields and the creation operator B(.~) are 

.a l (A, /z)  
fi(A) @ B ( # )  = - t - -  [BOx) Q fit(A)]. P(A,/z) + ias(A'tz------~)B(A) ® f i ( Iz)  

O'9 ( A,/,Z) O:9 (A, ].Z) 

.alo(A,/z) [B.(A)B(/z  ) + ias(A,/z)  F(A)C(/z)  
- t  017 ( A,/z ) a,9 (A,/z ) 

F( /z )C(a )  / ® ~:, (34) --l 0'9 (/~,/.Z~ 

B(A)B(/z)  = iae(tz,- A) B(/z) B(A) - ias(/z,  A )  B(A)B(Iz) ,  (35) 
~9(A, 1£) O/9(A, ~)  

a s ( a , # )  
.o~8(A,/x) B( t x )D( ,~ )  + - -  F(u)C*(a) D(a)B(t~) = -~ ce7 (a, /x) c~v (a, /z)  

aa(A,/x) F ( a ) C * ( ~ )  - iCqo(a,/z) ~: 
trT(a,/x----~ -~7(~,,~--) " [B*(A) ®f i ( / z ) ] ,  (36) 

while those for the scalar field F(A) are 
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[ Ol5(A'/A) ]F(l.L)~ab(h ) • 4,1~(A)F(t  z ) =  1 + ce9(a, /Z)as(A,/z)  

a9(h ,  # ) a s ( A ,  Iz) F(  

.ocs( A,/~) or5 (a , / z )  
+ ~ -  [B(A) ® B* (#)]/,,, + i - -  

~9(a,/Z) Og8 ( ,~.,/g, ) 

B ( A ) F ( I z  ) - _ _  

D ( A ) F ( I ~ )  - - -  

O~2 (/-£, ~)  O'4 (I-L, /~) 
F(~z)B(a) - -  F (a )B( iz )  

O'7 (1-£, /~) O'7 (].A, /~) 

+ice10(#, A) {B(A) ® B ( # ) }  .~:', 
a7 (tz, A) 

O~2 (/~, ],L) ""  "D" a4 (A ' /X)F 'A 'D ' - -  " - - r ~ I z )  ca) - 
a7(A, /z)  CeT(A,/.~) ( ) (/z) 

,~,0(a,/~) ~:. {B*(a)  ® B* - i - - - - ~ ,  ~ (/z)}, 

[B*(A) ® B(~)],m, 

(37) 

(38) 

(39) 

where ~t stands for the transpose of  ~:. Furthermore, the relations closing the commuta- 

tion rules between the creation operators B(A) and F(A)  are 

[ F f A ) , F ( t z ) ]  =0,  (40) 

as(A,  Iz) . . . . . . .  (A, Iz) 
F (A)B( /x )  - ~. . r ~ I z ) o t a )  - i a8 B ( t x ) F ( A ) ,  (41) 

O'2 (/~ , /A) O~2 (/~ ,/.L) 

°~5(a' ~z) B" "F'a)  (a, iz) B ( A ) F ( t z )  - ~ t/z) t - i°19ce2(A,/.z) F ( # ) B ( A ) .  (42) 

Finally, it remains to consider the commutation rules for the creation field B*(A). To 

avoid overcrowding this section with more heavier formulae we have collected them in 

Appendix B. We see that they are quite similar to those we just derived for the field 

B(A).  In fact, it is possible to establish an equivalence between these two sets of  commu- 

tation rules if we formally interpret the symbol * as a mathematical operation acting on 

the elements of the monodromy matrix. For lack of a better name we call it "dual" trans- 

formation and we impose that it satisfies the following properties: (O*(a ) )*  ~ O(A),  
A*(A)  =_ - A t ( A ) ,  B*(A)  ~ D ( A ) ,  F*(A)  = F(A)  and C*(A)  = C ( A ) .  Applying 

the "'dual" transformation on the commutation rules of field B(A) we obtain those for 
the field B ' f  A) with new Boltzmann weights o (~ (a ,# ;h )  -- a i ( a , l ~ ; - h ) ,  where, for 

sake of  clarity, we stressed the dependence on the constraint h ( a ) .  This means that 

the functional form of the weights remains unchanged but now we have to perform 
the transformation h(A) --, - h ( A )  (U --, - U ) .  We recall that in this last step we 
used the following identities for the Boltzmann weights: crj(a,  tz; h) = o(/(tz, A; h) ,  

j = I . . . . .  7, ce8(A,/,z;h ) = ceg(/~, h; - h  ) and a l 0 ( a , / z ; h )  = - a l 0 ( / x ,  A; - h ) .  There- 
fore, we expect that the construction of the eigenvectors will be based either on the 
pair of fields B(a)  and F ( A )  or on the "dual" ones B*(a) and F (a )  rather than on 
a general combination of the three creation fields. This redundancy is in accordance 
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to what one would expect from the space of states of the Hubbard Hamiltonian, since 

at a given site we can either create a single electron (spin up or down) or a pair of 

electrons with opposite spins. We remark that such "duality" property is not particular 

to the Hubbard model but it is rather a general feature present in our framework [23]. 
At this point we have set up the basic tools to start the construction of the eigenvectors 

of the eigenvalue problem (22). In the next section we will show how this problem can 

be solved with the help of the commutations rules (25), (26); (34) - (42)  and a few 
other relations presented in Appendix B. 

4. The eigenvectors and the eigenvalue construction 

The purpose of this section is to solve the eigenvalue problem for the graded transfer 
matrix. We shall begin by considering the construction of an ansatz for the correspond- 

ing eigenvectors. The multi-particle state are going to satisfy an important recurrence 
relation. We will see that the eigenvalue problem (22) has a nested structure, i.e. it will 
depend on the solution of an inhomogeneous auxiliary problem related to the 6-vertex 

hidden symmetry. 

4.1. The eigenvalue problem 

The eigenvectors of the transfer matrix are in principle built up in terms of a linear 
combination of products of the many creation fields acting on the reference state. 
These Bethe states are often thought as multi-particle states, characterized by a set 
of rapidities parametrizing the creation fields. Before embarking on the technicalities of 
the construction of an arbitrary n-particle state we first define it by the following scalar 
product 

I , t , , , (a j  . . . . .  a o ) )  = q ' . ( a l  . . . . .  a . )  • Y 1 0 ) ,  (43) 

where the mathematical structure of vector q), (A1 . . . . .  A,,) will be described in terms 
of the creation fields. At this stage the components of vector 9 c are simply thought as 
coefficients of an arbitrary linear combination which would be determined later on. This 
reflects the "spin" degrees of freedom of the space of states and we shall denote such 
coefficients by fa,,...a, where the index ai run over two possible values ai = 1,2. 

Let us now turn our attention to the construction of vector (g)n(Al . . . . .  An) .  As 
mentioned at the end of the previous section, it is sufficient to look for combinations 
between the fields B(A) and F(A).  In general, there is no known recipe which is able 
to provide us with an educated ansatz for this vector and as it is customary we shall 
start the construction considering a few particle excitations over the reference state. A 
single particle excitation is made by creating a hole of spin up or down on the full 
band pseudovacuum 10). From the point of view of the inverse scattering method this 
excitation is represented by qh (Aj) = B(AI ) and consequently the one-particle state is 
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I ~ ( / I ,  ) )  = B ( a , )  • . ,  10) = g,,(/ i~ ) Y "  Io) .  (44) 

where from now on we assume sum over repeated index. 

It is not difficult to solve the eigenvalue problem (22) for such one-particle state. 
If we use the commutation relations (34-36),  and the pseudovacuum properties (23),  
(24) we find that the one-particle state satisfies the following relations: 

B(A) ]@l (/i1)) = i 0'2 (/I1 ' /I)  
Or'9 ( / i I ,  A) 

. a s ( & , / I )  
- t  (45) ag( / I i , / I )  

.t~S ( / i ,  /Il ) 
D(/I)  I@t ( / I1 )}=- t  ~7(/I,a,) 

• O[10(/i '  /iI ) L 
- ,  [092(/I~)] [ g - ( B * ( a )  ® [ ) 1  -Y:I0) ,  (46) 

,~vfa, a,) 
'3 

(.,t /It ) [092( / I )  ] LBcl (/II).~-"b, 10) 
(/I, A1 ) 

A,,a(/I) [q~l (/II))  = - 1  o , 9 ( / i  ' / I I )  pa,b,_c,a, , - ,  

a=] 

(/I,/It) [092(/I! )]LB(/I) • F I 0 )  + i ~ ( / I , / i ,  ) 

O'10 ( / i ,  /iI ) 
i [09 , (A, ) IL(g . (B*( / I )  ® / ) 1  - .T'10 ) , (47) 

&'7 ( / i ,  /it ) 

[091 ( / i ) ]  c I'/'t ( / i j ) )  

[09t (/IJ) ] CB(/I) • -*" 10), 

[093(/I) ] c f'*'~ (/II)) 

where [ is the 2 × 2 identity matrix. The terms proportional to the eigenvector ]@j ( / I l ))  
are denominated wanted terms because they contribute directly to the eigenvalue. The 
remaining ones are called unwanted terms and they can be eliminated by imposing further 
restriction on the rapidity /Il. This constraint, known as the Bethe ansatz equation, is 
given by 

091(/iI) ] L =  1. 

092(&)1 
(48) 

It is now straightforward to go ahead and to determine the one-particle eigenvalue. 
However, it is convenient to start introducing suitable notation which can be extended to 
accommodate multi-particle states. With this in mind, we define the following auxiliary 
eigenvalue problem: 

T¢ J ) ( A, /ii ) ~,t.f "a, = p'~", r = A ( I ) b,,, ~ /i, at ).T"' (/i, ~it ).T "< (49) 

and we see that, in terms of Eq. (49),  the one-particle eigenvalue can be expressed by 

a , & )  ]L A(A,  A l ) = i a e ( A l ' A ) [ 0 9 1 ( h ) ] c - i  ceS( [w3(A) 
a9 (a t ,  A) aT(A,/It ) 

+ i c q (  /I ' / I t )  A(1)( /I , / I t)[09z( /I) ] c. 
a9(/I , / I  ) 

(50) 
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Up to the level of the one-particle state there is no extra effort to solve the corre- 

sponding auxiliary problem. Considering the 6-vertex structure of matrix P(,~,/x) it is 

easily seen that the solution is 

A{I)(A, At) = 1 + b(A, A~). (51) 

We next turn to the analysis of the two-particle state. We expect that such state will 
be a composition between two single hole excitations of arbitrary spins and a local hole 

pair with opposite spins. The former is made by tensoring two fields of B(A) type while 
the latter should be represented by F(A).  The vector ~: has also a physical meaning. It 
plays the role of an "exclusion" principle, forbidding two spin up or two spin down at 

the same site. Thus, an educate ansatz for the two-particle vector should be the linear 

combination 

~/~2(A1, A2) = B(AI)  ® B(A2) + ~:F( ,~I)B(A2)~2)  (A1, A2), (52)  

where ~(02) (A1, A2) is an arbitrary function to be determined. We found also convenient 

to add the diagonal field B(A2) on the right-hand side of the two-particle vector ansatz. 
We see that when the ansatz (52) is projected out on the subspace of equal spins, no 
contribution coming from F(,~) appears, which is in perfect accordance to what one 
would expect from the Pauli principle. In other words, using the definition (43) we 

have 

Iqb2(A1, a2))  = Bi(al  )B.j(A2),, ~ji 10) q- [Oil (,~2)]LF(AI)~(02)(AI, A 2 ) ( f  "21 - .~--12). 

(53) 

In order to tackle the eigenvalue problem for the two-particle state, besides the com- 
mutation rules of the last section, we have to use extra relations between the fields B(,~), 

B*(,~), C(,~) and C*(,~). These relations have been summarized in the beginning of 
Appendix B. After turning the diagonal fields over the two-particle state, we find that 
there are two classes of unwanted terms. The first class we call "easy" unwanted terms 

because they are only produced by the same diagonal operator (A(,~) or D(h )  ) and 
they can be eliminated by an appropriate choice of function ~{02)(,~1, A2). There are 
three terms of this sort 

F(A)D(A~)B(A2), B(A)-  B*(A~)B(A2), ~:. [B*(,~) ® B*(A1)]B(A2) 

(54) 

and all of them are cancelled out provided we chose function ~(0 2) (/~1, /~2) as 

.alo(A1, ,~2) (55) g(02) ("~1, /~2) = l O~7(al, /~2) " 

Now, besides the wanted terms, we are only left with standard unwanted terms, i.e. 
those that require further restriction on the rapidities. We shall see below that these 
terms can be simplified in rather closed forms with the help of the two-particle auxiliary 
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problem. Similar to the one-particle analysis, the auxiliary eigenvalue problem is figured 
out by looking at the wanted terms coming from the operator ~2=~ ,~,,,, (a-). Considering 
the commutation rule (34) we soon realize that the two-particle auxiliary problem is 

~lla2 a,o I ^Clal ~ ~dla2 A( I ) T¢l)(a-,{a-;})b, b2"U" = r~,,a, (a-,a-!, h2c, (a-,a-2).. %''a2a' = (a-,{a-t}).T +2t''. (56) 

With the above information we move on simplifying as much as possible the action 
of the diagonal fields on the two-particle state. We keep in mind that we want to present 
the results in a way that would be amenable to multi-particle states generalization. After 
a cumbersome algebra we find that 

9 

B( h) 1,¢'2(a-~, k2))= [w]( h) ]L [ I  i°e2( aj'a) ./=10'O(A-i' A) ]~2(a-1, a-2)) 

2 
- L a , ; { a - , } ) )  

.i=l 

+H,(a-, a-~, a-2)[o,,(a-j)o,,(a2)] L ,eo~3)(a-, a-s, a-t; {a-k}) ) , 
(57) 

"9 

:I .,~8(a-,aj) r,z,2(a-,,a-2) ) D(a- )  1¢/~2(a-l, a-2)) = [(-O3(a-)] L --lO/7(a-, }Li ) 
.j= 1 

2 

- ~[w2(a-.i)] LAC'){A = Ai, {a-l}) ~2)(k,  a-J; {a-l})} 
.j= 1 

q-O2(a-,  a-I, a-2)[O)2(a-l)(-°2(a-2)] L lP'0(3)(a-,a-j,a-/; { a - k } ) ) ,  

(58) 
k ~ .<(a-,a-j) .(~) 
a=l Aaa(a-)J~/)2(a-l ,a-2)) = [( 'O2(a-)]Ll . ]  - - l - - - - j = !  a'9(a-, A j )  A "  ( a - , {a /} )  1~2(a-l ,a-2)) 

2 
_ ~-~'[o.,2(a-i) ] LA'~) (a- = a.i, {a-,}) ~.~')(a-, a-j; {a-,})) 

j=l 

- ~ -~ [o~ , (a i ) ]  ~ ~"~2' (a-, ai; {a-,}) } 
.j=l 

+H3(a-, a-,, a2)[w, (a-,)002 (a-a)]c ,/,0~3)(a-, Ai, &; {a-k}) ) 

"q-H4 (a-, a-I, a-2) [ 0)1 (a-2) (02 ( a-I ) ] L l t t (3 ) (a - ,a - j , a - l ; {a -k} ) ) .  

(59) 
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For the sake of clarity we have shortened the notation for the unwanted terms and 

represented them by the eigenfunctions gt~J)(a,,~j; {/ik}) / and q%(3)(/i,/ij;{hk})/" 

We see that there are three classes of unwanted terms and their explicit expressions in 
terms of the creation fields are 

qtl,) (/i, aj; {/it})) : iols(aj, A) lZi io~2(ak,/ij) 
c~9(a,,a) ~=, ag (&, / i j )  

k , - j  

xB(/i) ® 4, (,It)Oll)(/ij; {&})..~'10), (60) 

l/el 2) ) 'O'10(a'/iJ) f l  'O'2 ( 'g'k'/ii) ( / i , / i , ;  { / i t } )  = , - -  , 
k=, a g ( & , / i j )  
k ~  s' 

×[#. (n*(a) ®F)] ®,/,~ (at)01t>(/ii; {/it}). 0=10), 
(61) 

g'0(3) (/i ,/ij , /it;  { / i t}))  = F(/ i )  ~:- .T" 10), (62) 

where the operator 051) (/i.i; {/ik}) is a sort of "ordering" factor for the unwanted terms 
and it is given by the formula 

j--1 
oej ( & , / i j )  

Oj ^('~(Aj; {/it}) = H &,t+l ( / i t , / i j) .  (63) 
t=l Ol2 (/ik'/ij) 

Before proceeding with a discussion of the results, we should pause to comment 
on the "brute-force" analysis we performed so far for the two-particle state problem. 

Roughly speaking, one can estimate the wanted terms by keeping the first term of the 
right-hand side of the commutation rules (34)- (36)  when we turn the diagonal fields 
over the creation operators B(a j ) .  This procedure gives us the coefficients proportional 
to the first part of the eigenvector and to show that this is also true for the second 
part we need to use some identities between the Boltzmann weights. The situation for 
the unwanted terms is even worse due to the proliferation of many different terms, 
common in a Bethe ansatz "brute-force" analysis. The "ordering" factor just accounts 
for these many different contributions to the unwanted terms. Later on it will become 
clear that the origin of this factor is due to a permutation property satisfied by the two- 
particle eigenvector. In Appendix C we provide the details about the less straightforward 
simplifications carried out for the two-particle state, since some of them will be also 
useful to multi-particle states as well. Finally, within a "brute force" computation, we 
have found nine contributions to the third unwanted term which come from many 
different sources. It is possible to recast them in terms of four functions Hi(x, y, z) ,  
i = 1 . . . . .  4 whose expressions are 

.Oz2(y ,x)aS(Z,X)O, ' IO(y ,x)  . a ' 4 ( y , x ) O q o ( y , z )  
H l ( x , y , z ) = l  - I  

O~9(y ,x )~9(Z ,X)OIT(y , x )  O l T ( y , x ) o l 7 ( y , z )  ' 



430 M.J. Martins, PB. Ramos/Nuclear Physicv B 522 [FS] (1998) 413-470 

.a5(x,y)crlo(X,Z) .o~4(x,y)oqo(y,z) 
H 2 ( x , y , z ) = ~  - t  

OL7(x,y)ot7(X,Z) ot7(x,y)ol7(y,z) ' 

.alO(X,y)ots(x,y)o~5(y,z) .o~2(x,y)crs(x,z)alO(x,y) 
H 3 ( x , y , z ) = t  - t  

Ol7(x, y)ol9(x, y)ol9(y,z,) ce9(x, y)Ceg(X,Z)Ol7(x, y) ' 

. trio (x, y)ce5 (x, y) ce5 (y, Z ) 
H4(x, y , z )  =-1 

or7 (x, y)o~9(x, y) 0'9 (y, Z ) 

+i~J (x , y )~ lo (x , z )o~5(x , y ) [ l  + 8 (x ,y )  ] 
Ce9 (X, y)ce7 (X, Z )Or8 (X, y) 

9 
- 2 i  oL~(x,y)ajo(y,z)  (64) 

a8(x, y)ag(x ,  y) or7 (y, ~7 )" 

Now we return to the discussion of the two-particle state results. For the first two 
classes of unwanted terms we only have two main contributions and from Eqs. (57)-  
(59) it is direct to see that they vanish provided that the rapidities satisfy the following 
Bethe ansatz equations: 

[,o, L 
oJ2(Ai)J =A~I)(A=Ai,{Ai}),  i = 1 , 2 .  (65) 

Furthermore, the above Bethe ansatz equations are also sufficient to cancel out alto- 
gether the four contributions proportional to the unwanted term F(,~)K. 9 r. A simple 
way of seeing that is first to factorize a common factor [w2(,~l)W2(,~2)] L for all the 
four terms. This is done by substituting the values [o~l (,~l)] L and [wl (,~2)] L given by 
the Bethe ansatz equations (65) and by using the following two-particle relations: 

A~l)(a = hi, {at})~:- .T'= [b(hj,  A2) - fi(aj, h2)]~:..T', 

A~I)(A = ,'~2, {-'~/})~" .~"= [ b(,'~2, a l  ) -- a (  .h.2, .,~j ) ]~ . . .~ ' .  (66) 

After putting all these simplifications together, one is still left to verify that the identity 

H~(x, y , z  ) + H2(x,  y , z  ) = H3(x,  y , z  ) [ b ( y , z  ) - -  a ( y , z ) ]  

+H4 (x, y, z ) [b( z, y) - a(z, y) ] (67) 

is satisfied. At this point we note that there is a way of rewriting the term H4(,L Al, ,~2) 
in a more symmetrical form. This technical point is discussed in Appendix C and proved 
very useful in carrying out the cancellation mechanism for general multi-particle states. 

Finally, from Eqs. (57) - (59)  we can read directly the wanted terms, and the two- 
particle eigenvalue is 

2 2 
.a8(a, a~) lo[9(hi ,'0"2 ( a i '  "~')~.) -4- [093 (,.~) ] L 1-I  --/ A(A, {Ai}) = [~ol(A)]L H 
Ol7 (~ ,  A;) 

i=l i=1 
2 

.aj (A, Ai) A~j)(A, {Aj}). (68) 
- - [ W 2 ( ~ ) ] L H - - / O Y 9 ( / ~ , ~ i )  

i=l 
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Now we reached a point which is typical of nested Bethe ansatz problems, i.e. the 

solution of the two-particle auxiliary problem is no longer trivial and it is necessary 
to implement a second Bethe ansatz. We will postpone this discussion until the next 
subsection in which we will present the solution of this problem for general multi- 
particle states. Although, for an integrable model, it is believed that the two-particle 
sector contains the essential features about the general structure of the eigenvalues and 
the Bethe ansatz equations, similar situation for the eigenvectors is still less clear. Before 
considering this problem, it is wise to look first for an alternative way of starting with 
a general ansatz, since a "brute force" analysis proved to be rather intricate even for 
the two-particle state. In fact, there is a symmetry which we have not yet explored. It 
consists of seeking for eigenvectors which are in some way related to each other via 
permutation of the rapidities. This idea goes along the lines the usual pseudomomenta 
symmetrization imposed to coordinate Bethe ansatz wave functions. For example, let us 
consider the two-particle vector in which the constraint ~02) (&,  A2) has been fixed as 
in Eq. (55). Then, it is possible to verify that the exchange property 

O~1 (ill, A2) 
~2(  al ,  A2) = ~2 (,~.2, al ) " ?(aJ, k2) (69) 

~2(&,  a2) 

is satisfied. In order to show that, we used a remarkable relation between vector £, the 
auxiliary matrix P(A,/z) and the Boltzmann weights given by 

am(a ,  ~)  a7(p,, a)a2(,~, p~) ~-?(A, /~)  = ~. (70) 
aT(a,  p.) alo(/~, a ) a l  (a, p.) 

Alternatively, we can reverse the arguments demanding that the eigenvectors satisfy the 
exchange symmetry (69). This procedure gives us a restriction to function ~(02)(al, A2) 
and it is an elegant way of fixing the linear combination from the very beginning. Now 
it is easy to understand the reason why an "ordering" factor had emerged in the "brute- 
force" analysis of the two-particle state. For example, the simplest way to generate the 

unwanted terms B(A) ® t ~  1 (/~1 ) and [g- (B* (a)  ® [) ] ® ~1 (a l )  is by using the right- 
hand side of Eq. (69) instead of the left-hand side we used in the whole "brute force" 
analysis. In this way we obviously generate only one contribution to such unwanted 
terms which carries the "ordering" factor explicitly. 

In principle, such symmetrization mechanism can be implemented to any multi-particle 
state, and as we shall see below, it indeed help us to handle the problem of constructing a 
general n-particle state ansatz. We will start our discussion considering the three-particle 
state. This state is expected to be a composition between the term representing the 
creation of three holes (arbitrary spins) on different sites and the three possible ways 
of combining pairs of holes with a single excitation. Within our algebraic framework 
the ansatz encoding these features is 

~3('~1, /~2, /~3) = B(AI) @ B(A2) ® B(A3) 

+[B(AI)  ® ~F(A2)B(A3) ]g(o 3) (AI, A2, ,A3) 
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+[~: ® F(AI )B(A3)B(A2) ]~113) (AI, 12, 13) 

+[~: ® F(A1 )B(A2)B(A3) ]~3)(A1,12, A3), (71) 

~(3) where the coefficients 8j (11,12, 13) are going to be determined assuming a priori 
an exchange property (cf. Eq. (78)) for the 11 ~ 12 and 12 ~ 13 permutations. 
To see how this works in practice, let us first implement the permutation between the 
rapidities 12 and a3. To this end we use the commutation relation (25) to reorder these 
rapidities in the permuted three-particle vector ~3 (1 j ,  13, 12). This allows us to write 
the following relation: 

~St'l (12, 13) 
'/~3 (11, a3, A2).&3(A2, 13) 

12 ( t2, 13 ) 

= B(AI) ® B(A2) ® B(A3) + icel0(A2, 13) [B(AI) ® ~:F(A2)B(A3) ] 
17(12, 13) 

OQ0(12, 13 ) OQ (12, 13) 
+ [ B ( , q )  @ ~ : F ( a 3 ) B ( a 2 ) ]  - ~ 17(12,13)  + ~ . (12 ,13)  

(Al, A3, A2)./~23 (A2, 13)/ X~(o 3) 

( & ,  
13) ~(13)(11,13, 12).~23 (12, 13) 

tx 1 
+ [ ~  ® F(AI ) B ( A 2 ) B ( 1 3 )  ] 12(12, 13 ) 

O'1(12'13) ~(3)/i I I:~,12).r23(12,13).. (72) +[~:@ F(A1)B(h3)B(A2)]-~2~2, A3)g2 ~ , 

Imposing the exchange property to the three-particle state, i.e. that the right-hand 
sides of Eqs. (71) and (72) are equal, we are able to derive constraints to functions 
^(3) gi (11,12, 13). We find that it is sufficient to have 

O:10(12, 13) 
~'o ~3) ( & ,  12, 13) = i- " (73) 

av(12, 13) 

and 

oq (12, 13) ~(13) (11,13, 12) • ~23 (12, 13), (74) ~3) (11,12, 13) - ~2(12, 13 ) 

where we used the identities ~23(12, 13) • P23(13, 12) = [ and eel (a,/ . t)  = oe2(/-t, A). 
We recall that relation (70) helps us to cancel out the third term of Eq. (72). Now 
it remains to determine function ~13)(&,12,13) and this can be done by using the 
permutation between the variables Aj and 12. The technical steps of this computation 
are more involving, since it is necessary to use other commutation rules and some 
identities between the Boltzmann weights. The details are presented in Appendix D and 
here we quote our result for the remaining functions 

.0'10(11, 12) .~2(13, 12) 
~(]3/(aj, 12, 13) = ,  t 

aT(,h,  12) ~9(13, 12) ' 

.0q0(11,13) .O[1 (12, 13) 
~{3)(11,12,13) =t  - - - -  - - t  P23(12,13). (75) 

- ~5¥7 (11, 13) O'9(12, 13) " 
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To make sure we are on the right track, we have checked that the three-particle 

"easy" unwanted terms are automatically cancelled out provided we fix the constraints 
~(3) "X, ~(3)(A1,A2, A3) as in Eqs. (73) and (75) .  We note that functions g0 t y,z) and gj 

~CoZ) (y, z ) are identical, and this allows us to rewrite the three-particle vector in terms 
of the following recurrence relation: 

~ 3 ( A I ,  A2,/~3) ----- B ( ~ I  ) ® ~J~2 (A2, A3) 
3 

+ ~ [g ® F(AI )Ol (A2 . . . . .  Aj-,, "~j+l . . . . .  a3)B ( t~j)] 
j=2 

Xg.]_l~(3) ( h i ,  A2, "~3)" (76) 

This expression is rather illuminating, because it suggests that we can write a general 
n-particle state in terms of the ( n -  1 )-particle and ( n - 2 ) - p a r t i c l e  states via a recurrence 
relation. From our expressions for the two-particle and the three-particle states it is not 

difficult to guess that the n-particle vector should be given by 

q)n (hi  . . . . .  An) = B(A1  ) ® 4 ) , - 1  (a2 . . . . .  An) 

+ ~ [~: ® F(AI )~n-2(,~2 . . . . .  a.j_,, Ai+l . . . . .  an )B(Ai ) ]  
j=2 

X~(n) (AI ,  An ) 'g i-1 . . . . .  (77) 

where here we formally identified qb0 with the unity vector. Our next step is to implement 
the symmetrization scheme for such multi-particle state ansatz. The best way to proceed 
here is to use mathematical induction, i.e we assume that the (n - 2)-particle and the 

( n -  1 )-particle states were already symmetrized to infer the constraints ~" )  (AI . . . . .  An) 
for the n-particle state. For this purpose we impose that any consecutive permutation 

between the rapidities Aj-1 and Ai (J = 2 . . . . .  n) satisfies the following exchange 
property: 

(~n ( .~1 . . . . .  /~j--I,Aj, . .  "~,) -O[-I(Aj-I''~j'''----~) (~ (AI . . . .  Aj, Aj-1 . . . .  "~n) 
"' a 2 ( A j - I , A j )  " '  ' " ' 

(78) 

where the indices under P j_ 1,j ( A j _ I ,  ,A j )  emphasize the positions on the n-particle space 
1 ® . . .  ® j - 1 ® j . . .  ® n in which this matrix acts non-trivially. 

Now starting with the latest permutation j = n we go ahead comparing the terms 
proportional to 

[~: @ F(AI ) (i])n--2 (/~ 2 . . . . .  '~.j--2, "~.j . . . . .  "~,)B(/~.j-1 ) ] 

and 

[~ ® F(A1 )~l]~n--2(A 2 . . . . .  Aj -1 ,  /~j+l . . . . .  ,~n)B(/~.j) ] 
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in both sides of  the exchange relation (78).  At each step, this yields a set of  relations 
between the functions ~In)(,~j . . . . .  /In) which are further simplified by using explicitly 

both the unitarity condition and the Yang-Baxter equation for the auxiliary r-matrix. Up 
to j = 3 we find that such functions satisfy the following recurrence relation: 

,~(n~ 
j _ j ( a l , . ,  a j _ , , a j , . ,  a , , )=aJ(aJ -~ 'aJ )~ i"~(a l  . . . .  ,~i, ai_l,  an) 
• " '  ' " " '  a 2 ( h . i _  1,  A . j )  " " ' ' " " ' ' '  

)</~. j - -1 , j  ( A . j _  I ,  /~j ) -  (79) 

Next we implement the symmetrization hi +--+ ,~2 along the lines sketched in Ap- 
pendix D for the three-particle state. In this case we have to eliminate the term propor- 

tional to [ ~ ~ F (/ll ) ~ n -  2 ( ,~3 . . . . .  /In ) B (a2) ] which only occurs in the left-hand side 
of  the exchange relation (78).  This condition helps us to determine the expression for 

the first constraint and we have 

i l l  .a2 (,~k, & )  .m0(al ,a2) , . (80) 
g ( l n ) ( a l  . . . . .  a n )  - -  l 0 ~ 7 ( / ~ t ,  ,~,2) k=3 a 9 ( , ~ k ,  a 2 )  

Finally, the set of  relations (79) and (80) are solved recursively and we find that the 

n-particle vector is 

. . . . . . .  ~ i°q°( Al'A.J) f i  "a2( Ak'Ai) ~ , , ( a l , .  An) =B(al) @~n--l(A2,  A n )  Jr- l ' 
.j=2 a7(,'~l, ,~..j) k=2 a9(~.k, ~.j) 

k ~ j  

x [£ @ F(AI )~n-2(/~2 . . . . .  /~ . j - - l ,  k.i+l . . . . .  An)B(Aj)] 

*-~]-[ m (ak, a.D &,a,+~ (ak, ai). (81) X 1 ,  a , ( a k ,  a / )  
k=2 - 

At this point it is fair to remark that the recursive way we found for the eigenvec- 
tors were inspired to some extent on an early work of Tarasov on the Izergin-Korepin 
model [34].  Our construction, however, has the important novelty of allowing a gen- 
eral "exclusion statistics" between the non-commutative and the commutative creation 
fields and therefore paving the way for further applications and extensions. Indeed, the 
non-trivial way that both the "exclusion" vector and the auxiliary matrix enters in the 

eigenvectors expression (81) makes our formula rather general, being able to accom- 
modate the solution of a wider class of  integrable models. This situation has to be 
contrasted to that of  multi-state 6-vertex generalizations [30,31], in which the eigenvec- 

tors are easily given by tensoring the creation fields and there is no explicit dependence 
of the underlying algebra. 

Let us now return to the problem of finding the eigenvalues of  the transfer matrix, 
keeping in mind the recurrence relation (81) for the eigenvectors. To gain some insight 
about this problem we first investigate how the wanted and unwanted terms are collected 
for the three-particle state. Besides the commutation rules for the diagonal fields, we also 
have to use our previous results for the two-particle state (cf. Eqs. ( 5 7 ) - ( 5 9 ) )  wherever 
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there is the need to carry the diagonal operators through the vector ~2(A2, A3). This 
recursive way not only helps us to better simplify the wanted terms but also makes it 
possible to gather the unwanted terms in rather closed forms. This analysis is presented 
in Appendix D since it still involves some extra technicalities. Having at hand the 
two-particle and the three-particle data we can move forward to the analysis of the 
four-particle state and so forth. In general, for n <~ 3, the knowledge of the (n - l ) -  
particle and the (n - 2)-particle results dictates the behaviour of the n-particle state. 
By using mathematical induction we are able to determine the general structure for the 
multi-particle states and the final results are 

tl 

n ( . t )  I¢,,,(.,l, . . . . .  a, , ) )  = [o.,~(.,t)lc H i~2( '~s' 'a)  I , ,>.(.h, a,,))  
.j=l O'9( AJ' A) . . . .  

n 

- Zt<o,(a )l ,<'_', a,; 
j= l  

n j - I  

.j=2 /=1 

2 I .c~8(,L Aj) 
D ( A )  I~, , (A1 . . . . .  An))---- [O)3(/~-)] L --/O,7(~., ~./) ]ribn(~.l . . . . .  a n ) )  

j = l  

- ~ -~[w2(Aj ) ILA'I ) (A= Aj, {,'It}) ~ l ( A ,  AS; {At}))  
j=l 

n j-- 1 

+ ~ ~ H2(A, at, aj)[w2(A, )(.O2 ( a 2 ) ]  ta(')(.4 = aj, {ak}) 
.j=2 l=l 

xA(')(A = At, {ak}) ~.(3_)2(A, ~.j, At; {kk})), 

2 ° .re(a, aj) 
a<,o(a)I¢,.(a, . . . . .  a,)) = [°'2(a)l" 1-i-'o~9(a, aj) 

a = l  j=l 

×a(~)(a, {at})I<p,,(a~ . . . .  a . ) )  
11 

- ~[~o2(aj)ILA(1)(a = aj, {at}) q.~>, (a, aj; {at})} 
j=l 

#7 
- ~[ , , , ,  (a,)I c ,e.~P, (a ,  .~j; {a,})) 

j=l 

-- H3(A, ,'It, a.#) [fi:(a/, aj) - b(at, a./)] [Oil (a/) o~2(Aj) ]L 
.j=2 I=l 

xA(I)(A = aj, {kk}) q'n{3_)2(A, Aj, A#; {ak})) 

(82) 

(83) 
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a./) ]L 
')it) [031 (aJ )  (°2(at)  - Z H3(a, aj, &) a2(a/, 

j=2 /=1 

1 i3) {&}) ) .  x d  ( ) (a  = & , { & } )  g',,_2(a, &, &; (84) 

Similarly to what happened to the two-particle and the three-particle cases we have 
three families of unwanted terms. As before they are written in terms of the creation 
operators and the general expressions are 

.1~(I) ~ =io~5(a j ,  a ) l ~  .@2(ak, a j )  
,,_,(a, a,; {at}) 1 1 '  • / ~ o ( a / , a )  ~., a o ( & , a . / )  

k=) 

× B ( a )  ® 4',,_1 (a~ . . . . .  ;l.i . . . . .  a . )  

× O}'> (a i; {ak}) . .*  IO), (85) 

) <0(a, aj) 
~->(a, aj;{at}) =,~v(,a,,a•,) k=l a9 (&,a , )  

k*) 

x [g.  (B*(a) ® [) ] ® q,,,_~ (a, . . . . .  .~j . . . . .  a,,) 

x 0}I)(a  i; {ak})- ~ Io), (86) 

( 3 )  al; { a k } ) )  I~I .~2(ak,  a J ) i  O'2(ak,a/)  ~,,-2 ( a ,  a . i ,  = t - -  .. 
~=~ o<9(.,lk, a.,) o<9(&,aD 
*jl 

x F( a)~: ® @,,-2 ( al . . . . .  ~.l . . . . .  ,~j . . . . .  an) 

× 0  (2) t i (&, a j: {&}) • .~10), (87) 

where the symbol ,~j means that the rapidity aj is absent from the set {al . . . . .  ,In}. 
For n ~> 3 it was necessary to introduce a second "ordering" factor in order to better 
represent the third type of unwanted terms (cf. Appendix D). Its task is similar to 
that played by the first "ordering" factor with the difference that now two rapidities 
are reordered. In other words, this second "ordering" factor brings the rapidities ,It and 
aj (l < j )  to the first two positions in the eigenvector formula (81), and a simple 
calculation shows that its expression is 

l-1 ,/-I 
O(2>('at, 4/; {ak}) = I I  ,~1 (,ak, ,)t; ~1 (&, ~ t j &.~+l ( & ,  a , )  o/,(ak,  a j  Irk+l,k+2(ak,aj) H o..,2(ak ' 

k=l " • k=/+l 
/-I 

x 1-I al (ak, aD a , ( & ,  &) &,~+l (&,  &). (88) 
k=l - 

Before discussing the results, we should note that the above expressions for multi- 
particle states indeed reproduce our previous findings/'or the two-particle (after consid- 
ering Appendix C) and the one-particle states. Now, from Eqs. (82) - (84) ,  it is direct 
to read of the n-particle eigenvalue expression, namely 
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A(A, {Aj}) = [601 (•)] L H i~2(Aj, 
A j) 

j=l °~9(AJ'A) -]- [(°3(A)]L --l )=1 ~7(A, Aj) 

n -t~9(A,'°q(A'AJ) A(I)(A'{At})' (89) - [ w 2 ( a )  ]L 1-I A j) j=l 

Following the same arguments given for the two-particle state, and in particular the 
discussion presented at the end of Appendix C, we easily derive that the unwanted terms 
vanish provided the rapidities satisfy the following Bethe ansatz equations: 

(a,) ] L 
o92(Ai) J = A ( 1 ) ( A  = Ai, {Aj}), i = 1 . . . . .  n. (90) 

Once again, the final results have been expressed in terms of the underlying auxiliary 
problem, which for a general multi-particle state is defined by 

f , I  ~.~bi'..b,,7~b,,"'b' = A (1) (a ,  {ai}) f"  ....... a, (91) T (I) (A, t 'qJJal . . .a , , - -  

where the inhomogeneous transfer matrix T {1) (a,  { ai}) is 

T(1) (a,  ,,,...a,, ( a , "  ,.~l,a2r ^d,,_,a,,, {ki})h,_.b,,  = ro, a,̂c'< ^ 1  ] r b z c 2  va, a2) • • • rb,,c , ta ,  a , ) .  (92) 

As we have commented before these results are direct extensions of those obtained 
for the two-particle state. We see that the Bethe ansatz equations and the eigenvalues 
still depend on an additional auxiliary eigenvalue problem. In the language of condensed 
matter we would say that so far we managed to solve the "charge" degrees of freedom 
but still remains the diagonalization of the "spin" sector. As we shall see next the "spin" 
problem can also be solved in terms of the algebraic Bethe ansatz approach. 

4.2. The  e igenva lues  a n d  the nes t ed  Be the  ansa t z  

The purpose of this section will be the diagonalization of the auxiliary transfer matrix 
T(I)(A, {A j}).  For this purpose we have to set up another Bethe ansatz which will result 
in "nested" Bethe ansatz equations for the rapidities we began with. This problem, how- 
ever, is equivalent to the solution of the 6-vertex model in presence of inhomogeneities 
and it has been extensively discussed in the literature (see e.g. Refs. [ 5,30,31 ] ). There- 
tore we will only sketch the main steps of the solution for sake of completeness. First 
we write the transfer matrix T(')(A, {,~j}) as the trace of the following monodromy 
matrix: 

(1) 
(a. = (a. a ._ , ) . . ,  cA,,,, (a. a,). (93) 

~(1) A Aj) with .4 (.) the two-dimensional "spin" auxiliary space. The Lax operator ~.a,,~j( , 

is related to the auxiliary matrix P(A, Aj) by a permutation on the C 2 × C 2 space and 
its matrix elements are 
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b(a,,~.~) a(,~,aj) 
c as) = a(a, a,) b(a, a,) (94) I 

0 0 

We now go ahead applying the ABCD algebraic Bethe ansatz framework [ 1-3] for 
an inhomogeneous transfer matrix. Writing the monodromy matrix as 

f A(1)(A,{hj}) B(I)(A,{Ai)) ) 
T(1)(A'{AJ})= \C(1)(A,{Aj}) D(J)(A,{,(i}) ' (95) 

and taking as the reference state the vector 

i o , , , )=H® o i 
. '= 

(96) 

we find the following relations: 

A(') ( A, { Aj} ) [O ( ' ) )=10( ' )>,  

D(')(A, {Aj})I0 (')) = I£I b(A, Aj)I0( ' ) ) ,  
j=  1 

c( '>(a,  (97) 

The field B (l) (A, {Aj}) plays the role of a creation operator over the reference state. 
To get its commutation rules we solve the Yang-Baxter algebra for the monodromy 
matrix T (1)(A, {A j}) using as intertwiner the auxiliary matrix (26). This yields the 
following relations: 

1 B(,)(/~,{Aj})A(I)(A,{Aj} ) A(1) (A, {Aj})B (l) (/.L, {Aj}) - b(~,  A) 

~(].t, A) B(I ) (a, {Aj})A(1)(#, {Aj}), 
b ( #  A) 

1 
D (') ( A, {Aj} )B(')(I~, {A/}) - __/z~b( A, B(' ) (/~' {A/}) D ( 1)( A, {A i}) 

a(A,/z) B(,) (A, {Aj})D (l) (p ,  {Aj}), 
b(a ) 

IB (I) (/z, {A)}), B(J)(A, {Aj})] = 0  (98) 

Next we have to make an ansatz for the eigenstates of T(l)(a, {Aj}). This is the 
"spin" part of the multi-particle states and it is given by l-lt~B(1)(izt,{Aj})[0 (1)) 
whose components are precisely identified with the coefficients .~,,,,...a,. With the help 
of commutation rules (98) we are able to carry on the operators A(II(A, {A i}) + 
D ( 1 ) ( A, { Aj }) through all the creation fields B( J ) (/zt, { Aj }) leading us to the following 
result for the auxiliary eigenvalue: 
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m l____L___ " f l  l 
A (') (A, {,~j}, {/xt}) = H + H b(A, Aj) (99) 

;=1 b(#;,,~) j=l t=l b(a, tzt) 

provided the numbers {tzt} satisfy the additional restriction 

b ( m , ~ )  
l l b ( / x t ,  Aj) = - l =  1 . . . . .  m. (100) 
,/=z k=~ b(tz~, /z/) '  

Finally, we use the auxiliary eigenvalue expression to rewrite our previous results for 
the eigenvalues and Bethe ansatz equations of the "covering" vertex model. Substituting 
the expression (99) in Eqs. (89,90) and using the second relation of Eq. (28) we 
obtain that the eigenvalue is 

/ /  n 

A(a, {a./}, {P4}) = [COl (a ) ]L  H i a2(aj' A) ~__~ ¢l,9(aj, a) q" [O)3(A)lLatj. - i O ¢ 8 ( A ' a j ) H  
.= • .i=l a7 ( a , h / )  

;=~ ~9(a ,a ; )  ;=~ b(m,a------~ + ' j=l--/~7(A'aJ) /=1 b(A,#/) 

while the Bethe ansatz equations for the rapidities {A j} becomes 

[ O)I(Aj)]L _ h 1 
m2(Aj) J /=1 [~(#;,Aj) 

(101) 

(102) 

Now we are almost ready to make a comparison with the Lieb's and Wu's results [9]. 
First we introduce a new set of variables z:~ (a  j) defined by 

a(Aj) eZh(aD ' Z+(Aj) = b(Aj) e2h(aD" (103) z-(hi) = b(Aj) " a ( a j )  

Considering this definition and taking into account the transformation (32) as well 
as the identities (29,30), we are able to rewrite the expression for the eigenvalue as 

(--i)"A(A,{Zi(a,)},{[z,}) = [og,(a)]L f i  b(a) [~ + z-(ai)/z+(a) ] 
. ~ . . t  a ( a )  -- ~_~~-~j 

.j=l 

j=~ ~ - z - ( h j ) z + ( a )  

h z_(a) - l / z_(a)  - & + u/2 
X - -  

;=1 z_(a) 1/z_(a) & u/2 
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f i b ( A )  II + z-(Aj)Z-('~)] r I1 /Z+(~)  - Z+(A) - f~I-U/2 } 
+ . t - t a ( h )  t ~-Z~_(A.i)Z+(A)J 1/z+(A) z+(a) [zt~U/2 

.j=l l=l 

and the nested Bethe ansatz equations are now given by 

(104) 

[Z-(,~j)IL = h Z--(/~j) -- I / Z _ (  /~j)  -- [-'£1 ~- U/2  
t=l Z - ( A j )  l / z _ ( h j ) - f i - - - i - - U / 2 "  j =  l . . . . .  n 

l~i z_(aj) - l / z _ ( a j )  - & - u / 2  "' #z - #k  + u 
~=~ ~,_- ca / )  - 1 / z _ ( a ~ )  -,at + u/2 : -  &llk__~ & - u ,  / = 1  . . . . .  rtz 

(J05) 

From the above expressions we note that function A(,L {z+(Aj)}, {/.2t}) is analytic 
in A. This happens because the condition of having zero residues on both direct z-(AJ) 
and "crossed" z+ (Ai) channels is clearly fulfilled by the nested Bethe ansatz equations. 
The next step is to expand the logarithm of the eigenvalue A(,L {z+(Ai)}, {~t}) in 
powers of ,~ and up to second order in the expansion we find 

n 

In [A(,L {z+(,~j)}, {fit})] = fin+iTr Z l n [ z _  (Ai) ] 
. j= l  

[.j=l 

+O(,~3). (106) 

The O(,~) term parametrizes the spectrum of the Hubbard Hamiltonian and to recover 
Lieb's and Wu's results we just have to reexpress the variable z-(,~j) in terms of the 
hole momenta kj by 

z (Ai) = e'kj. (107) 

Considering this relation, the eigenenergies of the Hubbard model are 

I1 

E,,(L) - U(L - 2n) Z 2 c o s ( k i  ) 4 + (108) 
. j= 1 

and the momenta ki satisfy the following Bethe ansatz equations: 

eiLkJ = ~ I  s in(kj)  - / .2t  - iU/4 
t=, sin(ki) ~-t+-/-/-~--4/4' j = l  . . . . .  n 
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f i s i n ( k j ) - / 2 1 + i U / 4  f i  /21-- /2k-- iU/2 
j=I sin(kj) ~ t - i U / 4  = -  k=l /2t / 2 k ~ i U / 2 '  l= 1 . . . . .  m (109) 

where we also used /2t = 2i/2t to bring our equations in the Lieb's and Wu's form. A 
careful reader might note that the above Bethe ansatz equations have an extra minus 

factor in front of the coupling U in comparison to the original ones. This is because we 

are using the language of holes instead of particles and this means that the integers n and 

m are the total number of holes and the number of holes with spin up, respectively. It is 
well known that via a particle-hole transformation the kinetic term of the Hamiltonian 
gets an extra minus sign, which changes the sign of factor U/t entering in the Bethe 
ansatz equations. Similar reasoning can be carried out for others conserved charges. For 

example, the first non-trivial current commuting with the Hamiltonian [ 12,13] is 

L 

t J Z CjTCj+2T t = . -- c.j+2TcjT 
t=l 

+U(c~rct+,~ -c~+,TctT)(nt+~+ + "Jl - 1) + ITs+] (1 lO) 

and from Eq. (106) it follows that the spectrum (modulo a constant) of this charge is 

n 

E~(L)  = 2 i ~  [sin(2kj) - U sin(kt) ] . (111) 
j = 1 

We would like to close this section commenting on the construction of the eigenvectors 

in the terms of the "dual" field B*(A). The equivalence between the commutation 
rules for the fields B(A) and B*(A) allow us to follow straightforwardly the whole 
construction of Section 4.1 and it is not difficult to derive formula for the "dual" 

eigenvectors ~*n(A1 . . . . .  An). Formally, we can apply the "dual" transformation in 
expression (81). This leads us to following "dual" recurrence relation: 

q,*,,(a! . . . .  An) = B*(A1) ® ,/,*,,_1 ( &  . . . . .  A,,) + ~ "  ia_~0(3q, A j) 

;=2 ~ ( < , a ; )  
_ 

x ,=~1"/t aZ---(Ak,__, Aj) t=2 ce~(Ak, A.i) rk'k+l (ak, a t) 

x [g ® F(A! ) ' / ' *n -2 (& . . . . .  a t-~,  at+~ . . . . .  An)D(a t ) ]  • 

(112) 

We expect that the corresponding eigenvalues A* ( A, {At}, {/2;}) should also be related 
to A(A, {Ai }, {/2;}) in some way. This is indeed the case if we shift all the rapidities 
around the "crossing" point rr/2, and the relation we found is 

A* ( r  r /2  - A, {rr/2 - At}, {rr/2 - / 2 , } )  = ( - I ) n A ( A ,  {Aj}, {/2;}). (113) 
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With this we complete our analysis of the graded eigenvalue problem and in the next 

section we shall discuss some other complementary results which can be obtained within 

the ABCDF formalism. 

5. Complementary results 

In this section we shall first consider the solution of the coupled spin model with 
twisted boundary conditions. This allow us to illustrate the difference between the 

Hubbard and the coupled spin models from the viewpoint of their Bethe ansatz solution. 
Next we consider the well known SU(2) symmetries of the Hubbard model [35-37]. 

We will show that the eigenvectors (81) are highest weights of both the SU(2) Lie 
algebra of rotations and the B-paring SU(2) symmetry. Thus we are able to recover the 

results by Essler, Korepin and Schoutens [36] from an algebraic point of view. 

5.1. Twisted boundary conditions 

We begin recalling that twisted boundary conditions are in general associated to 
certain gauge invariances of the Yang-Baxter algebra. The integrability condition (1) is 

still valid when £Ai(h) --~ G,aEAi(A) provided the gauge matrix G.a satisfies [25] 

[R(A, tz),GA @Ga]  =0.  (114) 

This means that a vertex model defined by the transfer matrix To(a) = TrATG(A) 
whose monodromy matrix is 

7-G(A) = GA£.aL(,~)£AL-I (A) . . .  £Al ('~) (115) 

still remains integrable. One way of seeing the connection to twisted boundary conditions 
is, for example, to derive the quantum Hamiltonian Ho commuting with the transfer 
matrix Tc(,~). The derivation of Hc is standard (see e.g. Ref. [38]) and it is given by 

L-- I  

HG = ~_+ hi.i+l + Gtl hL,I Gc, (116) 
i= 1 

where hi.i = [P£.'(O)]ij. Here we assumed that the Lax operator is regular at ,t = 0 
and that G.A is invertible. The last term in the Hamiltonian (116) reflects the presence 
of non-trivial boundary conditions. In the context of the coupled spin model (7),  it is 
straightforward to see that we get twisted boundary conditions by taking the following 

gauge: 

GA = ( e-~ '/2 O )  ( e -icb:/2 O )  
e i~bl/2 @ 0 eiga2/2 . ( l  17) 

Clearly, such a gauge matrix fulfills the integrability condition (I  14). In order to 
diagonalize Tc(,~) we only need to introduce a few modifications on the formalism 
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developed in the previous sections. It is fundamental that this gauge does not spoil the 

triangular form of the monodromy 'To(A) when it acts on the ferromagnetic reference 
10). The diagonal operators of "TG(A), however, pick up extra phase factors and now we 
have the following relations 

B(A) ]0)= e-i(cb'+ea2)/2[ml (A)]L l0 ) D(A) 10) = ei(a~'+¢2)/2[w3(A)]L 10), 

All (A) 10) = e-i(4'~-4~2)/2[o92(a)]L l0 ) A22(A) 10) = e i(4''-4'2)/2 [co2(A)]L 10). 

(118) 

The next step is to solve the commutation rules in the standard Yang-Baxter formal- 
ism, since we are considering the coupled spin model. These commutation rules have 
basically the same structure of those worked out for the graded case, apart from a few 
signs and imaginary factors. We have collected them in Appendix B and we note that the 
corresponding 6-vertex auxiliary matrix has now an extra sign in the amplitude b(A,/z). 
Therefore, the nested part always gets twisted, emphasizing the difference between the 
Hubbard and the coupled spin models for closed boundary conditions. Since now the 
basic ingredients have been set up we can follow closely the steps of Sections 3 and 
4. Here we are interested in the eigenvalues of the twisted model and now we begin 
to summarize our final findings. Taking into account the relations (118) and the com- 
mutation rules (B.12)-(B.22)  we derive that the eigenvalues of transfer matrix To(A) 
is 

n 

AG( A, { Aj) ) = e-i(qs'+eaz)/2[ ml ( A ) ]L n 
j=l 

n 
+ei(4,t +~2)/2 [~o3 (A) ] L n 

j = 1 

f i  al(A'AJ) A(G')(A,{A,}) ' 
+ ag(A, Aj) 

.j= 1 

a2(Aj, A) 
a9(Aj, a) 

as (a ,  Ai) 
O~7 ( A, /~j) 

(119) 

where the variables {Aj} satisfy the Bethe ansatz equations 

[ wl(A3) ] L = 
oJ2(Aj)j --(--l)nei(¢t+ea2)/ZA(cl)( A= Ai, {At}), j = 1 . . . .  n. (120) 

It turns out that the auxiliary problem gets also an extra modification besides the sign 
on amplitude b(A,/x). The auxiliary problem absorbs the twisting on the diagonal fields 
Ajl (a)  and A22(A) and now function A~l)(a, {Aj}) is the eigenvalue of the following 
auxiliary transfer matrix: 

T~I)(A'{Ai} ) =TrA [ • A . ~  . . . . .  . . ~ A , , - , ( ' / , ' t . - I )  . . . .  ~ t l ( " t )  . 

where the Lax operator ~(1) ~.aj (A, aj) and the matrix G~ ) are given by 

(121) 
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(loO o 
~(~) -b(A, A.D ?~(A, Aj) 
~ t j ( a , a . P  = a(a, A j) -b(A, aj) ' 

0 0 

ei(4~_¢52)/2 • (122) 

The solution of this auxiliary problem is once again standard. Following the lines of 
Section 4.2 we find that the auxiliary eigenvalue expression is 

m 

A(,)(A,{ai},{ix.j})=e_i(¢,~_4,:)/2 H 1 
t=, - b ( / z / ,  A) 

+ei&bl-g~2)/2 f I  --D( A, Aj ) f I  
j=l 1=1 b ( a , m )  

(123) 

Collecting these results altogether and substituting the variables z+(A./) and /2/ we 
find that the eigenvalues of Tc (A) can be written as 

Ac,(A, {z+(Aj)}, {/2t}) = (--1)"e-il4)'+4'2)/2[wl(A) ]c ~I  b(A) 1 + z__(hj)/z+(A) 
.i=1 a(A) 1 - z_ (A j ) / z_ (A)  

" b(A) 1 + z_(Xj)z_(A) 
+ei(~b~+ea2)/2[o)3(A) ]c H a(A) 1 --z- (ai)z+(a) 

j= 1 

+(--)me-i(O'-e)2~/2[~°2(A)]C ~ ( I  b(A) 1 + Z_(Aj)/Z+(A) 

L i=~ a(A) 1-z_(aj) /z_(a)  

f i  z_(A) - 1/z_(A) - /2t + U/2 1),,eiC,~,_4,2) 
x z_(A)  1/z_(A) /2t-- U/2 + ( -  

1=1 

x a(A) 1-- z_(Aj)z+(A) /=1 j:l l /z+(A) z+(A) ~2t-q- U/2 j (124) 

while the nested Bethe ansatz equation are given by 

(_l)m+.e_i~b2[z_(Ak)]L= _ f i  z-(Ak) -- 1/Z-(hk) -/2j+___U/2 
.i:1 z-(Ak) 1/z-(Ak) /2j U/2' 

~ i  Z-( Ak) -- 1/z-(Ak) --/2l -- U/2 
~-=l z - ( & )  1/z-  (.~k) /2t~U/2 

= -(-1)"e-i(4'~-4~2)fI/2-t-/2i+U 1= 1 .,m. 
i=J txt /2) U . . . .  

k = l , .  

125) 
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In order to get the results for the Hubbard model with twisted boundary conditions 

we substitute the angles (10) in the above expressions. We should also remember that 
we are using the language of holes and therefore the integers n and m are identified with 
the total number of holes N h and the number of holes with spin up N~, respectively. 

This cancels extra phase factors in the Bethe ansatz equations (125) and we recover the 
known set of non-linear equations parametrizing the spectrum of the twisted Hubbard 
model [39,40]. Let us close this discussion by mentioning a possible application of 

these twisted Bethe ansatz results. Consider the Hubbard model perturbed by a particle 
current term (see e.g. Ref. [41])  with periodic boundary conditions. This model is 

described by the Hamiltonian 

L 

Hc(U, Ac) = H(U,~b T = 0 , ~  1 =0) - - iAc~-~-~(c ]+ lec i~ - -c~ ,C i+ l~ ) .  (126) 
i=1 o'=4- 

In the spin language, this perturbation is a Dzyaloshinsky-Moriya interaction in the 

azimuthal direction, playing the role of a "vertical" magnetic field. Similar to what 
happens in the spin case [42], the fermionic current perturbation can be gauged away 

by using the canonical transformation [40] 

ei <2k~3~4, ck,~ --~ ck~, tan(~b) = Ac (127) 

allowing us to derive the relation 

J nc(U, Ac)= l + A2cn( ~ , q b T  =qbL, fb£ :dpL). (128) 

Thus, the spectrum of Hc (U, Ac) is related to that of the Hubbard model with certain 
twisted boundary conditions and renormalized coupling. We recall that similar reasoning 
also works if we add a spin current term, but now ~b T = ~bL and ~b~ = -~bL. 

Before closing this section we would like to comment on possible extensions of the 
results we have obtained so far. First it is possible to diagonalize a two-parameter family 

of vertex models whose Lax operator is Z~ (°°) (,~) = PR(A, 00) [ 13,27]. Its Bethe ansatz 

solution follows directly from the results of this section, since the main change is only 
concerned with the action of the fields on the reference state. It turns out that now the 

bare pseudomomenta (left-hand side of first Eq. (125)) depends on the variable 00 
a s  [ol2(h, O0)/--ol9(t~,O0)] L. Also, the whole formalism can be extended to treat the 
Hubbard model in the presence of chemical potential [43]. Finally, for further results 
on twisted boundary conditions see for instance Ref. [44]. 

5.2. SU(2) symmetries 

In this subsection we investigate the highest weights properties of the eigenvectors 

constructed in Section 4, with respect to the two SU(2) symmetries of The Hubbard 
model [35]. Few years ago, Essler Korepin and Schoutens [36] have shown that certain 
"regular" states obtained from the coordinate Bethe ansatz wave function are highest 
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weight states of both the SU(2) algebra of rotations and B-pairing SU(2) symmetry. 
The idea here is to explore the algebraic machinery we developed in the previous 
section to study this problem from an algebraic perspective, in close analogy with the 
discussion by Takhtajan and Faddeev [45] for the Heisenberg model. For this purpose 
we will use the results of G6hmann and Murakami [37] who recently showed that the 
graded monodromy matrix indeed commutes with these two SU(2) Lie algebras. More 
precisely, following the notation of Ref. [37] we have 

F; [ ' ~ ( / ~ ) , S a ] o  = - [ T ( / ~ ) ,  ] A ,  C r = + , - - , Z  ( 1 2 9 )  

and 

[7-(a),rl"]Q=-[7-(a), Z ]A, O'=-[-,--,Z, (130) 

where the subscripts Q and A emphasize in which space, quantum or auxiliary, the 
commutators are taken, respectively. The SU(2) generators of rotations S" and those of 
the T-pairing symmetry B '~ are defined by [37] 

L L L 

S + ~-'~ c.iTt cj~, t = - ~ - ~ c i l c i  T, S : = Z ( n  F niL) (131)  = - , ,  S-  
j=l .i=l j=I 

and 

L L L 

'7 + l ' J+ 'ct ,  JT ctj , ,7- = Z(-1)J+'c  cJT, '7 = Z ( " J T  + " .  - l ) ,  
.j=l .j=l .j=i 

(132) 

[B~,B(A)] = -B(A) ,  

while for B + we have 

[B+, B(,~)] = -C*(a ) ,  

[BZ,F(A)] = -2F(A)  

[7? +,F(,~)] = B ( A ) - D ( A ) .  (136) 

We see that formula (135) corroborates the physical interpretation we have proposed 
for the creation fields B(A) and F(A), i.e. that they create a single and a doubly 
occupied hole on the full band pseudovacuum. For example, from this equation it is 
straightforward to derive 

(135) 

while the matrices ~ "  and ~ "  are [37] 

~-~ '+=o-+®o "-, ~--~-=o- G o  -+, ~ - - ' z = ½ ( o - ~ O [ - [ ® o : ) ,  (133) 
~ ~ ~ -- - Z 

~ = ° ' + ® ° ' + '  Z = o ' - ® o ' - ,  ~ = ½ ( o ' Z ® [ + [ ® o ' : ) .  (134) 

Let us begin by considering the B-pairing symmetry. The identity (130) enables us 
to compute the commutators of the creation fields B(A) and F(1)  with the SU(2) 
rppairing generators. For the component B z we find 
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r/z Ig ' , ( a ,  . . . . .  a , ) )  = (L  - n) I ~ , ( a ,  . . . . .  a , ) ) ,  (137) 

where we used the property r/z 10) = L 10). 

We note that the above result is valid for arbitrary values of  the rapidities. However, 
this is no longer true when we consider the annihilation property of  the raising operator 
rl +. In what follows we shall show that 

n + Iq~.(al . . . . .  A.)) = 0 (138) 

provided the rapidities {A j} satisfy the Bethe ansatz equations derived in Section 4. 
To verify the above annihilation property it is instructive first to study the case of  

a few particles over the reference state and afterwards use mathematical induction for 

the general case. From Eq. (132) this is clearly correct for the reference state. For the 
one-particle state, by using the first commutator  (136),  it is easy to show that 

7]+ I~:Pl (,h,i)) = ~ + g ( ~ . l ) "  .~'10) = ['r] +, B(A1) ]  • .~'10) = - C * ( J ~ I ) "  .~'10) = 0. 

(139) 

The Bethe ansatz restrictions start to emerge in the two-particle state analysis. For 
this state the commutators  (136) produce 

7/+ Iqo2(h,, A2)) = B(AI)  ® r /+B(a2)  • .T" I 0) - C*(Al ) ® B(A2) • .~" J0) 

q ioq0(al ,  ,,~2) [B(A1) - D ( a l ) ] B ( A 2 ) ~ : . . T ' I 0  ) . (140) 
a 7 ( a l ,  A2) 

The first term in the above equation vanishes by the same arguments used in the 
one-particle state analysis. To simplify the second term we use commutation rule (B.3) 
and finally the third term is easily estimated from the diagonal relation (23).  Putting 

these simplifications together we find 

r/+ l~2 (a , ,  a2)) - icq°(al'  a2) [[wl (al)Wl (/~2) ] L -- [W2( al )W2( ,~2)] L] ~:" ~ 10) 

_ i a l o ( a l , a 2 )  [[wl(,~l)wl(A2)]/~ 

--[w2(a~ )w2(a2) ]  LA ~') (A = ,it, {.~t})A ~) ( a  = a2, {a t ) ) ]  ~:. ~" 10) 

=0 ,  (141) 

where in the second line we used the following two-particle identity: 

A (1) (A = Aj, {A/} )A( I ) (A  = A2, {A/}) = 1. 

Clearly, the term in brackets vanishes due to the Bethe ansatz equations (90) .  
Next we consider the three-particle state. We shall see that a general pattern in the 

analysis begins to emerge here. After using the commutator  relations (136) we have 

r/+ 1~3(A1, A2, A3)) = B(al )  ® TI+~2(A2, .'~3) • ~ 10) -- C*(~. 1 ) ® ~2(/~2,  a3) - .~  10) 
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+~:[B(AI) - D(A]) ] ® B(A3)B(A2)g(I 3) (,~1, .'~2, ,~3) " ,~" I 0 )  

+~[B(AI) - D(,~i) ] O B(A2)B(A3)g2 (3) (Al, A2, A3) • U 10). 

(142) 

The first term is computable directly from the first line of Eq. (141), after making 
the replacements ,~l - +  ,~2 and ,'~2 "-~ /~3- The third and fourth terms are estimated 
with the help of commutations rules (35-36). The simplifications for the second term is 
more complicated since it involves the knowledge of an extra commutation rule, besides 
relation (B.3), between the fields C*(,~) and F(IX). This relation is given by 

C* (A) F(IX) =-t'°19('LtZ) F(u)C*(A) + i°q°(A' P') ~: [.d(,~) ® B* (IX) ] 
 2,;5 

Od4(/~' IX) B(,~)D(IX) + as(A, Ix) B(IX)D( A). (143) 
a'7 (A, ]~ ) o:'7 ( ~, IX ) 

Collecting all the pieces together is remarkable to see that many terms have opposite 
signs and thus they are trivially cancelled out. However, there is a non-trivial simplifica- 
tion yet to be carried out. This is related to the terms proportional to [ ~ : . ( B * ( , ~ I  ) ® i ) ]  

and they vanish thanks to the following identity: 

o,'10(X, Z) a9(x ,y)  a5(y ,z )  alO(X,y) Crl0(X,Z) a2(Z,y) 
- -  + + - -  - 0 .  ( 1 4 4 )  

O'7(X,Z ) Ce7(x,y ) Ce9(y,z) O~7(x,y) Ce7(X,Z) Ceg(Z,y) 

After these simplifications, the remaining terms are only proportional to [~:® B(Aj)] 
and they can be compactly written in the following way: 

3 j -I  

7] + IrP3 ('~1, /~2, '~3)) : Z Z [~ ® ~1 ('~1 . . . . .  "~l . . . . .  '~.j . . . . .  "~3)1 
j=2 /=1 

x 01~)(,~t, a j; {Ak})" .T" [0). (145) 

The first term (~I~)(,~,,,~2; {,~k}) is easily figured out because it has only two main 
contributions coming from the second and the third terms of Eq. (142). The other 
two are obtained from this term via consecutive permutation of rapidities through the 
exchange property (78). The expressions for these coefficients are 

(3) t.j (at, a.j;{ak}) = [[w,(a/)Wl(aj)]  L 

- [ w 2 (  AI)wZ( Aj) ]LA (1) (,~ = Al, {ak})a(J)(A = A.i, {Ak})] 

.al0(&,Ai) 12I al(&,&) al(X;,ak) O(2) (a.aj;{&}) 
Xlodv(Al ' '~J)  4=1 ia9(Al, Ak) ia9(Aj, Ak) lj 

k~j,I 
(146) 

and they vanish again as a consequence of the Bethe ansatz equations (90). 
Now using mathematical induction it is possible to write the action of the raising 

operator on a general n-particle state as 
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n j - I  

77+ I4~.(al . . . . .  a,)> =- Z Z [~ @ ~n-2(Al . . . . .  ~l . . . . .  ,~j . . . . .  An)] 
.j=2 l=l 

x 0 ~  ) (At, A i; {Ak}) • .T" 10). (147) 

As before, it is convenient first to compute the simplest coefficient 0 ~  ) (Al, A2; {Ak}) 
and then take advantage of the permutation property (78) to obtain the remaining ones. 
For this term we have just two contributions coming from 

I := ~ ® B( A1 ) ~ . - 2  (A3 . . . . .  An)B(A2) ~(, n) (AI . . . . .  An) • .T" 10) (148) 

and 

II := - C * (  A1 ) ® ~/~n-1 (A2 . . . . .  An) ] • ~ 10>. (149) 

We compute the first part by carrying the scalar operator B(A1) through the vector 
q~,,-2 (A3 . . . . .  An) keeping only the "wanted terms" proportional to B(AI ). This is very 
similar to what we did in Appendix D and we find 

i :=  [wI(AI)wI(A2)]LioQo(A1,A2) H ia2(Ak, A1) ia2(Ak, A2) 
O'7(AI ' A2) k=l &'9(Ak' A1 ) O'9(Ak' A2) 

k s  1.2 

× [~: ® '#n-z(A3 . . . . .  An)] -.Y" 10). (150) 

The second part is more involving since we have to carry two operators of type/ i(A) 
through vector ~n-2(A3 . . . . .  A.). This means that we have to compute the expression 

II .- ialo(A1,Az)e a" (A1)fil,Sb2(A2)[~n_z(A3 An)]b ~ b,F b''''b' 10) 
,~-~ (-a 1--7, A 2-5 ~" • " °b' . . . . . . . . . . . .  

(151) 

which after some algebra can be compacted back as 

i°'l°(Al'A2) f i  Cel(Al'Ak) O/l(A2, Ak) 
II : =  a7(A1,A2) [Wz(al)W2(al)]L ~'~ t:~9(a-1. Z-/) i ag (a2 ,&)  

k=l  
k ~  1,2 

× [~: ® q',,-2 (A3 . . . . .  An) ]•, ...... 
= = ] bl...b,, .Tcb,,...bl ×[T(I)(A AI,{At})T(I)(A Az,{AI})j.~ ...... _ 10). (152) 

Finally, putting together expressions (150) and (152) and also using the auxiliary 
eigenvalue definition (91) we find 

01~ (A,, A2; {a~)) = [twl (a l )w,  (a~)] ~ 

-[w2(AI)w2(A2)]LA(I)(A = Al, {A/})A(')(A = A2, {At,})] 

iO'IO(AI'A2) f i  O'l(A1,Ak) O'l(A2, Ak) 
× I I  , (153) 

47(a1,A2) ~=, ice9(Ai,Ak) i~9(A2, Ak) 
k~l ,2  
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which once again vanishes due to the Bethe ansatz equations. All the other coefficients 

are obtained by permuting the rapidities and by taking into account the exchange property 
(78),  and as a result they get an extra multiplicative "ordering" factor r5~2) v~j (a~, aj; {ak}). 

Since the Bethe ansatz equations are invariant under indices relabeling, they vanish too. 

This completes the proof that the eigenvectors (81) are highest weight states of  the 

r/-pairing symmetry. 

Next we turn to examine the highest weight property of  the SU(2) algebra of  rotations. 

Now the commutators of the creation fields with the SU(2) generators are obtained from 

Eq. (129).  For the component S: we find 

[S" ,B2(A)]  = - B 2 ( A ) ,  [SZ ,F(A) ]  = 0  (154) [ SZ,BI( A) ] = B I ( A ) ,  

and for S + we have 

[S+,BI(A)] = 0 ,  [S+,B2(A)I = Bl(A) ,  [ S + , F ( A ) ]  =0 .  (155) 

First of  all, it is not difficult to see that eigenvector (81) will be hardly annihilated 

by the raising operator S + unless further restriction are assumed. To illustrate this fact 

in a simple example let us consider the one-particle state. By using the commutators 

(155) we find 

S ~ Iq~j (Al))  = B l ( A i ) ~ 2 1 0 ) ,  (156) 

where we used that S ÷ 10) = 0. Therefore, to assure the highest weight property for the 

one-particle state we must set ~-2 = 0. This is an example of what was called "regular" 

Bethe states in Ref. [36] ,  and in general these states are obtained by projecting out 

the negative sectors of the magnetization operator S z. This latter condition is easily 

implemented for the eigenvector (81) if one uses the commutators (154). 

To see how this works in practice let us consider the two-particle state. In this case it 

is obvious that we have to set ,f'22 = O, and after that we find 

S + ]~/)2(AI, A2) )regular = S + [Bl (A l )BI  (A2) , f  "11 + B1 (A1)Bz(A2) ,~  "21 

+B2(A~ )B1 (A2),~ "12 q- i cq°(Al '  A2) F(hl  )B(A2)~-  ~'1 10) 
Or'7 ( a l ,  aZ) 

where the sum is over permutations on the indices of  the coefficient ~" :" ' .  In this 
case it is straightforward to verify that this sum indeed vanishes by directly solving 

the auxiliary eigenvalue problem (56).  The deeper reason behind this fact, however, is 
that the vanishing of  such sum is precisely related to the highest weight property of  the 

Bethe wave functions of  the XXX Heisenberg model with two sites. We should recall 
here that the components of  this wave function are identified with the coefficients .~a?a,. 
From this discussion, it becomes evident that the whole procedure can be applied to 
any multi-particle state. As an example, in Table 1 we summarize our findings up to the 

four-particle state 
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Table l 
The "regular" multi-particle states properties up to n = 4 

451 

,, S= I+,(~] . . . . .  An))regular S + ]qn(Al . . . . .  An))regular = 0 

2 2 none 
2 0 ~ ,  .7 "j2 = 0 

3 3 none 
3 1 ~ e  -Tq 12 = 0 

4 4 none 
4 2 ~ p . T  "ul2 = 0  
4 0 ~ p  .7112'5 = ~ p  ,~-I 1'52 : ~ p  .f-1'512 = ~ p  .~'5112 = 0 

The columns of Table 1 refer to the particle number, magnetization values and the 
sufficient vanishing condition for S + annihilate the "regular" part of eigenvector (81 ), 

respectively. In the sum the symbol ~ means that the ath element is maintain fixed 

under permutations. The generalization to multi-particle state is done by induction and 
the sufficient vanishing conditions are made of the many possible permutation over 

the coefficients .F a''a~ having positive magnetization. As before, these conditions are 
fulfilled as a consequence of the highest weight property of the Bethe states of the 

X X X  Heisenberg spin chain in a lattice with size n. Since this latter point has been 
well explained by Essler, Korepin and Schoutens [36], there is no need to proceed with 

details, and thus we conclude our proof that S + I+° . . . . .  a° ))regular ----0 here. 
Finally, we remark that similar properties can be also verified for the "dual" eigen- 

vector. The only difference is that now the "regular" states are defined by projecting out 
the posi t ive  sector of the magnetization. At this level, the eigenvector and its "dual" 

becomes complementary eigenstates. 

6. The ABCDF framework for the Bariev model 

The purpose of this section is to illustrate that the A B C D F  framework developed in 
the previous sections is by no means only applicable to the Hubbard model. In order 
to show that, we consider a second interesting model of interacting XY chains whose 
corresponding R-matrix also does not have the difference property. The model was 
originally formulated by Bariev [24] and its one-dimensional Hamiltonian is 

L 

H - -  + + w-f÷, ) + (T?V+ , + + 
i=1 

(158) 

where V is a coupling constant. In the language of fermions V plays the role of a bond- 
charge interaction and Hamiltonian (158) resembles the model of hole superconductivity 
proposed by Hirsch [46]. 

In the context of the quantum inverse scattering method this model has recently 
been investigated by Zhou [47] and Shiroishi and Wadati [50] who found two distinct 
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covering vertex models for the Bariev Hamiltonian. In this section we apply the ABCDF 
formalism for the former solution. 4 In this case, the proposed Lax operator was [47] 

~(Bj) (/~) (1) (2) • = £ A j ( A ) E A j ( A ) ,  (159) 

where 

a 
E.~)(A) = ½(1 + o~o-St) + ~-(1 - o-jo-S,)exp(flr~arTa ) 

+( o~7 ~rTa + ~rf ~r~ ) ¢1 + h 2 exp( 2flr~rTa ) (160) 

and 

(2) I A 1 .z z EAj (A) = ~(1 + 7~T~t ) + 7 (  - rjrA) exp(,8o-~o-~) 

+( r+z~ ,  + T T r ~ ) ¢ 1  + A2 exp(2flo'~o-~,).  (161) 

The relation between the parameter /3  and the coupling constant V is determined by 

computing the expression P(d/dA)E(s) (A)  on A = 0. After performing the rescaling 
A --~ Ae-/3/2/cosh(fl/2) we found 

h = e 3  = I + V  
1 - V "  (162) 

The R-matrix solving the Yang-Baxter algebra for this choice of Lax operator was 
also found by Zhou. Its explicit 16 x 16 form is [47] 

R ( A , ~ )  = 

/ p l  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 p2 0 0 p3 0 0 0 0 0 0 0 0 0 0 0 
0 0 p2 0 0 0 0 0 p3 0 0 0 0 0 0 0 
0 0 0 p4 0 0 P5 0 0 p6 0 0 P9 0 0 0 
0 P3 0 0 P2 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 pi 0 0 0 0 0 0 0 0 0 0 
0 0 0 p12 0 0 P7 0 0 p15 0 0 P5 0 0 0 
0 0 0 0 0 0 0 p8 0 0 0 0 0 p l l  0 0 
0 0 p3 0 0 0 0 0 p2 0 0 0 0 0 0 0 
0 0 0 PI3 0 0 PI5 0 0 Pl0 0 0 P6 0 0 0 
0 0 0 0 0 0 0 0 0 0 pl  0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 p8 0 0 p l l  0 
0 0 0 pl4 0 0 p12 0 0 p13 0 0 .04 0 0 0 
0 0 0 0 0 0 0 Pl l  0 0 0 0 0 P8 0 0 
0 0 0 0 0 0 0 0 0 0 0 Pl l  0 0 P8 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pl 

(163) 

where the fifteen non-null Boltzmann weights pi(A, tz), j = 1 . . . . .  15 can be found 
in Ref. [47].  We remark that we have verified that this R-matrix indeed satisfies the 
Yang-Baxter  equation (6) .  

We note that the structure of such R-matrix is very similar to that found for the 
Hubbard model and consequently one could easily guess that the ABCDF formalism 
should work for this embedding as well. It is not difficult to adapt the main steps of  
Section 3 to obtain the commutation rules for such classical vertex analog of the Bariev 

a Part o f  our  results  were first announced  in Ref. 1481. See also Ref. [51 I. 
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model and therefore we omit further details. The interesting feature here is the structure 

which comes up for both the "exclusion" vector and the auxiliary r-matrix. We found 

that they are given by 

g ( e ) =  (0 1 1/h 0), 
(i o o o) a(R) (A,/x) b(B)(A, tz ) 0 ~B)(A,/z)  = 

b(B)(A, tz) alB)  ( A , / Z )  0 

0 0 1 

(164) 

where the weights a~B)(a,/z) and b(8)(A,/z) are 

a(B) (.h., # ) _ a ( l  - -  h 2) a(f) (A,/z) _ /z(l  - h 2) 

, ~ - -  h 2 t z  ' / ~ _  h2/.z ' 

h ( a -  tz) b~B) (a, tz) = 
A - h2~ 

(165) 

From Eq. (165), it is easily recognizable that the auxiliary r-matrix has the structure 
of an asymmetrical and anisotropic 6-vertex model because the parametrization leading 
to the difference property for P(B)(A,/x) is now standard, namely A = exp(ik).  In 
this case the hidden symmetry is of Hecke type because such auxiliary r-matrix can 
be produced as a result of Baxterization of the Hecke algebra (see e.g. Ref. [52]) .  

We recall here that this latter symmetry was first noted by Hikami and Murakami by 
exploiting the continuum limit of the Bariev Hamiltonian [49]. Interesting enough, we 
note that the "exclusion" statistics for "spins" degrees of freedom seems to be of anyonic 
type with a phase /3 which depends on the strength of the coupling constant V (see 
Eq. (162)) .  It remains to be seen if this feature will also be manifested in physical 
quantities computable by Bethe ansatz methods such as in the low temperature behaviour 
of the free energy (conformal limit) and in the scattering of the elementary excitations. 

Let us now discuss the construction of the eigenvalues and the eigenvectors for this 
classical analog of Bariev model. It turns out that such formulation goes fairly parallel to 
the one already presented in Section 4 and in Appendix D. For this reason we shall avoid 
unnecessary repetition, and from now on we concentrate our attention only to the basic 
points. We start directly with the two-particle state analysis since it has already proved to 
contain sufficient information about the main steps entering in the relevant computations. 
Afterwards, generalization to multi-particle states is made following similar discussion 
presented in Appendix D. Our previous experience with the Hubbard model suggests us 
to begin with a symmetrized two-particle vector. As before, the main trick is to look at 
the commutation rule between the two creation fields of type B(A), providing us the 
following ansatz: 

~ B ) ( A I ,  A2) = B(AI) ® B(A2) Ps(AI'A2~)E(B)F(AI)B(A2), (166) 
p 9 ( A I ,  ,A2) . . . . .  

which is indeed the case thanks to the following identity: 
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~(B) . p(B) (A , / z )  = Pro2(3`,/z)p9(/z, 3`) ~(B). 
p9 (A , / z )  p5 (/-t,, A) 

(167) 

We proceed by computing the action of the diagonal fields on the two-particle state 
ansatz. Here we shall make full use of  the permutation property of the eigenvector, 
especially the simplifications mentioned at the end of Appendix C, and our final results 
are 

2 

2 
- Z  OI~'(A'AJ;{A'})) +HIB)(h'AJ'3`2) ~-2(03)(~''~J''~l;{3`k})) ' (168)  

j=l 

j=l p9(A,  3`j) 
2 

-- Z [  h3`J ILA(I)''(B) ( z~ = l~j, {3`l}) a l2 ) (3 ` , /~ j ;{ /~k}) )  
j=l 

+H~8) (3`, hi, 3,2)[h2a13`2] £ 120(3)(3 ,̀ 3`j, a;; {ak})), (169) 
2 9 

~-'~a,,(A) q~(2B)(AI,3`2)) = [hAIL1- ~ P'(A'A'i)a((le~(3`,{3`t}) @(2B)(A,,3`2)) 
a=l .i=1 P3(3`, 3`j) 

2 
-~[h(3`j)]LA( '' al')(3`, {3`~})} -~8) (3` = 3`s, {3`k}) 3`j; 

j=l 
2 

- ~ ~12'(3` ,aJ;{a~}))  

j =  1 

- L ~ ) ( a = a 2 ) , { 3 ` ~ } )  ~o~3)(3`,aj, a;;{3`k})) +H~ 8~ (3`, 3`r, 3`2) [hA2] A(B ) 

]LA(I) (3 `=  Al ) , {Ak})  ~C2(03)(3`,3`j,3`l;{Ak})), +H4 (B) (h, 3`1, A2) [ hAl~ -<~) 
(170) 

where we used the relations B(,~)10) = 10), Aaa(3`) = [hh]£10) and D(A)10) = 
[A2] L [0) which are determined by acting the Lax operator on the ferromagnetic pseu- 
dovacuum. As before, A(O ra {At}) is the eigenvalue of the auxiliary problem (56) " * ( B )  ~ " ' ,  

whose r-matrix is now p(t~)(A,/x). Furthermore, the expressions for the unwanted terms 
a r e  
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~'~I l> (/~, /~j; {a/}) '  -- p2(t~J' 1~) f i  Pl (ak, ,~.j) 
p3(Aj, A) k=~ p3(Ak, Aj) [B(A)®B(Ak)]  

k~j 
j--I 

x 1-I ~(') (ak, a j ) .~1o> rk,k+l 
k=l 

d,~[2) (~., aj;  {~.1})' -- PS(A' •j) f i  Pl (.Aj, ~-k) 
p9(,~, ,tj) ,=, R3(Aj, Ak) 

k~J 

j - I  
x H ~(') (a~, aj) • ~'10) rk,k+l 

k=l 

~o(3) (A, Aj, AI; {Ak}) ) = F(A)~ :(8) • .T" 10). 
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(171) 

[~(B).(B*(A) ®i)] ® B ( a k )  

(172) 

(173) 

Finally, the functions H~ o) (x, y, z),  l=  1 . . . . .  4 are given by 

Hln) (x , y , z )=  

H~>(x, y, z) = 

H( B) . 3 tx, y , z )=  

H(aB ) ( x ,  y ,  z ) = 

pS(y,z)p4(y,x)  pI(y,x)p2(z,x)PI2(y,x) 
+ (174) 

p9(y,z)p9(y,x)  p3(y,x)p3(z,x)p9(y,x)  ' 
p4(x ,y)ps(y ,z )  pS(X,Z)pE(x,y) 

- (175) 
p9(x , y )p9(y , z )  p9(X,Z)p9(x ,y) '  

Pl (x, y)p2(x, Z )p5(x, y) _ ps(x, y)p2(x, Y)P2(Y, Z)] 
p - ~ , , ~ Z ) p 9 ( x , y )  p9(x,y)p3(x,y)p3(y,z)  J 

[ 1 ,176  x a(8)(y,z) + -~ , 

p l ( x , z )p2 (x , y )ps (x , z )  p5(X,Z)p2(x,z)p2(z,y)  
- -  (177) 

p3(X,Z)p3(x,y)pg(X,Z) p9(X,Z)p3(x ,z)p3(z ,y)"  

In order to cancel out the unwanted terms it is sufficient to impose the following 
Bethe ansatz restriction to the rapidities: 

[A/h] - c = - A ~ U ( A = A i , { A j } ) ,  i=  1,2. (178) 

since this condition eliminates automatically the first two kind of unwanted terms. 
Moreover, this helps us to gather the four unwanted terms proportional to F (A)~:(8)..T" 
which are finally vanished due to the identity 

HIBl(x ,y ,z)  + H~BI(x,y,z) = H~nl(x,y,z)  + H(4Bl(x,y,z). (179) 

To obtain the two-particle eigenvalue we collect the wanted terms and by using the 
expression for the Boltzmann weights [47] we find 
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2j•l ~ -1 ÷ Fl t~ j a ~ I  1 + h 2 a j A 
A(B)(A,{Aj}) = ~i~_- ~ + A 2r 

= 

+ [ h / l ] L  l~ i  h-'  + hAJAA(I) a -  a. B (a, {aA).  
j=  1 .1 

( 1 8 o )  

The generalization of these results for multi-particle states goes much along the lines 
discussed in Appendix D. We start constructing a symmetrized n-particle vector state 
which satisfies 

~ ( 8 )  ( & . . . . .  hi, / l . /+i . . . . .  a,,) = ~ ( e )  (& . . . . .  a.i+~, a i . . . . .  a , )  .p(a) (a  j, A,+~ ) 

( 1 8 1 )  

and after solving these constraints we have 

• = ,n(B'(a2,.  a , ) _ ~ - P s ( a , , a J ) l [ P , ( a k ,  a J ) " "  q~f) (a l  . . . .  a,,) B(A~) ® ~ , - I  " ,  
z....~ a . . t . i : 2  p9(AI, Aj) t=: p9(Ak, Aj) 

k=j 

j - - I  

[ F ~ )*(B)I/~ ] • X g@ ( 1 n-2( 2,. /~j-l,aj+l, An)B(Aj) -I-qr^(g) " ' '  • . " ' ' '  - l l r k ,  k + l ( a k ' a j )  
k=2 

(182) 

From the two-particle analysis it is not difficult to see what should be the expressions 
for the multi-particle eigenvalues and Bethe ansatz equations. For example, the auxiliary 
eigenvalue expression is the same as given in Eq. (99), replacing b(A,/z) by b (8) (,~,/z). 
To make a comparison with the previous Bethe ansatz results derived by Bariev [24] 
it is convenient to redefine the spectral parameter A, the rapidities {,~i} and the nesting 
variables {/~j} [48]. Here we set 

A=e ik, h A j = e  ikj , t , . i = e  i''lj . (183) 

In terms of these new rapidities, our final results for the eigenvalues are 

i£i cos(k/2 + ki/2 - i~/2 ) 
A(k, {ki}, {a.i }) = / s-~n(k-~-2-- k ~ ~  t T ~ )  

i=1 

+ exp (i2Lk) ~ I  cos(ki/2 + k/2 - i[3/2) 

+exp[ i ( k_  i~)L] l f I  ic°s(k/2 + k i / 2 -  ifl/2) f I  
[, i=, s in (k i /2 - -~ /2~- ' i~ )  J=, 

(I icos( /2 + (I 

sin( Aj/2 - k/2 + i[~) 
sin(A.j/2 - k/2) 

sin(k/2 - Aj/2 + i~) 1, 
sin(k/2 - Ai/2) I ' 

(184) 
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while the nested Bethe ansatz equations for the rapidities {ki} and {Aj} are 

n! 

exp(ikiL) = - ( - 1) "-m 1--I sin(ki/2 - Aj /2  + ifl/2) 
j=l sin(ki/2 A j / 2 - i f l / 2 ) '  i= 1 . . . . .  n 

" sin(Aj/2 - k i / 2  - ifl/2) 
( - 1)" 1 / s i n ( A j / 2  k i / Z + i f l / 2 )  

i=1 

= _ i~[ sin(Aj/2 - Ak/2 - ifl) 
k=] sin(Aj/2 A k / 2 ~ i f l ) '  

4 5 7  

j = l  . . . . .  m. 

(185) 

Finally, to obtain the eigenspectrum of the Hamiltonian (158) we expand the transfer 
matrix eigenvalues in power of the spectral parameter. Up to second order we have 

ln[a(A,  {a j}, {/zj}] = ~ -~- ha h A  i -~- 

i 

+--~--.r ~ - (hA/) 2 + O ( a 3 ) .  (186) 
i 

Considering the (.9(,~) term of the above equation and remembering to perform the 
rescaling A ---, ae-t~/2/cosh(/3/2) we conclude that the eigenenergies of the Hamiltonian 
(158) are 

n 

E, = 2(1 + V) Z cos(ki) (187) 
i=1 

We conclude remarking that this model can also be solved with twisted boundary 
conditions following precisely the same steps presented in Section 5.1. 

7. Conclusions 

The main purpose of this paper was to apply the quantum inverse scattering program 
for the one-dimensional Hubbard model. We succeeded in developing a framework 
which allowed us to present an algebraic formulation for the Bethe states of the transfer 
matrix of the classical "covering" Hubbard model proposed earlier by Shastry [12,13]. 
A hidden 6-vertex symmetry has been revealed, and it played a fundamental role in the 
solution of the transfer matrix eigenvalue problem. We have found the eigenvalues of 
the transfer matrix and showed that its eigenstates are highest weights states of both 
the rotational and the B-paring SU(2) symmetries. This latter result corroborates the 
original proof given by Essler, Korepin and Schoutens [36] in terms of coordinate 
wave functions. We have also discussed the algebraic solution of models with twisted 
boundary conditions and applied the results to the Hubbard model perturbed by charge 
and spin currents. 

The framework developed in this paper, the ABCDF formalism, is indeed suitable to 
solve a broad class of integrable systems. As an example, we solved, in Section 6, the 
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classical analog of the Bariev model by this method. There are also other models that 

fit in the ABCDF framework, such as the trigonometric vertex models based on the Bn, 

C,,, D,,, A~, and A~_,_~ algebras as well as certain related supersymmetric models [23]. 
Interesting enough, the tbrmer models almost exhaust the Jimbo's and Bazhanov's list of 

Uq (G) R-matrices [53], and only the D,Z+l model appears to be not solvable within our 

framework. Anyhow, these examples suggest us that the ABCDF formalism is capable 
of solving integrable models having one less trivial conserved quantum number when 

compared to the As, multi-state 6-vertex models with an equivalent Hilbert space. 
Finally, the possibility of bringing a variety of models under one unifying approach 

not only highlight the qualities of the quantum inverse scattering program but also allows 
us to better understand the relevant properties entering their Bethe ansatz solution. This 
also motives us to look for further extensions which could shape our knowledge towards 
a possible classification of integrable models from an algebraic point of view. An 
interesting example seems to be the D ~  I vertex model, which we plan to investigate in 
a future work. 
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Appendix A. Boltzmann weights of the Shastry model 

We start this appendix by presenting the ten non-null Boltzmann weights of Shastry's 
R-matrix (15). They are given by 

al (A, IX) = {eih(u)-h(a)la(h)a(ix) + e-lh('~)-h(a)lb(A)b(ix)} a s ( a ,  ix), (A.I )  

a2(,~,ix) = {e-rh{g)-h(a)la(,a)a(ix) + eth('~)-h(a)lb(,h)b(ix) } as(,LIX), (A.2) 

elh(#)+h(a)la( h)b(ix) + e-[h(tz)+h()t)lb( A)a(ix) 
a3( ~t, IX) = 

a (a )b (a )  + a(ix)b(ix) 
{ cosh[h(ix) - h(a) ] } 

x cosh[h(/z) Th(A)]  ces(.,l, ix), (A.3) 
e-lh(#)+h(a)la( A)b( ix)  + elh(#)+h('~)lb( A)a( ix)  

a (a )b (a )  + a(iz)b(iz) 
~ cosh(h(ix) - h(h)) "~ 

x ( ~  ~h(h)) J o~5(a,/z), (A.4) 

O'4 (, '~, /J~) = 
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elh(l'O+h(a)la( A) b(/z) - e-lh(tx)+h(a)lb( A)a(lz) } 

. cosh[ h(/z) - h(a) ] as(a,  ~) (a.5) 
x [b2(/~) - be(a) l c--0-~sh[ h(/z) 7 h - - - ~  ] 

{ --e-lhO*)+h(a)]a( a,b(I,L) + elhO*)+h(a)lb( a)a(tz) } 
av(A,/.t) = a (a )b(A)  + a(kt)b(I.t) 

. cosh[ h(/.t) - h(A) ] as(a,  ~) ,  (A.6) 
x [ b 2 ( I z )  - b2 (A)  l c- -~sh[h( / , )  -~ h - - - ~  ] 

trs(A,/z ) = {elh(~)-h(a)la(A)b(tz) - e-IhO*)-h(a)lb(A)a(tz)} ols(a,/z),  (A.7) 

a9(A,/z) = {--e-[h(~)-h(a)la( A)b(t z) + e[h(**)-h(a)lb( A)a(t z) } as(A,/z) ,  

(A.8) 

b2(/z) - b2(A) <f cosh[h(/z) -h (A)]}as (A ,  tz), 
°4°( A' lt ) = a( A )--~-~ ~- a-(-~-b(la.) {cosh[h( /z)  ~ h - ~ ]  (A.9) 

where the weight as(A,/z)  has been used as a normalization. We recall that functions 
a(A) and b(A) satisfy the ffee-fermion condition a2(a) + b2(A) = 1, and in this paper 
we shall use the parametrization is a(A) = cos(A) and b(A) = sin(a).  There are certain 
useful identities satisfied by these weights we have used to simplify commutation rules 
and the multi-particle problem. These relations are given by [ 15] 

O'3(A,]./,) = O'l(A,].l ,)  -}- ~6(A,/U, ) , o-'4(A,/u,) "~'- O'v(A,/t/,) = o/2(A, fl,), ( A . 1 0 )  

o '2(A,  1./,)a 1 (A,/t~) - o '9(A,/u,)  o'8(A,/t/.) = ol4(A, iu~)a3(A, # )  -- o'20(A,/t~) 

= a~(a, t.t), (A.1 l) 

a 2 ( a , ~ ) a 3 ( a ,  ~)  + a4(A, / . t )a l (A,~)  = 2a~(A, kt). (A.12) 

A p p e n d i x  B. Extra  c o m m u t a t i o n  rules 

This appendix is devoted to complement the commutation relations presented in the 
main text. For instance, there are some additional commutation rules which are important 
for the complete solution of the two-particle state problem, These are relations between 
the fields B(A), B*(A), C(A) and C*(A) given by 

as(a,~t) 
Ca(A)Bb( /z ) -  - - B b ( # ) C a ( A )  

a9(A,/.t) 

+ i a s ( a , / ~ )  [B(~ t )a ,b (a )  - B (a )a ,h (~ t ) ] ,  
Ot9(A,/Z) 

as( A'~) Bb(tZlBa( A ) B,*,(a)Bb(lZ)- Ceg(a, 

+i aS( a'Iz) [F(~)Aab(A) - F( a)A.b(~) ], 
ag( A, tx) 

(B.I) 

(B.2) 
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0"3 (1 ' /z)  Ba (/z) C~ ( I )  0"4(1'IZ) B a ( t ) C ~ ( i z  ) 
0"7 ( t ,  ]./,) 0"7 ( t , / Z )  

0"6(1, /z) 
Bb(jZ )C~ ( A ) + i0"1o(1,/z) (ImAla( t ) Amb(t z) 

0"7 (1 ,  p,) 0"7 ( I ,  ].£) 

q_i0"1o(I,/z) (ab[ F ( t z ) C (  I )  _ B( f l , )D(  t )  ]. 
O'7(I  , ]Z) 

(B.3) 

In particular, the commutation rule (B.3) is of considerable importance in the proof 
that the eigenvectors constructed in Section 4 are highest weights states of the SU(2) r/- 
pairing symmetry (see Section 5.2). In order to understand the role of the creation field 
B*(A) it is indispensable to derive its commutations relations with the other relevant 
fields. Between B*(A) and the diagonal operators we have 

.al(/z,  1) . . . .  
,3,(i) ® B*(tz)  = - - t - - - - - - r t l z ,  a) • [B*(/z) ® / t ( I ) ]  + ias(/z,  A) 

0"8 (~, A) a8 (/z, A) 

.alo(/x, A) ~:t [ ices (/.z, a_...__~) F ( A ) C , ( I z )  
- t  ® [B(a )D(g)  + a8(~ ,1)  0"7(/z, 1) 

0"2 (]2,, 1 )  F(/z)C, (k)], (B.4) -t0"s(iZ, a) ] 
_ _  _ i  aS (a ' t z )  D(  A ) B* Oz) = ia2( A'tZ) B* ( /~)D( A) B* ( A)DOz) ,  (B.5) 
0"8(A,/z) as (A,#)  

B(A)B* (/z) = _ ia9  (/~, A) B . ( t x ) B ( A )  + ces(iz,--A)F(u)C(A) 
O'V (].~, I )  O'7 (].Z, I )  

ce4($z, h) F ( h ) C ( # )  _ iam(/z, A) [B(A) ® fi,(/z) ] .~t, (B.6) 
0"7 (].Z, i )  O'7 (fl, , 1)  

- -  B * (  A) ® A ( t z )  

while with itself and with the scalar operator F(A) we have 

B * ( A )  Q B *  ( / z )  - - -  

F (  A ) B * ( t z )  - - -  

B*(A)F( I z )  - - -  

O'1 (/d" 1)  . . . .  B* 
-~9~-----~ril.t ,z).  [B*(#)  ® (h)]  

+iaqo(/z, A) {F(1)D( /z )  - F ( t x ) D ( A ) } g  t, (B.7) 
a7 (/Z, I )  

_ i ce9 (/z, 0"5 (/z, A) F( I z )B*(A)  t )  B*(/z) F(A),  (B.8) 
o,2(~, 1) ~ 1) 

as(~,  1) .0"8 (/z, A) 
B* ( t z )F(  A ) - t - -  F( tx )B*(  A ). (B.9) 

oz2 (/z, A) oz2 (/z, 1) 

Lastly, the commutation rules with the annihilation fields C(A) and C* (a)  are 

C,7( A)B~,(/.z ) - 
a9(~z, A) 
- -  B~ (tz )C,7 ( A ) 
a8(~,  A) 
. c~5 (/.t, 1) 

- t  [DOz)Ab.(a) - D(a)Ab.(~.) ], 
a8(~,  1) 

(B.IO) 
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Ca(,~)B;(/X)- a3(/x,a) B*(/X)Cb(a) a4(/x, a) 
a7 ( /x  , A) a O/7(t/,, a )  B*() t )Cb(/x)  

.am(/x,A) ~. A " a6(/X,A) B,(/X)Ca(A) - t ~ glm alt A ) abm(/x ) -aT(/x, A) b 

-icq°(/X'A--) (ab[ F( /X)C ( A ) - D( /X)B(  A) ]. (B.11) 
aT(/x, A) 

The best way of seeing that the latter commutations relations are connected to those 
for the field B(A) is to read the equations in terms of their components. For instance, we 
note that commutation rule (B.2) is self-dual under the "dual" transformation described 
in Section 3. Several other relations have similar property as well. 

We close this appendix by presenting the expressions for the fundamental commutation 
rules when we solve the standard Yang-Baxter algebra (3). These relations lack the 
presence of the imaginary factors "i" and certain extra signs when compared to their 
graded counterparts. Below we list the most important relations for the creation fields 
B(A) and F(A) 

A(A) ® B(/X)-  

B( A)B(/X) - 

D(A)B(/X) 

as(a,/x) 
a'(a'/x~) [B(/X) ® A(a)] .  ~ ( a , / x )  + - -  
O'9(A,/X) 

,:rm(A,/x) [B*(a)B(/X) as(a,/x) 
Or'7 ( ,'~,/X) 0'9(A,/X) 

Or'2 ( a , /X)  
,--7-r--v, F(/X) C(a) ] ®gTw, 
o~9t A,/X) 

O'9 (/~,/X ) 

ce2(/x' AA-AA--~)) B(/X)B(A ) + - -  
a9(/x, ) 

as(A'/x) B" "D'A) t/x) t 

- - F ( A ) C ( / X )  

as(/x, A) 
B ( A ) B ( / X ) ,  

a9(/x, A) 

as(A'/X) F" "C*'A" tu)  t ) 

B(A)  ® ,4(/X) 

(B.12) 

(B.13) 

Ofl0(A,/X) a4(A,/X) F(A)C*( /X)  + gzw. [B*(A) @ A(/X) ] 
O'7 (A,/X) Ot'7 (A,/X) ' 

(B.14) 

_d(a,/x) ] 
ag(A,/x)a8(A,/x) J 

a~(a,/x) F(a)Aob(/x) + as(a,/x) 
ag( A,/X) ~8 (A,/X) a9(A,/X) 

as(a,/x) [B*(a) ® n(/x)]a;,, 
a8(A, Ix) 

a2(/x, A_...._~) a4(/x, A) F" A" B" " 
a7(/z,A) F(/X)B(A) + ~ ( ) t/x) 

till0 (/X, /~) [B(a) ® ~(/x)}. g~, 
a7 (/x, A) 

A,b(A)F(/X) = [1 + 

[ B ( A )  ® B*(/x)  ]ba 

lB.15) 

B ( A ) F ( / X )  - 

Jr (B.16) 
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Ol4 ( A, a2( A'tZ) F( tx )D(  A) + ~ ) )  F(  A)D(Iz) D(A)F(/z)  - O,7 (A, ]Z ~ O"7 ( ~-, 

OLI0(/~' ~L) ~ • {B*(A) ® B*(/~)}, -~ ~ ~ r w  

where ~:rw and P(A,/z)rw are given by 

(B.17) 

o o 

a(A,/x) -b (a , / x )  . (B.18) ~:rw = (0 l l 0) ,  ~m(a, tz)= - b ( a , ~ )  a(a,/x) 

0 0 

Furthermore, the relations closing the commutation rules between the creation opera- 
tors B(a)  and F(A) are 

Oq (,~,/Z) 
- -  [B(/z) ® B(A) ].~Tw(h,/z) 
a2(a, /x) 

Cel0(a,/x) {F(A)B( tz )  - F(/z)B(A)}~zrw, (B.19) 
aT(A,/z) 

IF(A), F(/~)] = 0, (B.20) 

as (a ,  a s ( a , # )  F( ix )B(  a) + - - ~ ) )  BOx)F(A) (B.21) F ( A )  B( /x )  a2 (,'~, J-/,~ a2 ( ,~., ' 

as(a,/.,) a9(a, B(,~)F(Iz) - - -  B ( t z )F(  /I) /z) F(/z)B(A). (B.22 
0'2 (/~, 1.~ ) 0~2 (a,/ t£) 

B(A)  ® B( /x)  - 

Appendix  C. The two-particle state 

In this appendix we provide details about the technical points entering the analysis 
of the two-particle eigenvalue problem. We begin the discussion by first considering 
the wanted terms. We recall that the amplitudes proportional to the first part of the 
two-particle eigenstate are easily estimated as a product of the first right-hand side 
terms of the commutation rules (34-36). For the second part, however, there are more 
contributions since the action of diagonal operators on the first part B(AI ) ®B("~2) "..~ I 0) 
produce at least one extra term proportional to the second part F(AI)~..~'10) as well. 
It turns out, however, that these contributions miraculously factorize in the same product 
forms we have obtained for the first part of the eigenstate. This happens thanks to 
remarkable identities between the Boltzmann weights we begin listing below. For the 
field B(A)  there are two contributions and they factorize as 

ce2(y,x) cr2(y,x) 0'5(z,x ) Oqo(y,x ) o'7(y,z ) ol2(y,x ) ol2(z,x ) 
- (c.1) 

~7(y ,x )  ~9(y,x) ag(z,x)  a7(y,x)  al0(Y,Z) a 9 ( y , x )  a9(Z,X ) " 

Analogously, for the field D(A) we have 

a2(x ,y)  ots(x,y) ~ lo (x , z )  CeT(y,z) ce8(x,y) a8(x ,z)  
(C.2) 

ol7(x,y) o~7(x,y) a7(x ,z )  o'10(Y,Z) ~7(x,y) a v ( x , z ) '  
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For the diagonal field ~"~-~1 "~,,(A) we have three contributions, where two of them 
are generated by the first part of the eigenstate. The identity that brings these terms 
together and also gives rise to the auxiliary eigenvalue function is 

~ ( x , y )  ] ott(x,y) atO(X,Z) crs(x,y) o~7(y,z) 
2 1 + ota(x,y)ot9(x,y)] - a9(x,y)  otT(x,z) as (x ,y )  a lo (y ,z )  

[1 + a(x ,y) ]  

alo(x, y) a2(x, y) a s (x , z )  O~7(y,z) 
aT(x, y) a9(x,y)  a9(x ,z)  crl0(Y,Z) 

_ a l ( x , y )  a l ( x , z )  [b(x,y) + b ( x , z )  -?t (x ,y)Ez(x ,z )] .  (C.3) 
o~9(x, y) Crg(x, z. ) 

Next we turn to the analysis of the unwanted terms proportional to B(A)® B(Aj) and 
[g ~ (B*(A) ® [)] ~ B(Aj). The terms with Aj = a2 are straightforwardly read from the 
commutation rules (34)-(36) because only single contributions occur for each diagonal 
field. However, for Aj = Ai, the situation is more complicated because it involves many 
different contributions whose origin is due to the fact that the rapidity Ai is wrongly 
ordered when compared with A2. Nevertheless, one expects that there should be a better 
way of recasting these terms since the Bethe ansatz equations are usually independent of 
indices relabeling. Indeed, it turns out that these many contributions can be compactly 
written by introducing the "ordering" factor O~I)(A,A.j; {,~.k})- As before, in order to 
factorize these contributions to a single term, we had to use extra identities between the 
Boltzmann weights. For example, for the field B(A) they are 

oq (y,x)  as(z ,x )  _ alo(y,x)  Otlo(y,:) as(y ,x)  cts(z,y) 
ag(y ,x)  otg(.7, x) a ( y ' x ) -  ot7(y,.r) a '7(y, : )  ag(y,x)  ag(z ,y)  

(C.4) 

a5 (z,.r) a l ( y , z )  
= - - a ( y , z )  (C.5) 

0'9 ( z, x) aq(y, 7. ) 

and 

alO(y,x) alofy, z) a j (y .x )  otS(Z,X)r, as(z ,x )  a l ( y , z ) b ( y , z  ) 
- -  ~ o (  v , x )  = - - - -  , 

aT(y,x) aT(y,z)  + Crg(y,x) 0'9(.7.,x) " •9(Z,X) Otg(y,z) 
(C.6) 

where the left-hand side of the above equations represents the contributions coming from 
the "'brute force" calculations while the right-hand side exhibits the "ordering" factor 
explicitly. 

Similar simplifications can be carried out for the fields ~"~2,~=t ,~a(A) and D(A). but 
we skip further details since there is a much simpler way to understand the origin of 
such "ordering" factor. As it has been explained in Section 4, this factor can be easily 
derived with the help of the exchange property (69). Anyhow, the coincidence between 
the "brute-force" computations and the symmetrization results gives us confidence to go 
ahead using the symmetrization procedure for multi-particle states. 

Finally, we show how the third type of unwanted terms generated by the diagonal 
field ~"~-~,--i fi~,,~('~) can be further simplified. First it is convenient to rewrite the term 
proportional to [wl(,~t)o)2(A2)lLF(A)~ : .  3 e" in a way that the auxiliary eigenvalue 
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function appears explicitly. For this purpose we use the second identity (66), and 
rewrite the contribution to the above mentioned unwanted term as 

[wl (1~)w2(12)]LA~l)(a = 12, {1~})/-/3(1, 11,12) 

x [ b ( l l ,  12) - -  0(11 ,12) ]F(1)~ : . .~ ' .  (C.7) 

Next we take advantage of the symmetrization property of the two-particle eigenstate 

and evaluate the contribution proportional to [ W l (12) w2 (11) ] LF(1)  ~:..~" as follows. 
The idea is to begin with the right-hand side of Eq. (69), which remarkably gives us 

precisely the extra r-matrix necessary to produce the auxiliary eigenvalue at 1 = 11. 
Obviously, the amplitude contributing to this term is proportional to function obviously 

H3( I ,  12, 11 ) multiplied by the extra factor ce~ ( t l ,  12)/ce2(11,12) coming from the 
exchange relation. Putting these information together we are able to rewrite the second 

contribution as 

- [Wl (A2)w2(A i ) ]LA( l ) (A=l l , {A t } )H3(1 , ) t 2 ,  A 1 ) ° q ( a l ' a 2 ) F ( h ) ~ . ~  ". (C.8) 
a2( ,h, t2) 

These manipulations make the cancellation of the third type of unwanted terms more 
transparent, since it allows us to use the Bethe ansatz equations in a more direct way. 
Indeed, using the Bethe ansatz equations (65) in the terms (C.6) and (C.7) and adding 
them to those coming from the fields B(A) and D(A), we find that the unwanted terms 
proportional to F ( A ) ~ - b  v are cancelled out thanks to the following identity: 

Hi (x, y, Z) + H2(x, y, z) = H3(x, y, Z) [b(y, z)  - gt(y, z) ]  - H3(x, z, y) al (y, z.______~) 
ce2(y, Z) " 

(C.9) 

This gives us another opportunity to verify the symmetrization scheme. Comparing 
(C.8) and (67) we conclude that the identity 

H3 (x, z, y) eel (y, z )  _ H4(x, y, z ) [fi(z, y) - b(z, y) ] (C.10) 
a2(y , z )  

is indeed satisfied. 

We remark that the above technicalities are of enormous help when we consider 
generalization to multi-particle states. In Appendix D we shall discuss this fact for the 
three-particle state. 

Appendix D. The three-particle state 

We shall start this appendix showing how the permutation symmetry l j  ~ 12 is 
implemented for the three-particle state. As before, our strategy consists in reordering 
the rapidities A1 and 12 with the help of the commutation rule (25). This allows us to 
write the ansatz (76) as 
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O'1 (.~.1 ,_ .~-2) B(A2) ti~3(al, a2, A3)= O,2(A1,'~2 ) ® B(A1) ® B(A3) " rl2(A1, A2) 

.t~lO(A1,A2) 
t [F(A1 ) B(A2)~: ® B(A3) ] 

Or7 (AI, A2) 
.a lo(&, Az) 
t [F (A2)B(AI)~ :® B(A3) ] 

av(~l,  a2) 

+iam(a2,- ,~3) [B(& ) ® ~:F(A2)B(A3) ] 
a7 (A2, a3) 

+[~ ® F(A, )B(A3)B(A2)]g(l 3) (~-I, ~-2,/~3) 

-]-[# @ F ( a l  )m(,~.2)n(/~3)]g(23) (,~1, ~-2, ,'~3) • (D.I )  

Next we use the commutation rule (35) to simplify the second and the third parts 
of the above equation, carrying the scalar field B(aj) (j = 1,2) through the cre- 
ation operator B(A3). This procedure not only helps us to eliminate the fifth term of 
equation (D.1) but also prompts the appearance of a desirable term proportional to 
[ ~: ® F ( A 2) B ( A 3 ) B ( A1 ) ]. Now, imposing the exchange property (78) for the rapidities 
& and ,~2 we find the following necessary condition: 

0~7 (h2' A1 ) -- 0/2(/~3' Al ) (D.2) 
g13) (a2'  /~1 ' A3) t;gl0(A2, AI ) Ce9(A3, AI) " 

This relation together with the previous restrictions found in Section 4, cf. Eqs. (73), 
(74), are able to determine unambiguously the constraints for the three-particle state. 
The next step is to show the consistency of the whole procedure, i.e. that the equality 
between the remaining terms are indeed satisfied. By using the commutation rules (41 ), 
(42) we derive two consistency conditions, given by 

and 

[B(A2) ® ~]F(AI)B(A3) 

x L  7(a2,a ) 

= ® B(a2)lf(a )8(a3) 

al(a j ,A2)  al0(ai,A3) ^ , ,  ] 

J 

alo(a l ,  A2) as(A3, a2) aa(a j ,  a2) 
O'7(/~1, ~2) O~9(,A3, ~-2) Ot'2(~-l, ~'2) 

O/8(AI, A2) ~(3) "/~1 1 

(D.3) 

Fa,o( ,  5<a3 a,) 
F ( A 2 ) [ ~ ® B ( A 1 ) ] B ( & )  [aT(a l , a2)  a9(,~3,,~1) 

~10(,~1, A2) c~5(,~3, a2) a5(al ,  ,~2) 
ceT(A¿, A2) a9(A3, A2) a2(aj ,  A2) 

Ol I (AI_, A2) 
ce2(AI ,~2) g2 

alo(A2, A3) a9(Al, A2) 
= -F(A2)  [B(A1 ) ® ~:1B(A3) 

av(a2, As) a2(al ,  A~) " 

+ a s ( & ,  A2) a(3) 
0/2 (,~1, ,~2) ,~2 (al ,  "~2, "~3) 

(D.4) 
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In order to disentangle the above expressions we need the help of  certain useful 

identities between the "exclusion" vector and the auxiliary r-matrix. More precisely, 

they are 

[~' ~ B ( y ) ] ? ~ 2 ( a , ~ )  = [ a ( a , ~ )  - b ( a , , a ) ] [ g  :~ B ( y ) ] ,  (D.5) 

[g :.3 B( y)  ]P2~( a,l.Z) = [~ ".~ B( y)  ] + b(A,/x) [B(y )  ~ g ] ,  (D.6) 

[ B ( y )  ;~ ~]?2~(a,/x) = [a(,~,/x) - b ( a , # ) ] [ B ( y )  ®~:],  (D.7) 

[ B ( y )  :~ g]Pt2( a .a)  = [ B(y) ~ ~] + b( ,L /x)[~ ~ B(y)  ]. (D.8) 

Inserting the identities (D .5 ) - (D .8 )  into Eqs. (D.3), (D.4) we end up with four iden- 

tities among the Boltzmann weights which have been verified by using Mathematica TM. 
With this we complete the symmetrization analysis for the three-particle state. 

We now turn to the analysis of the eigenvalue problem for the three-particle state. 

Let us begin by investigating the action of the scalar field B(A) on the state (76).  The 
first step consists to carry the field B(2t) through the creation fields B(h.t) and F(hq)  

by using the commutation rules (35) and (41). (42). Afterwards, we use directly the 

known results tbr the two-particle state, cf. (57). in order to turn one more time the 
scala," fields B(,I) and B(AI)  over the two-particle state I@:(a2, a3)). As a third step, 

we need to reorder creation fields such as B(AI)  and B(A) with the help of  commutation 

rule 125) as well as keep on carrying the scalar field B(3.) until it reaches the vacuum. 
After this tong but straightforward computations we find the following result: 

BI a)I,t,~( a,. ,t+. ,~ )' = [,,., l a ) ] L  ..ILl" .ae(,L. a)B( , t  ' ) ~ '* '2(a, ,  a~) • ..~" [0) 
- " * - - " ~ o q ( a j  A)  - " /=1 

4-[ Wl ( A) ]Li°Q( 
Go( A3. A ) 

--[ wl( A) ]LiCtZ( I t)  

oe~) ( A_,. A) 

--un,a anted terms. 

L[A., t t ,  A_,]~ -: FC& )BI,b)B(A_,),~3~(A~, A_,, A~) . .T'i0 ) 

. . - 1 3 )  L[A. AI,A~]~ i: F t , t l )B(Az)B(a . ' ,~g  2 (AI ,A , ,A3)  ".T'[O) 

(D.9) 

where function L [ x . y . : . ]  is precisely the left-hand side of identity (C . I )  we have 

worked out for the two-particle state, l'his allows us to factorize the amplitudes for the 
second and the third terms of the above equation, and as result all the three wanted terms 

have a common amplitude as it should be. To what concerns the unwanted terms, our 
computation shows that they can be gathered in two basic families. More specifically, 
they are proportional to 

[ w l ( A  I ) ] L B ( A )  ? q b Z ( A l .  A t )  

and 

(D. IO) 

[wl¢,l]lwl(A,)]L~:g F(A)OttA~). (D. I I)  
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The first term in the family (D.10), say A) = ,~j, at = a2 and Ak = A3, is originated 
from the first part of the three-particle state when we turn the scalar field B(A) through 
B(,~I ). Keeping the second term of the commutation rule (35), and by using the two- 
particle results (57) to carry B(AI) through Iq~2(A2, A3)), we find that its amplitude 
is 

.O~5(,~.1, ,h.) & .Ot2(/~k, al)  
t . ( D . 1 2 )  

--/O,9(AI,,~. ) ~lk=20~9('h'k'"~'l) 

We estimate the amplitudes of the remaining terms in the family (D.10) by taking 
into account the exchange property (78), in much the same way we did for the two- 
particle state. This means that the amplitudes are going to be multiplied by the first 
"ordering" factors 0j())(A j; {Ak}), and three possible unwanted terms j = 1,2, 3 can be 
compactly written as 

lce9(Ak,'a2(ak' aj) B(A) ® ~2(/~1, . . . .  "~j . . . . .  ~.3) _[Wl(aj)]Lia5(,~j , ,~ ) 3 
ag(aj, a.) 1=1 aj) 

x O J l )  (~ j ;  { a k }  ) • ,,~" 10) . (D.13) 

The contributions to the second family of unwanted terms come from all the pieces 
composing the three-particle state. It turns out that for k = 2, 3 their amplitudes can be 
computed in a very similar way we did for the second and third parts of the wanted 
terms, respectively. The main difference is that now we have to keep track of terms 
proportional to F(,~) rather than F( ,~l ). We find that the amplitudes for these unwanted 
terms are 

3 
[Wl (al)Wl (ai). ]LH t (h, A1, Aj) ~= ia2(ak,ceg(Ak, A1 )al ) ia2(Ak,~e9 (Ak, AJ)AJ) 

k.~l.j 

x [V(a)~: ® a,,(a2 . . . . .  ~.j . . . . .  a3)101~(a,,  a;; {ak}) . .~1o), (D.14) 

where 0(1~ ) (,~l,/~j; {A~}),j = 1,2, is the second type of "ordering" factor which has been 
already defined in the main text, see Eq. (88). It should be emphasized that we have 
derived the above factor from a "brute force " analysis, and similar to what happened 
to the two-particle state, this gives us the clue to proceed in order to better estimate the 
remaining unwanted terms appearing in this family. We easily recognize that this factor 
is related to the operation of bringing two rapidities in the first two positions of the 
eigenvector. Keeping this in mind, we see that all the contributions to the second family 
of unwanted terms can be written by 

3 
itr2( Ak, Al) ia2( Ak, Aj) [wI ( I~.I)wI( I~j) ]LHI( A, AI, Aj) 11 

• ' ,~9(ak, a,) c~9(a~,aj) 1:=1 
k*l,j 

x [ F ( a ) #  ® q,l(a~ . . . . .  at . . . . .  a1 . . . . .  a3) ] 0 ~  (al, aj; {ak}).  ~10) .  (D.15) 
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Collecting the expressions (D.9), (D.13) and (D.15) we find that the action of 
the scalar field B(`1) on the three-particle state is described by the formula (82) with 
n = 3. Similar reasoning can be repeated tbr the fields D (`1) and y'~2~= 1 .4~ (`1), and only 
when we are estimating the third type of unwanted terms new technicalities emerge. In 
what follows we present the details of these computations in the simplest case, i.e. the 
situation where no "ordering" factors are needed. Generalization for the remaining terms 
is along the lines of formula (D.15). For the field D(`1) we find that such amplitude is 

H2(`1, `11, ̀ 12)F(`1)(bc~tbb, (`11)Acb2(`12)Bb3(`13) fb3bzb' ]0}. (D.16) 

Now, carrying the operators Al~t,, (`11) and Ach2(`12) through Bh3(`13) with the help of 
commutation rule (34) we find 

[Wg(`11)W2(`12)]LH2( `1, ̀ 11, `12) H 
OLI (`1 k , /13) 

- i°19 ( `1k, `13 ) 
k = l  

×(bcF(a)B~/(`13)pbaZcb3(`12, ^b,a &&l~, `13)rrb (`11, ̀ 13)9 t-- [0), (D.17) 

which is further simplified by using the following identity: 

f~  lxb, b2b3"r'(I) I`1 /xc,c2c, ^b263 (`12, `13) rb.yb°e (`11, `13). T(I)(`1= `12,1ZtlY)clczcs* ( `1=`11,1 IJ)h,r = r . c  

(D.18) 

Inserting (D.18) into (D.17) we finally obtain 

[w2(Al )we(`12)] LH2(`1, `11, ̀ 12)A (1) (A = `11, {At})A (1) (`1 = A2, {at}) 
9 

~..l~j cq (`1k' ̀ 13) F(`1)g ® B(`13). (D.19) 
x iot9 ( ̀ it, ,t3 ) 

.=  

For the field ~-~2 /t,,(`1) we find that one of the contributions is 
a =  1 

H3 ( `1, `11, `12 ) G,b, F (`1) B ( `11 ) flah2 (`12) Bb3 ( ̀ 13 ) .f-b~b2 b, l0 ) (D.20) 

and when we carry B(`1j)  and A,,b2(`11) through Bh~(`13) we have 

9 

~ I a l  (`1k, ̀ 13) [ w l ( a ~ ) w 2 ( & ) ] C H 3 ( ` 1 ' & ' a 2 )  ia9 (Ak, `13) 
k=l 

×~a6, F(  a)g~2f ~ (`12, `13)Bd( `13).T "b3&b' IO) . (D.21) 

Next, using the following identity, 

^b~ ba l" r~ z ~ "~ "E'b~b2 bl £.m,, rdb t `12. ̀13 ) Da t a3) a- 
^ a f t  bl b2b~ ) ~ b a b 2 b l  = (rarra (`11, A2)T(I)(`1 = `12, {`11})afld Bd(`13 , (D.22)  

we finally find 
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[WI ( /~1)W2( '~2)]  LH3(A,  ,~1,/~2) [ a ( / ~ l ,  ,~2) - b(A1, A2)]A (l) (a = A2, {Az}) 
2 

O/l(~k,  A3) F , A ,  ~. 
x 1 - I ~  t ) # ® B ( A 3 ) -  ( D . 2 3 )  

k=l 

Final ly ,  the  s e c o n d  c o n t r i b u t i o n  c o m i n g  f rom the  field E2a=l Aaa(/~) is e s t ima ted  by  

us ing  the  s a m e  t r i ck  e x p l a i n e d  in the  p rev ious  a p p e n d i x  for  the  two-par t i c le  state. We 

fu r the r  r e m a r k  tha t  the  t echn ica l  po in t s  exp l a ined  in A p p e n d i c e s  C and  D are val id  for  

m a n y  o the r  m o d e l s  such  as the  B a r i e v  X Y  cha in  and  those  so lved  in Ref.  [ 2 3 ] .  
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