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Abstract
The isomorphism SU(4) � O(6) is used to construct the form factors of the 
O(6) Gross–Neveu model as bound state form factors of the SU(4) chiral 
Gross–Neveu model. This technique is generalized and is then applied to use 
the O(6) as the starting point of the nesting procedure to obtain the O(N) form 
factors for general even N.

Keywords: integrability, form factors, Bethe ansatz, correlation functions

(Some figures may appear in colour only in the online journal)

1.  Introduction

In previous decades integrable quantum field theories in 1  +  1 dimensions have been inves-
tigated very intensively. One of the pioneers was Petr Kulish: an infinite set of conservation 
laws for the sine-Gordon and the massive Thirring model was derived by Kulish and Nissimov 
in [1] (see also [2]). In [3], Kulish has shown that these conservation laws imply the factoriza-
tion of the S-matrix. He also made a seminal contribution in the algebraic formulation of the 
nested Bethe ansatz: in [4] Kulish and Reshetikhin constructed the nested version of the alge-
braic Bethe ansatz for a GL(N) invariant model. The ‘off-shell’ version of this nested algebraic 
Bethe ansatz was later developed in [5] to solve matrix difference equations. This technique 
was applied in [6–8] to construct form factors for the SU(N) chiral Gross–Neveu model.

In a previous paper [9] we constructed the O(N) nested Bethe ansatz, which needs deeper 
investigations. We introduced an intertwiner, which connects two different S-matrices in the 
nesting procedure S(θ, N) and S(θ, N − 2). Then we applied this technique in [10] and [11] to 
the O(N) nonlinear σ-model and the O(N) Gross–Neveu model with even N, respectively. In 
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the present article we will consider the form factors of the O(6) Gross–Neveu model which 
will be the starting model for the nesting procedure for the O(N) Gross–Neveu model. The 
O(4) Gross–Neveu-model will be considered in forthcoming papers.

Our results are related to the N = 4 supersymmetric Yang-Mills (SYM) theory. It is known 
that the O(6) or SU(4) Bethe ansatz structure is connected to the N = 4 SYM theory, which, 
in turn, is equivalent by the AdS/CFT conjecture to the super-string theory on the product 
space AdS5  × S5. This equivalence means that there is a one-to-one correspondence between 
all aspects of the theories including the global symmetry observables and the field content with 
correlation functions. In the N = 4 SYM theory there is an automorphism symmetry group of 
the supersymmetry algebra known as R-symmetry, which causes the supercharges to change 
by a phase rotation. Thus for the N = 4 SYM theory the R-symmetry group is SU(4) � O(6). 
This group is part of the full group of symmetry of the theory known as superconformal group 
and is given by S(2, 2 | 4) which also includes the conformal subgroup SO(2, 4) and Poincare 
supersymmetry [12, 13]. Therefore all integrable structures associated with SU(4) � O(6) 
group are interesting tools for this big AdS/CFT correspondence conjecture.

In [14] was shown that the isomorphism O(6) � SU(4), see figure 1, leads to an identity 
between the O(6) Gross–Neveu model and the SU(4) chiral Gross–Neveu model. The four 
right-handed (left-handed) O(6) kinks correspond to the four fundamental SU(4) particles 
(antiparticles). The six fundamental O(6) particles correspond to the six SU(4) bound states. 
In [14] the isomorphism was shown for the S-matrices. In this article we demonstrate the iso-
morphism for the form factors.

In [10] and [11] we constructed form factors for the O(N) σ-model and the O(N) Gross–
Neveu model (for N even), respectively. For these constructions we used the nested Bethe 
ansatz, which means that for the level N one needs the results from level N − 2, etc. In [10] we 
used the isomorphism O(4) � SU(2)× SU(2) as the starting point of the nesting procedure 
for the O(N) σ-model. The SU(N) form factors were constructed in [6–8, 15, 16]. The results 
of the present article, which rely on the isomorphism O(6) � SU(4) may serve as the starting 
point of the nesting procedure for the O(N) Gross–Neveu model.

The article is organized as follows. In section 2 we recall some results on the needed S-matrices, 
in particular the bound state procedure. In section 3 we recall results on the SU(4) and O(6) form 
factors. We show that the form factors for O(6) vector particles are to be identified with SU(4) 
bound state form factors. In section 4 we apply these results to some examples. In section 5 we 
generalize the results to the so called ‘modified form factors’. We prove that they can be used to 
start the nested ‘off-shell’ Bethe ansatz to solve the O(N) form factor equations. The appendix pro-
vides the more complicated proofs of the results we have obtained and further explicit calculations.

2.  S-matrix

2.1. The SU(4) S-matrix

The S-matrix of the SU(4) chiral Gross–Neveu model for the scattering of two fundamental 
particles (transforming as the SU(4) vector representation) is given by [6, 14, 17–19]

Figure 1.  The isomorphism 0(6) � SU(4) in terms of the Dynkin diagrams.
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SSU(4)(θ) = bSU(4)(θ)1+ cSU(4)(θ)P� (1)

or in terms of the components

with the rapidity difference of the particles θ = θ12 = θ1 − θ2. The two S-matrix eigenvalues 

are SSU(4)
± = bSU(4) ± cSU(4) with

(
SSU(4)
+ , SSU(4)

−

)
=

(
θ − 1

2 iπ
θ + 1

2 iπ
, 1

)
SSU(4)
− .� (2)

Unitarity can be written as

SSU(4)
+,− (−θ)SSU(4)

+,− (θ) = 1.

The highest weight amplitude

aSU(4)(θ) = SSU(4)
+ (θ) = −

Γ
(
1 − 1

2
θ
iπ

)
Γ
( 3

4 + 1
2

θ
iπ

)

Γ
(
1 + 1

2
θ
iπ

)
Γ
( 3

4 − 1
2

θ
iπ

)� (3)

is essential for the Bethe ansatz which will be used to construct the form factors. In order to 
simplify the formulae we extract the factor aSU(4)(θ) from the S-matrix and define

S̃SU(4)(θ) = SSU(4)(θ)/aSU(4)(θ) = b̃SU(4)(θ)1+ c̃SU(4)(θ)P� (4)

with

b̃SU(4)(θ) =
θ

θ − 1
2 iπ

, c̃SU(4)(θ) =
− 1

2 iπ
θ − 1

2 iπ
.

The S-matrix eigenvalue SSU(4)
− (θ) has a pole at θ = 1

2 iπ which means that there exist a 
bound state of 2 fundamental particles, which transforms as an SU(4) anti-symmetric tensor. 
This have to be identified with a fundamental particle of the O(6) model (see below). The 
bound states of 3 fundamental particles (ABC) (with 1 � A < B < C � 4) is to be identified 
with an anti-particle of a fundamental particle D : (ABC) = D̄ [6, 19, 20]. The charge conju-
gation matrix is

C(ABC)D = εABCD� (5)

where εABCD is total anti-symmetric and ε1234 = 1.

2.2. The O(6) S-matrix

The O(6) Gross–Neveu S-matrix for the scattering of two fundamental particles (transforming 
as the O(6) vector representation) can be written as [21]

SO(6)(θ) = bO(6)(θ)1+ cO(6)(θ)P+ dO(6)(θ)K,� (6)

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003
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or in terms of the components as

with the ‘charge conjugation matrices’ 

Cαβ = δαβ̄ and Cαβ = δαβ̄� (7)

in the complex basis (see [11]). The three S-matrix eigenvalues are SO(6)
± = bO(6) ± cO(6) and 

SO(6)
0 = bO(6) + cO(6) + 6dO(6) with

(
SO(6)

0 , SO(6)
+ , SO(6)

−

)
=

(
θ + iπ
θ − iπ

,
θ − 1

2 iπ
θ + 1

2 iπ
, 1

)
SO(6)
− .� (8)

Unitarity reads as

SO(6)
0,+,−(−θ)SO(6)

0,+,−(θ) = 1.

The highest weight amplitude is [21]

aO(6)(θ) = SO(6)
+ (θ) =

Γ
(
1 − 1

2πiθ
)
Γ
( 1

2 + 1
2πiθ

)

Γ
(
1 + 1

2πiθ
)
Γ
( 1

2 − 1
2πiθ

) Γ
( 3

4 + 1
2πiθ

)
Γ
( 1

4 − 1
2πiθ

)

Γ
( 3

4 − 1
2πiθ

)
Γ
( 1

4 + 1
2πiθ

) .

For later convenience we introduce again

S̃O(6)(θ) = SO(6)(θ)/aO(6)(θ) = b̃O(6)(θ)1+ c̃O(6)(θ)P+ d̃O(6)(θ)K� (9)

with

b̃O(6)(θ) =
θ

θ − 1
2 iπ

, c̃O(6)(θ) =
− 1

2 iπ
θ − 1

2 iπ
, d̃O(6)(θ) =

θ

θ − 1
2 iπ

− 1
2 iπ

iπ − θ
.

Remark 1.  Note, that the amplitudes b̃ and c̃ are the same for SU(4) and O(6).

2.3.  Bound state S-matrix

The S-matrix eigenvalue SSU(4)
− (θ) of (2) has a pole at θ = 1

2 iπ which means that two funda-
mental particles A and B form an anti-symmetric tensor bound state (AB). The S-matrix for the 
scattering of these bound states with fundamental particles is given by [14, 22]

�

(10)

where θ(12) =
1
2 (θ1 + θ2) is the bound state rapidity and θ12/i = π/2 the bound state fusion 

angle. The bound state fusion intertwiner Γ(AB)
DE  is defined by

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003
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� (11)

With a convenient choice of an undetermined phase factor one has

Γ
(RS)
AB = iΓ( 3

4 ) (2/π)
1/4 (

δR
Aδ

S
B − δS

Aδ
R
B

)
.� (12)

Applying formula (10) twice we get the S-matrix for the scattering of two bound states. For 
example we obtain

bSU(4)bSU(4)bSU(4)bSU(4) + bSU(4)cSU(4)bSU(4)bSU(4) − bSU(4)cSU(4)bSU(4)cSU(4) = −bO(6) (θ)

where the arguments on the left hand side are to be taken as θ + 1
2 iπ, θ, θ, θ − 1

2 iπ. There are 
similar formulas for the other amplitudes. The result is the S-matrix for the O(6) Gross–Neveu 
model up to a sign3 (see [14]).

We have the map Mα
(RS) from the anti-symmetric tensor SU(4) bound states to the O(6) 

vector states (in the complex basis) (see [6, 11, 14])

SU(4) bound states
(RS) ∈ {(12), (13), (14), (23), (24), (34)}

}
↔

{
O(6) vector states
α ∈ {1, 2, 3, 3̄, 2̄, 1̄} ,� (13)

which means that the no-zero matrix elements are

M1
(12) = M2

(13) = M3
(14) = M3̄

(23) = M2̄
(24) = M1̄

(34) = 1.

3.  Form factors

The matrix element of a local operator O(x) for a state of n particles of kind αi with rapidi-
ties θi

〈 0 | O(x) | θ1, . . . , θn 〉in
α = e−ix( p1+···+pn)FO

α (θ), θ1 > θ2 > · · · > θn� (14)

defines the generalized form factor FO
1...n(θ), which is a co-vector valued function with comp

onents FO
α (θ).

3.1.  Form factor equations

The co-vector valued function FO
1...n(θ) is meromorphic in all variables θ1, . . . , θn and satisfies 

the following relations [23, 24]:

	 (i)	The Watson’s equations describe the symmetry property under the permutation of both, 
the variables θi, θj and the spaces i, j = i + 1 at the same time

FO
...ij...(. . . , θi, θj, . . . ) = FO

...ji...(. . . , θj, θi, . . . ) Sij(θij)� (15)

		 for all possible arrangements of the θ’s.

3 This is because the fundamental Gross–Neveu particles are fermions (see [14]).

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003
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	(ii)	The crossing relation implies a periodicity property under the cyclic permutation of the 
rapidity variables and spaces

out,1̄〈 p1 | O(0) | p2, . . . , pn 〉in,conn.
2...n

= FO
1...n(θ1 + iπ, θ2, . . . , θn)σ

O
1 C1̄1 = FO

2...n1(θ2, . . . , θn, θ1 − iπ)C11̄

�
(16)

		 where σO
α  takes into account the statistics of the particle α with respect to O4. The charge 

conjugation matrix C1̄1 will be discussed below.
	(iii)	There are poles determined by one-particle states in each sub-channel given by a subset of 

particles of the state in (14). In particular the function FO
α (θ) has a pole at θ12 = iπ such 

that

Res
θ12=iπ

FO
1...n(θ1, . . . , θn) = 2iC12 FO

3...n(θ3, . . . , θn)
(
1− σO

2 S2n . . . S23
)

.

� (17)
	(iv)	If there are also bound states in the model the function FO

α (θ) has additional poles. If for 
instance the particles 1 and 2 form a bound state (12), there is a pole at θ12 = iη  such that

Res
θ12=iη

FO
12...n(θ1, θ2, . . . , θn) = FO

(12)...n(θ(12), . . . , θn)
√

2Γ(12)
12� (18)

		 where the bound state intertwiner Γ(12)
12  is here given by (12) and the values of θ1, θ2, θ(12) 

are given in general in [14, 22, 25].
	(v)	Naturally, since we are dealing with relativistic quantum field theories we finally have

FO
1...n(θ1 + µ, . . . , θn + µ) = esµ FO

1...n(θ1, . . . , θn)� (19)

		 if the local operator transforms under Lorentz transformations as O → esµO where s is 
the ‘spin’ of O.

For the SU(4) S-matrix (4) the bound state pole is at θ = 1
2 iπ, i.e. η = 1

2π .

3.2. The general form factor formula

We write the general form factor FO
1...n(θ) for n fundamental particles following [23] as

FO
α (θ) = KO

α (θ)
∏

1�i<j�n

F(θij)� (20)

where F(θ) is the minimal form factor function (see below). The K-function KO
1...n(θ) is given 

in terms of a nested ‘off-shell’ Bethe ansatz (see e.g. [6, 10])5

KO
α (θ) =

∫

C(1)
θ

dz1 · · ·
∫

C(m)
θ

dzm h(θ, z) pO(θ, z) Ψ̃α(θ, z)� (21)

written as a multiple contour integral. The scalar function h(θ, z) depends only on the S-matrix 
and not on the specific operator O(x)

4 The statistics factor σO
1  is determined by the space-like commutation rule of the operator O and the field which 

creates the particle 1.
5 A more general form of the nested Bethe ansatz where the p-function depends on all level z-variables is discussed 
in section 3.1 of [6].

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003
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h(θ, z) =
n∏

i=1

m∏
j=1

φ̃(θi − zj)
∏

1�i<j�m

τ(zi − zj)� (22)

τ(z) =
1

φ̃(−z)φ̃(z)
.� (23)

The dependence on the specific operator O(x) is encoded in the scalar p-function6 pO(θ, z) 
which is in general a simple function of eθi and ezj. The function φ̃(θ) and the integration con-
tours Cθ  depend on the model and are given below.

3.3.  SU(4) form factors

3.3.1.  Minimal form factor.  Let S (θ) be an S-matrix eigenvalue. The solution of Watson’s and 
the crossing equations (i) and (ii) for two particles

F (θ) = S (θ)F (−θ)

F (iπ + θ) = F (iπ − θ)
� (24)

with no poles in the physical strip 0 � Imθ � π and at most a simple zero at θ = 0 is the mini-
mal form factor [23]. For the construction of the ‘off-shell’ Bethe ansatz the minimal form 
factor for the highest weight eigenvalue of the SU(4) S-matrix aSU(4)(θ) of (3) is essential. The 
unique solution (up to a constant factor) is

FSU(4) (θ) =
G
( 1

2
θ
iπ

)
G
(
1 − 1

2
θ
iπ

)

G
( 3

4 + 1
2

θ
iπ

)
G
( 7

4 − 1
2

θ
iπ

)� (25)

where G(z) is Barnes G-function, which satisfies (see e.g. [26])

G (1 + z) = Γ(z)G(z).

3.3.2. The n-particle form factor for SU(4).  Is given by (21) and the function φ̃(θ) in (22) and 
(23) is (see [6])

φ̃(θ) = Γ

(
3
4
+

1
2πi

θ

)
Γ

(
− 1

2πi
θ

)
.� (26)

The integration contour in (21) for SU(4) is depicted in figure 2

6 How the statistics factors enter the periodicity rules for the p-functions is presented in section 3.1 of [6].

Figure 2.  The integration contour for SU(4).

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003
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3.3.3.  Nesting.  The Bethe state in (21) for SU(4) is written as

Ψ̃A(θ, z) = K(1)
B (z) Φ̃B

A(θ, z)� (27)

where A = (A1, . . . , An) with 1 � Ai � 4 and summation over all B = (B1, . . . , Bm) with 
2 � Bi � 4 is assumed. The basic Bethe ansatz co-vectors (in the algebraic formulation) 

Φ̃
B
1...n ∈

(
V1...n

)†
 are defined as [6]

�

(28)

The nested Bethe ansatz is obtained by writing for K(1)
B (z) of (27) an ansatz as (21) and so 

on: for K(1)
B (z(1)) we have an SU(3) and for K(2)

C (z(2)) an SU(2) Bethe ansatz, which is well 
known. The number m = n1 in (28) is the number of ‘weight flip’ operators. These numbers 
for the various levels of the nested Bethe ansatz satisfy [6]

(n − n1, n1 − n2, n2 − n3, n3) = wO + L(1, 1, 1, 1)� (29)

where wO is the weight vector of the operator O and L = 0, 1, 2, . . ..

3.4.  O(6) form factors

3.4.1.  Minimal form factors.  The solutions of Watson’s and the crossing equations (i) and (ii) 
for two particles (24) with no poles in the physical strip 0 � Imθ � π and at most a simple 
zero at θ = 0 are the minimal form factors [23]

(
FO(6)

0 , FO(6)
+ , FO(6)

−

)min

=

(
2 tanh 1

2 (iπ − θ)

iπ − θ
,
Γ
( 5

4 − 1
2πiθ

)
Γ
( 1

4 + 1
2πiθ

)

Γ2
( 3

4

)
cosh 1

2 (iπ − θ)
, 1

)
FO(6)min
− .

� (30)

They belong to the S-matrix eigenvalues SO(6)
0  and SO(6)

±  of (8). The full 2-particle form factors 
are

FO(6)
+,−,0 (θ) =

1
sinh 1

2 (θ −
1
2 iπ) sinh 1

2 (θ +
1
2 iπ)

FO(6)min
+,−,0 (θ) .� (31)

They are non-minimal solutions of (24) having a pole at θ = 1
2 iπ (see (5.10) and (2.16) of [23]).  

For the construction of the ‘off-shell’ Bethe ansatz the minimal solution of the form factor 
equation (24) for the highest weight eigenvalue of the O(N) S-matrix7

FO(6) (θ) = −aO(6)(θ)FO(6) (−θ)� (32)

7 The minus sign in (32) is due to fermionic statistics of the fundamental particles (see also equation 4.12 of [27]).

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003
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is essential. The unique solution (up to a constant factor) is

FO(6) (θ) = c cosh
1
2
(iπ − θ) FO(6)min

+ (θ)

=
G
( 1

2
θ
iπ

)
G
(
1 − 1

2
θ
iπ

)

G
( 1

2 + 1
2

θ
iπ

)
G
( 3

2 − 1
2

θ
iπ

) G
( 1

4 + 1
2

θ
iπ

)
G
( 5

4 − 1
2

θ
iπ

)

G
( 3

4 + 1
2

θ
iπ

)
G
( 7

4 − 1
2

θ
iπ

) .
�

(33)

The function φ̃(θ) in (22) is the same as (26) for SU(4) and the integration contours in (21) 
can be found in [11].

3.5.  Bound state form factors

The statistics factor of two fundamental particles in the chiral SU(N) Gross–Neveu model 
[6, 19, 20] is σ = exp (2πis), where s = 1

2

(
1 − 1

N

)
 is the spin. For SU(4) this means that the 

spin is s = 3
8 , and the statistics factor is σ = exp

( 3
4πi

)
. In particular, the bound states of two 

fundamental SU(4) particles are fermions because σ4 = −1.
An n′ = n/2-particle form factor for O(6) is calculated from an n-particle one of SU(4) 

using the bound state formula (iv) of (18)

FO(6)
α (ω)Γ

α
A = 2−n/4 Res

θ12=
1
2 iπ

. . . Res
θn−1n=

1
2 iπ

FSU(4)
A (θ)

� (34)

where Γα
A = Γα1

A1A2
. . .Γ

αn′
An−1An

 is the total intertwiner and ωi =
1
2 (θ2i−1 + θ2i) are the bound 

state rapidities.

Lemma 2.  The bound state form factors defined by (34) satisfy the form factor equa-
tions (i)—(v) of (15)–(18). The K-functions defined by (20) and (34) satisfy, in particular

	 1.	

KO(6)
α (ω)Γ

α
A = 2−n/4

∏
1�i<j�n′

1
φ̃(−ωij)φ̃(−ωij +

1
2 iπ)

Res
θ12=

1
2 iπ

. . . Res
θn−1n=

1
2 iπ

KSU(4)
A (θ)

� (35)
	 2.	the form factor equation (iii) in the form (see [11])

Res
ω12=iπ

KO(6)
1...n′(ω) =

2i
FO(6)(iπ)

C12

n′∏
i=3

φ̃(ωi1 +
1
2

iπ)φ̃(ωi2)K
O(6)
3...n′(ω̌) (1− S2n′ . . . S23)

� (36)

		 with ω̌ = ω3, . . . ωn′.

Proof.  In appendix E of [25] was proved that in general bound state form factors satisfy the 
form factor equations. We use the variables u, o with θ = 1

2 iπu, ω = 1
2 iπo.

	 1.	Equation (34) implies for the K-functions (35) because from (25) and (33) we derive

FSU(4)
(
ω + 1

2 iπ
) (

FSU(4) (ω)
)2

FSU(4)
(
ω − 1

2 iπ
)

FO(6) (ω)
=

1
φ̃(−ω)φ̃(−ω + 1

2 iπ)
.

� (37)
	 2.	This follows from the general proof of (iii) in [25] and (35). One can also prove it directly 

from (iii) for FSU(4)
A (θ), equation (35) and (up to a const.)
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∏
3�i<j�n′

φ̃(−ωij)φ̃(−ωij +
1
2 iπ)

∏
1�i<j�n′

φ̃(−ωij)φ̃(−ωij +
1
2 iπ)

n∏
i=5

4∏
j=2

φ̃(θij) =

n′∏
i=3

φ̃(ωi1 +
1
2

iπ)φ̃(ωi2)

		 for θ2i−1 = ωi +
1
4 iπ, θ2i = ωi − 1

4 iπ and ω12 = iπ.� ▪
This lemma implies the following

Corollary 3.  In [14] we demonstrated that the isomorphism O(6) � SU(4), leads to an 
equivalence between the O(6) Gross–Neveu model and the SU(4) chiral Gross–Neveu model 
for the S-matrices. The results of this section show, that this is also true for the form factors.

4.  Examples of operators

We use the results of [6] and [11].

4.1. The current Jµ(x)

4.1.1. The SU(4) form factor.  The SU(4) Noether current JµAB̄(x) transforms as the adjoint 
representation with weight vector wJ = (2, 1, 1, 0). Because the Bethe ansatz yields highest 
weight states we consider the highest weight component

Jµ14̄(x) = εµν∂νJ(x),

where the anti-particle 4̄ is defined by (5) and J(x) is the pseudo potential with the p-function 
in (21) (see section 4.3 of [6])

pJ(θ, z) = e
1
2

(∑
θi−

∑
z(1)

i −
∑

z(3)
i

)
/
∑

eθi .� (38)

The n-particle current form factor for SU(4) is given by (20) and the nested ‘off-shell’ Bethe 
ansatz (21) with the p-function (38). The numbers of ‘weight flip’ operators in the various levels 
of the nested Bethe ansatz are given by (29) as n = 4 + 4L, n1 = 2 + 3L, n2 = 1 + 2L, n3 = L . 
In particular we consider L = 0, i.e. n = 4, n1 = 2, n2 = 1 and n3 = 0. The Bethe state in 
(21) is then

ΨA(θ, z) = K(1)
B (z)ΦB

A(θ, z)

K(1)
B (z) =

∫
dy

2∏
j=1

φ̃(zj − y)Ψ(1)
B (z, y)

Ψ
(1)
B (z, y) = δ2

B1
δ3

B2
b̃(z1 − y)c̃(z2 − y) + δ3

B1
δ2

B2
c̃(z1 − y)

�

(39)

(see also figure 3). Below we use this formula to calculate the bound state form factor.

4.1.2. The O(6) form factor.  The O(6) Noether current transforms as an antisymmetric O(N) 
tensor with weights wJ = (1, 1, 0). The bound state formula (34) applied to (20,21) with the 
p-function (38) yields the O(6) current form factor for n/2 particles. In particular we consider 
the case n = 4.

Proposition 4.  The bound state formula (34) for n = 4 and (20) and (21) with the p-
function (38) yield the two particle O(6) form factor of the pseudo-potential Jαβ(x) and the 
current Jαβµ (x) = εµν∂

νJαβ(x)
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FO(6),Jαβ

α1α2
(θ1, θ2) = im

(
δαα1

δβα2
− δβα1

δαα2

) 1
cosh 1

2θ12
FO(6)
− (θ)� (40)

F
O(6),Jαβ

µ
α1α2 (θ1, θ2) = i

(
δαα1

δβα2
− δβα1

δαα2

)
v̄(θ1)γµu(θ2)F

O(6)
− (θ)� (41)

which agrees with the results of [11].

Proof.  We have n = 4, n1 = 2, n2 = 1 and n3 = 0. For convenience we use here the vari-
ables u, v, w with θ = iπ 1

2 u, z = iπ 1
2 v, y = iπ 1

2 w and calculate (always up to constants)

Res
u12=1

Res
u34=1

KSU(4),J
A (u) = Res

u12=1
Res

u34=1

∫

Cu

dvh (u, v) pJ(u, v)ΨA(u, v)

= Res
u12=1

Res
u34=1

Res
v1=u2

Res
v2=u4

h (u, v) pJ(u, v)ΨA(u, v)
�

(42)

because the residues are obtained by pinchings at v1 = u2, v2 = u4 which imply that the S-
matrices S(u2 − v1) and S(u4 − v2) are replaced by the permutation operator (see figure 3). 
Using Yang-Baxter relations and the formula for the fusion intertwiner (11) we obtain

Res
u12=1

Res
u34=1

KSU(4),J
A (u) = φ̃(u14)φ̃(u32)K

(1)
B (u24)b̃(u14) pJ (u, u2, u4)

(
ΓB11
α Γα

A1A2
ΓB21
β Γβ

A3A4

)
.

With (39) we have (again up to constants)

K(1)
32 (v) =

∫

Cv

dwΓ
(
−1

4
(v1 − w)

)
Γ

(
−1

4
+

1
4
(v1 − w)

)
Γ

(
−1

4
(v2 − w)

)
Γ

(
3
4
+

1
4
(v2 − w)

)

= Γ

(
3
4
− 1

4
v12

)
Γ

(
−1

4
+

1
4

v12

)

where φ̃(v1 − w)c̃(v1 − w) ∝ Γ(− 1
4 (v1 − w))Γ(− 1

4 + 1
4 (v1 − w)) and the Gauss formula

2F1(a, b; c; 1) =
∞∑

n=0

1
n!

Γ (a + n)
Γ(a)

Γ (b + n)
Γ(b)

Γ(c)
Γ (c + n)

=
Γ(c)Γ (c − a − b)
Γ (c − a) Γ (c − b)

�

(43)

have been used. Similarly, we calculate K(1)
23 (v) and get K(1)

23 (v) = −K(1)
32 (v). Finally using (38)

Figure 3.  The Bethe state ΨA(u, v) in (42) for v1 = u2, v2 = u4.
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8 This follows from ∂µTµν = 0 and Tµ
µ = mψ̄ψ.

Res
u12=1

Res
u34=1

KSU(4),J
A (u) = KJ(o)

(
Γ
(12)
A1A2

Γ
(13)
A3A4

− Γ
(13)
A1A2

Γ
(12)
A3A4

)

KJ(o) = φ̃(u14)φ̃(u32)Γ

(
3
4
− 1

4
u24

)
Γ

(
−1

4
+

1
4

u24

)
b̃(u14) pJ (u, u2, u4)

=
1

sin 1
2πo

(
Γ

(
3
4
− 1

4
o
)
Γ

(
−1

4
+

1
4

o
))2

with o = u(12)(34) = u13 = u24 = u14 − 1
2 = u23 +

1
2 . The result (40) follows then from (37), 

(30) and (31). � ▪ 

4.2. The iso-scalar operator O

The SU(4) n-particle form factor for the iso-scalar operator O(x) with weights 
wO = (0, 0, 0, 0) is given by (20) and the nested ‘off-shell’ Bethe ansatz (21). The numbers 
of ‘weight flip’ operators in the various levels of the nested Bethe ansatz are given by (29) as 
n = 4 + 4L, n1 = 3 + 3L, n2 = 2 + 2L, n3 = 1 + L. We propose for the iso-scalar operator 
O(x) the p-function

pO
(
θ, z

)
= e

1
2

∑
θi−

∑
z(1)

i +
∑

z(3)
i − 1.� (44)

With this p-function in (21) the form factor equations (i)—(v) of (15)–(18) hold with statistics 
factor σO

1 = −1 and spin sO = 0. The bound state formula (34) applied to (20) and (21) with 
the p-function (44) yields the O(6) form factor of the operator ψ̄ψ(x) for n/2 particles. In par
ticular we consider the case L = 0, i.e n = 4, n1 = 3, n2 = 2 and n3 = 1.

Proposition 5.  The bound state formula (34) applied to (20) and (21) with the p-function 
(44) yields the two particle O(6) form factors of ψ̄ψ

Fψ̄ψ
α1α2

(θ) = 〈 0 | ψ̄ψ(0) | p1, p2 〉in
α1α2

= Cα1α2 v̄(θ1)u(θ2)F0(θ12)� (45)

which means for the energy momentum operator8 Tµν

FTµν

α1α2
(θ) = 〈 0 | Tµν(0) | p1, p2 〉in

α1α2
= Cα1α2 v̄(θ1)γ

µu(θ2)
1
2
( pν

1 − pν
2 )F0(θ12)

with F0(θ) given by (30) and (31) which agrees with the results of [11].

Proof.  The more general proof in appendix implies for ν = 1/2

Res
θ12=

1
2 iπ

Res
θ34=

1
2 iπ

FSU(4),O
1234 (θ1, . . . , θ4) = const.

Γ
( 3

4 − 1
2
ω
iπ

)
Γ
(
− 1

4 + 1
2
ω
iπ

)

Γ
( 3

2 − 1
2
ω
iπ

)
Γ
( 1

2 + 1
2
ω
iπ

) FO(6) (ω) .

with ω = θ(12) − θ(34). Together with (30) and (31) the claim (45) follows. � ▪ 

4.3. The O(6) Gross–Neveu field ψ(x)

4.3.1. The SU(4) form factor.  We follow [6] and define the SU(4) operator OAB =
[
ψA,ψB

]
 

where ψA(x) is the fundamental field of the chiral SU(4)-Gross–Neveu model. It has the 
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weight vector wO = (1, 1, 0, 0). We write the highest weight component 
[
ψ1,ψ2

]
 as O and 

propose the p-function (see section 4.2 of [6])

pO
(±)

(θ, z) =
(

pψ
(±)

(θ, z)
)2

= e±(
∑m

i=1 zi− 3
4

∑n
i=1 θi)� (46)

belonging to the  ±  spinor components. The form factors are again given by (20) and (21). The 
numbers of ‘weight flip’ operators in the various levels of the nested Bethe ansatz are given by 
(29) as n = 2 + 4L, n1 = 1 + 3L, n2 = 2L, n3 = L.

4.3.2. The O(6) form factor.  The fundamental O(6) field ψα is fermionic and transforms as 
the vector representation with weight vector wψ = (1, 0, 0) [11]. It is given in terms of OAB 
by (12) and (13)

ψα = Mα
(RS)Γ

(RS)
AB

[
ψA,ψB] .

The bound state formula (34) applied to (20) and (21) with the p-function (46) yields the O(6) 
form factor for n/2 particles. In particular we consider the case L = 0, i.e. n = 2, m = 1

Res
θ12=iπ2/3

KSU(4),O(±)

A (θ) = Res
θ12=iπ2/3

∫

Cθ

dz φ̃ (θ1 − z) φ̃ (θ2 − z) e±(z− 3
4 (θ1+θ2)) Ψ̃A(θ, z)

= φ̃ (θ12) e±(θ2− 3
4 (θ1+θ2)) Res

θ12=iπ2/3
S̃21

A1A2
(θ12)

where pinching at z = θ2 was used. Therefore the O(6) one particle form factor of the field is 
with θ = 1

2 (θ1 + θ2) (up to const.)

FO(6),ψ(±)

1 (θ) = e∓
1
2 θ = u(±)(θ)

as expected.

5.  O(6) � SU(4) as a start of level iteration for O(N)

5.1. The modified n-particle K-function for O(6)

The O(N) Gross–Neveu form factors are given by the ‘off-shell’ nested Bethe ansatz [11]. 
Therefore we need the higher level O(N − 2k) Bethe ansatz for k = 1, . . . , N/2 − 3. The last 
one is of O(6) type. For this discussion it is convenient to introduce the variables u, v with 
θ = iπνku, z = iπνkv with νk = 2/(N − 2k − 2). For the O(N − 2k) S-matrix S(k)(u) we 
write

S̃(k)(u) = S(k)/S(k)
+ = b̃(u)1+ c̃(u)P+ d̃k(u)K

b̃(u) =
u

u − 1
, c̃(u) =

−1
u − 1

, d̃k(u) =
u

u − 1
1

u − 1/νk
.

� (47)

and define the higher level K-functions

K(k)
α (u) = Ñ(k)

mk

∫

C(1)
u

dv1 · · ·
∫

C(mk)
u

dvmk h(u, v) p(k)(u, v) Ψ̃(k)
α (u, v)

Ψ̃(k)
α (u, v) = K(k+1)

β̊
(v)

(
Φ̃(k))β̊

α
(u, v)

�

(48)
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with u = u1, . . . , unk , v = v1, . . . , vmk  and mk = nk+1. The basic Bethe ansatz co-vectors (
Φ̃(k)

)β̊
α
(u, v) are defined analogously to (28). The function h(u, v) is given by (22) and (23) 

where φ̃ (θ) is replaced by

φ̃ν (θ) = Γ

(
1 − 1

2
ν +

1
2πi

θ

)
Γ

(
− 1

2πi
θ

)
, ν = ν0 = 2/(N − 2)

The higher level K-functions K(k)
α (u) for k > 0 satisfy the equations

		  (i)(k)

K(k)
...ij...(. . . , ui, uj, . . . ) = K(k)

...ji...(. . . , uj, ui, . . . ) S̃(k)
ij (uij)� (49)

		 (ii)(k)

K(k)
1...nk

(u1 + 2/ν, u2, . . . , unk)σ
O
1 C1̄1 = K(k)

2...nk1(u2, . . . , unk , u1)C
11̄� (50)

		 (iii)(k)

Res
u12=1/νk

K(k)
1...nk

(u1, . . . , unk) =

nk∏
i=3

φ̃ν(ui1 + 1)φ̃ν(ui2)C12K(k)
3...nk

(u3, . . . , unk).

� (51)
The normal form factor equations (i)—(iii) for O(N − 2k) are similar to these higher level 

equations. There are, however, two differences:

	 1.	The shift in (ii)(k) is the one of O(N) but not that of O(N − 2k).
	 2.	There is only one term on the right hand side in (iii)(k).

In particular for k = N/2 − 3 = 1/ν − 2 we have νk =
1
2 and K(k)

α (u) = KO(6),ν
α (u) is of 

O(N − 2k) = O(6) type, which means in particular that the S-matrix and the Bethe state are 

the ones of O(6). We call KO(6),ν
α  a modified O(6) K-function.

5.2. The modified n-particle K-function for SU(4)

Replacing in (21) and (26)

φ̃ (θ) → φ̃ν (θ) = Γ

(
1 − 1

2
ν +

1
2πi

θ

)
Γ

(
− 1

2πi
θ

)

we obtain the modified n-particle K-function for SU(4) which satisfies the form factor equa-
tion (ii) (see (16)) not for the shift θ1 → θ1 + 2πi but for θ1 → θ1 + iπ/ν  and in (iii) (see (17)) 
the second term on the right hand side is missing. Again we use for convenience the variables 
u and v with θ = iπνu, z = iπνv, then the K-function (the integration contour is shown in 
figure 4)

KSU(4),ν
A (u, ν) =

∫

Cu,ν

dv
n∏

i=1

m∏
j=1

φ̃ν(ui − vj)
∏
i<j

τν(vij) p(u, v)Ψ̃A(u, v)� (52)

satisfies for ν < 1
2 not the form factor equations (ii) and (iii) of (15)–(19) but the modified 

ones

H M Babujian et alJ. Phys. A: Math. Theor. 50 (2017) 334003



15

		  (ii)ν

KSU(4),ν
1...n (u1 + 2/ν, u2, . . . , un)σ

O
1 C1̄1 = KSU(4),ν

2...n1 (u2, . . . , un, u1)C
11̄� (53)

		 (iii)ν

Res
u34=1

Res
u23=1

Res
u12=1

KSU(4),ν
1...n (u) =

n∏
i=5

4∏
j=2

φ̃ν(uij) ε1234KSU(4),ν
5...n (ǔ)� (54)

		 with ǔ = u5, . . . , un.
The proofs of these equations are quite analogous to the ones in [6] for the normal SU(N) 

K-functions for N = 4.

5.3.  n′= n/2 bound states of SU(4) particles:

We apply the bound state formula (iv) to an n-particle modified K-function of SU(4) and 
define correspondingly to (35) for ν = 2/(N − 2) an n′ = n/2-particle O(6) K-function

KO(6),ν
α (o)Γα

A =
∏

1�i<j�n′

1
φ̃ν(−oij)φ̃ν(−oij + 1)

Res
u12=1

. . . Res
un−1n=1

KSU(4),ν
A (u)

�

(55)

with oi =
1
2 (u2i−1 + u2i) and the intertwiner Γα

A = Γα1
A1A2

. . .Γ
αn′
An−1An

. Correspondingly to 
lemma 2 we prove

Lemma 6.  The K-function defined by (55) satisfies the modified form factor equations

		 (i)ν	

KO(6),ν
...ij... (. . . oi, oj . . . ) = KO(6),ν

...ji... (. . . oj, oi . . . )S̃O(6)(oij)

		 (ii)ν	

KO(6),ν
12...n′ (o1 + 2/ν, o2, . . . , on′)C

1̄1 = KO(6),ν
2...n′1 (o2, . . . , on′ , o1)C

11̄

Figure 4.  The integration contour Cu,ν in (52). The bullets refer to poles of the integrand 
resulting from φ̃(ui − vj) and the small open circles refer to poles originating from 
b̃(ui − vj) and c̃(ui − vj).
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		 (iii)ν 	

Reso12=2KO(6),ν
1...n′ (o) =

n′∏
i=3

φ̃ν(oi1 + 1)φ̃ν(oi2)C12KO(6),ν
3...n′ (ǒ)

		 with ǒ = o3, . . . on′.

Proof.  We follow here the proof of proposition 7 in [25]. For (i)ν and (ii)ν the proofs are 
again obvious. To prove (iii)ν  one follows appendix E of [25] taking into account that also in 
(54) there is only one term on the right hand side. � ▪ 

Corollary 7.  The K-function defined by (55) satisfies the higher level equations  (i)(k)—
(iv)(k) or (4.13)—(4.16) of [11] for k = N/2 − 3, i.e. νk = 1/2. Therefore it serves as a start-
ing of the nesting for the construction of an O(N)-Gross–Neveu form factor for arbitrary even 
N > 6.

To construct the form factors of the O(N) Gross–Neveu model for the operators ψ̄ψ, Jαβµ  
and ψα with weight vectors w = (0, 0, . . . , 0) , (1, 0, . . . , 0) and (1, 1, 0, . . . , 0), respectively, 
we need for the starting of the nested Bethe ansatz the modified O(6) one for the iso-scalar 
with weight vectors w = (0, 0, 0). Therefore we generalize the constructions of section 4.2 
from ν = 1/2 to general ν and prove

Lemma 8.  The bound state formula (55) applied to the modified SU(4) K-function (52) 
with the p-function (44)

p (u, v, w, x) = eiπν( 1
2

∑4L
i=1 ui−

∑3L
i=1 vi+

∑L
i=1 xi) − 1� (56)

for L = 1, 2, . . . (see (29)) yields the modified O(6) K-function for the iso-scalar for n′ = 2L 
particles. This means that for L = 1 the the bound state formula (55) yields the modified O(6) 
two-particle K-function

Kα1α2(o1, o2) = Cα1α2

Γ
(
1 − 1

2ν − 1
2νo12

)
Γ
(
− 1

2ν + 1
2νo12

)

Γ
(
1 + ν − 1

2νo12
)
Γ
(
ν + 1

2νo12
) .� (57)

This is the higher level K-function needed as the starting for the nested O(N) Bethe ansatz 
(see [11]).

The proof of this lemma can be found in appendix. It follows the main result of this article:

Corollary 9.  For all O(N) Gross–Neveu form factors of operators O(x) with weights 
wO = (w1, w2, 0, . . . , 0, 0) the start of the nesting is obtained by (52) with the p-function (56) 
and the bound state formula (55).

6.  Conclusions

The form factors for the SU(N) chiral Gross–Neveu model were constructed in [6–8, 15, 16]. 
In [10] we used the isomorphism O(4) � SU(2)× SU(2) as the starting point of the nesting 
procedure to construct the O(N) σ-model form factors. Up to now we were not able to do 
the analog for the O(N) Gross–Neveu model. However, the fundamental particles of the O(6) 
Gross–Neveu model may by identified with the bound states of the SU(4) chiral Gross–Neveu 
model [14]. Using this identification we showed in the present article how to use the O(6) 
functions as the starting point of the nesting procedure to construct the O(N) Gross–Neveu 
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model form factors (for N even). In a forthcoming article we will consider the O(4) Gross–
Neveu model. Also the asymptotic behavior of the form factors and the short distance behavior 
of the correlation functions will be investigated.
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Appendix.

For simplicity the equations in the following are mostly written up to inessential constants.

A.1.  Proof of lemma 8

Proof.  We have n = 4, n1 = 3, n2 = 2 and n3 = 1. For convenience we use again the 
variables u, v, w, x, o with θ = iπνu, z(1) = iπνv, z(2) = iπνw, z(3) = iπνx, ω = iπνo. We 
prove that (55) for n = 4 (with o1 = (u1 + u2)/2, o2 = (u3 + u4)/2)

KO(6),ν
α (o)Γα

A =
1

φ̃ν(−o12)φ̃ν(−o12 + 1)
Res

u12=1
Res

u34=1
KSU(4),ν

A (u)

with the p-function (56) implies (57)

KO(6),ν
α1α2α(o1, o2) = Cα1α2

Γ
(
1 − 1

2ν − 1
2νo12

)
Γ
(
− 1

2ν + 1
2νo12

)

Γ
(
1 + ν − 1

2νo12
)
Γ
(
ν + 1

2νo12
) .

We calculate the residues (first for p = 1) of the component with A = (1, 2, 3, 4) (using pinch-
ing at v1 = u2 → u1 − 1, v2 = u4 → u3 − 1)

X = Res
u12=1

Res
u34=1

KSU(4)
1234 (u) =

∫

Cu

dv3 Res
u12=1

Res
u34=1

Res
v1=u2

Res
v2=u4

h (u, v)Ψ1234(u, v)

=

∫

Cu

dv3 Res
u12=1

Res
u34=1

Res
v1=u2

Res
v2=u4

h (u, v)K(1)
B (v)ΦB

1234(u, v)

=

[
b̃ (u14)

∫

Cu

dv3hr (u, v)
(

K(1)
234(v)− K(1)

243(v)
)

b̃ (u1 − v3) c̃ (u3 − v3)

]

v1=u2,v2=u4
u1=u2+1,u3=u4+1

� (A.1)

with hr (u, v) = Res
v1=u2

Res
v2=u4

h (u, v). It was used that for v1 = u2 and v2 = u4 (see figure A1)

Res
u12=1

Res
u34=1

Φ
B
1234(u, u2, u4) = δB1

2

(
δB2

3 δB3
4 − δB2

4 δB3
3

)
b̃ (u1 − u4) b̃ (u1 − v3) c̃ (u3 − v3)
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and therefore

K(1)
B (u2, u4, v3) Res

u12=1
Res

u34=1
Φ

B
1234(u, u2, u4, v3)

=
(

K(1)
234(u2, u4, v3)− K(1)

243(u2, u4, v3)
)

b̃ (u1 − u4) b̃ (u1 − v3) c̃ (u3 − v3) ,

further with o = o12 = u24 = v12

X(o) = Res
u12=1

Res
u34=1

KSU(4)
1234 (u)

=

∫

Cu

dv3

4∏
i=1

2∏
j=1

i,j�=2,1;4,2

φ̃ν(ui − vj)τ(v12)

4∏
i=1

φ̃ν(ui − v3)τ(v13)τ(v23)

×
(

K(1)
234(u2, u4, v3)− K(1)

243(u2, u4, v3)
)

b̃ (u1 − u4) b̃ (u1 − v3) c̃ (u3 − v3)

with v1 → u2, v2 → u4, u1 → u2 + 1, u3 → u4 + 1. We get X as

X(o) =
Γ
(
1 − 1

2ν (1 + o)
)
Γ
( 1

2ν (o − 1)
)

sin 1
2πνo

Y(o)

Y(o) =
∫

Cu

dv3c̃ (−u4 + v3)
(

K(1)
234(u2, u4, v3)− K(1)

243(u2, u4, v3)
)

where it was used that for v1 = u2, v2 = u4, u1 = u2 + 1, u3 = u4 + 1

b̃ (u1 − u4)
φ̃ν(u1 − v1)φ̃ν(u1 − v2)φ̃ν(u2 − v2)φ̃ν(u3 − v1)φ̃ν(u3 − v2)φ̃ν(u4 − v1)

φ̃ν(v1 − v2)φ̃ν(−v1 + v2)

=
1

sin 1
2νπ (u4 − u2)

Γ

(
1 +

1
2
ν (−u2 − 1 + u4)

)
Γ

(
−1

2
ν (u4 + 1 − u2)

)

Figure A1.  The Bethe state ΨA(u, v) in (21) for an iso-scalar operator where 
A = (1, 2, 3, 4) and v1 → u2, v2 → u4.
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and

φ̃ν(u1 − v3)φ̃ν(u2 − v3)φ̃ν(u3 − v3)φ̃ν(u4 − v3)

φ̃ν(v1 − v3)φ̃ν(−v1 + v3)φ̃ν(v2 − v3)φ̃ν(−v2 + v3)

b̃ (u1 − v3) c̃ (u3 − v3)

c̃ (−u4 + v3)
= −1.

Therefore we have

KO(6),ν
α (o) = Cα1α2

Γ
(
1 − 1

2ν (1 + o)
)
Γ
( 1

2ν (o − 1)
)

φ̃ν(−o)φ̃ν(−o + 1) sin 1
2πνo

Y(o) = Cα1α2 Y(o).

Next we calculate

K(1)
B (v) =

∫

Cv

dwh (v, w)K(2)
C (w)Φ(1) C

B(v, w)

with (see figure A1)

Φ(1) C1C2
2B2B3

(v, w) = δC1
B2
δC2

B3
Φ1 + δC2

B2
δC1

B3
Φ2

Φ2 = b̃ (v1 − w1) b̃ (v1 − w2) b̃ (v2 − w1) c̃ (v2 − w2) c̃ (v3 − w1)

Φ1 = b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1)

×
(

b̃ (v2 − w2) b̃ (v3 − w1) c̃ (v3 − w2) + c̃ (v2 − w2) c̃ (v3 − w1)
)

and

K(2)
C (w) =

∫

Cw

dxφ̃ν(w1 − x)φ̃ν(w2 − x)
(
δ34

C b̃(w1 − x)c̃(w2 − x) + δ43
C c̃(w1 − x)

)

=
(
δ34

C − δ43
C

)
Γ

(
−1

2
ν +

1
2
νw12

)
Γ

(
1 − 1

2
ν − 1

2
νw12

)

� (A.2)

which follows from

1
2πi

(∫

Ca

+

∫

Cb

)
dzΓ(a − z)Γ(b − z)Γ (c + z) Γ (d + z)

= −Γ (c + a) Γ (d + a) Γ (c + b) Γ (d + b)
Γ (c + d + a + b)

.

Therefore

K(1)
2B2B3

(v) =
∫

Cv

dwh (v, w) Γ
(
−1

2
ν +

1
2
νw12

)
Γ

(
1 − 1

2
ν − 1

2
νw12

)

×
(
δ3

B2
δ4

B3
− δ4

B2
δ3

B3

)
(Φ1 − Φ2)

because 
(
δ34

C − δ43
C

) (
δC1

B2
δC2

B3
Φ1 + δC2

B2
δC1

B3
Φ2

)
=

(
δ3

B2
δ4

B3
− δ4

B2
δ3

B3

)
(Φ1 − Φ2) and
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Φ1 − Φ2 =
b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1) c̃ (v2 − w2)

c̃ (w1 − w2)

c̃ (v3 − w1) c̃ (v3 − w2)

c̃ (v3 − v2)
.

Finally exchanging the integrations

Y(o) =
∫

Cu

dv3c̃ (−u4 + v3)
(

K(1)
234(u2, u4, v3)− K(1)

243(u2, u4, v3)
)

=

∫

Cv

dwτν(w12)Γ

(
−1

2
ν +

1
2
νw

)
Γ

(
−1

2
νw

)

×




2∏
i=1

2∏
j=1

φ̃ν(vi − wj)
b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1) c̃ (v2 − w2)

c̃ (w1 − w2)




v1=u2,v2=u4

×
∫

Cw

dv3c̃ (−u4 + v3) φ̃ν(v3 − w1)φ̃ν(v3 − w2)
c̃ (v3 − w1) c̃ (v3 − w2)

c̃ (v3 − u4)

the v3-integration can be done as above in (A.2)
∫

Cw

dv3φ̃ν(v3 − w1)φ̃ν(v3 − w2)c̃ (v3 − w1) c̃ (v3 − w2) = Γ(−1
2
ν +

1
2
νw12)Γ(−

1
2
ν − 1

2
νw12)

� (A.3)

and therefore (for v1 = u2, v2 = u4, o = u2 − u4)

Y(o) =
∫

Cv

dw




2∏
i=1

2∏
j=1

φ̃ν(vi − wj)




× b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1) c̃ (v2 − w2)Ψ (w1 − w2)

with

Ψ(w) =
Γ
(
− 1

2ν + 1
2νw

)
Γ
(
1 − 1

2ν − 1
2νw

)
Γ
(
− 1

2ν + 1
2νw

)
Γ
(
− 1

2ν − 1
2νw

)

c̃(w)φ̃ν(w)φ̃ν(−w)

=
1
π

w
(
sin

1
2
πνw

)
Γ

(
−1

2
ν +

1
2
νw

)
Γ

(
−1

2
ν − 1

2
νw

)
.

In (C.10) of [11] was shown that

∫

Cv

dw
2∏

j=1

(
φ̃ν(v1 − wj)φ̃ν(v2 − wj)c̃ (v2 − wj)

)
ϕ (w12, k) = K(v12, k)� (A.4)

with

ϕ (w, k) =
(1 − w)K(w, k + 1)

φ̃ν(w)φ̃ν(−w) (w + 1/ν − k − 1)

K(u, k) =
Γ
(
1 − 1

2ν − 1
2νu

)
Γ
(
− 1

2ν + 1
2νu

)

Γ
( 3

2 − 1
2νk − 1

2νu
)
Γ
( 1

2 − 1
2νk + 1

2νu
) .
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Note that for k = 1/ν − 2

Ψ(w) =
1

sin 1
2πν (w − 1) sin 1

2πν (w + 1)
ϕ (w, 1/ν − 2) .

Similarly to (A.4) we have here9

Y(o) =
∫

Cv

dw
2∏

j=1

(
φ̃ν(v1 − wj)b̃ (v1 − wj) φ̃ν(v2 − wj)c̃ (v2 − wj)

)
Ψ(w12)

=
K(o, k = 1/ν − 2)

sin 1
2πν (o − 1) sin 1

2πν (o + 1)
= 2

K(o, k = 1/ν − 2)
cosπν − cosπνo

� (A.5)

with o = o12 = u24 = v12. The arguments are as follows: The function Y(o) satisfies the  

equations (24) with the S-matrix eigenvalue S̃O(6)
0  of (8). Therefore the minimal solution is  

Ymin(o) = K(o, 1/ν − 2) sin 1
2πν (o − 1) sin 1

2πν (o + 1). Pinching at w1 → v1 − 2/ν, 
w2 → v2 and produces a double pole at o = 1, wich implies (A.5).

Now we consider the p-function (56) in (A.1), then (up to a constant)

Yp(o) = K(o, k = 1/ν − 2).

This result is obtained by applying to the equations which correspond to (A.2) and (A.3) the 
formula

1
2πi

(∫

Ca

+

∫

Cb

)
dzΓ(a − z)Γ(b − z)Γ (c + z) Γ (d + z) f (z)

= Γ (1 − c − d − a − b) Γ (c + a) Γ (d + a) Γ (c + b) Γ (d + b)

×
(

f (a)
sinπ (c + b) sinπ (d + b)

π sinπ (a − b)
− f (b)

sinπ (c + a) sinπ (d + a)
π sinπ (a − b)

)

where Ca encloses the poles of Γ(a − z) and f (z + 1) = f (z) holds. � ▪ 
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