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In an exactly soluble two-dimensional model we show how mass generation for a fermion field can be

reconciled with the absence of chiral symmetry breaking.

Owing to the absence of particle production a
large number of two-dimensional models* have
been solved exactly for their S matrices. Re-
cently an S matrix has been proposed for the
chiral Gross-Neveu model?
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The 1/N expansion, which one uses to check
whether the proposed S matrix® belongs to the
Lagrangian (1) or not, shows spontaneous sym-
metry breaking of the U(1) chiral symmetry and
an associated Goldstone boson. These features
cannot exist in two space-time dimensions.*

In an interesting paper, ® Witten has shown how
one could reconcile spontaneous mass generation
with the absence of spontaneous symmetry break-
ing in the chiral Gross-Neveu model. Since no
explicit computations verifying Witten’s proposal
have been carried out yet, we feel it instructive
to exhibit the problems involved, in an exactly
soluble model described by the Lagrangian
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where ¥ is an N -plet of fermion fields, ¢ is an
isoscalar field, and g® plays the role of 1/N.

On the classical level we have a U(1) X U(1)
symmetry, the chiral part being
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with associated Noether current
Jus =§au¢ . | (@)
From the equations of motion
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it follows that the chiral current is conserved,
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since ¢ is a free massless field
6‘?“5:E82¢ =0. (6)
g

Notice that to zeroth order in g we have a massive
fermion field ¥ breaking chiral invariance, where-
as a mass term m?*®? for the ¢ field would be
compatible with that invariance. On the other
hand, for g#0 the equations of motion (5) show that
chiral symmetry is exact and requires ¢ to have
zero mass like a bona fide Goldstone boson. After
quantization a mild anomaly appears® which can
be eliminated by rescaling ¢, and one easily ob-
tains the operator solution

¥ =exp(igy®e):dy , M
where
2%=g%/(1-g?N/n)

and ¢y, is a free massive fermion field.

Although the zero-mass field ¢ does not exist
in two dimensions, it is well known” that ex-
ponentials : exp(ia¢): can be defined by introducing
a mass m for ¢ and taking the zero-mass limit
after a multiplicative renormalization

a2/ ar
: exp(iag): - (Z;—E) s exp(iad): , 8)

where y is Euler’s constant and p plays the role
of an infrared regulator. This motivates the de-
finition -

N
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where
Ap(x)=~— Lln(—;ﬁxz +10).
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With respect to the exact solution (7) we now
note several facts:
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(a) The Lagrangian describes a free massive
fermion field ¢, and a field ¢ which can be de-
coupled by using Eq. (7). We expect this type of
procedure to be useful also in less trivial models.

(o) In spite of its mass ¥, does not break the
chiral symmetry generated by j, . because it
carries no chiral charge

J

[ os) = [fl)u’ﬁ ] (10)

since ¥, and ¢ are independent fields.

(c) In contrast to ¥, ¥ does carry chiral charge
and consequently cannot develop a mass. This can
easily be seen calculating its two-point function

(To(R ) = (T: exp[igr,d (x)]:: exp[igr,*d )] X Ty (x)Py ()

where C depends only on p? and g. In obtaining
this result it was essential to respect the selection
rule represented by the Kronecker 6 in Eq. (9);

the contribution of the mass term of (T¥, (x)¥, ()
to the numerator of the propagator (11) was scaled
to zero by the multiplicative renormalization (8).
Notice that this propagator satisfies the correct
equation of motion (5) in spite of the absence of
the mass in the numerator, if one defines the
normal product

N[exp(-i227°¢)y]
occurring in Eq. (5) as

N{exp[-i257°¢ (x)]9 (x)} = : exp[-igr5e ()]: ¢u(x)( |
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(d) Although our model shows no spontaneous
generation of mass, the existence of a mass term
in (2) evading chiral symmetry breaking is made
possible because the two-point function of :exp
X (-i2g¥°¢): behaves for large distances as

e-izlr%(y):)E[uz(x_y)z]-lz/r (13)
exactly as in less trivial situations such as the

XY model® and in Witten’s proposal for the chiral
Gross-Neveu model.
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