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Abstract.  We derive new holonomic q-difference equations for the matrix coefficients 
of the products of intertwining operators for quantum affine algebra Uq(O) representa- 
tions of level k. We study the connection opertors between the solutions with different 
asymptotics and show that they are given by products of elliptic theta functions. We 
prove that the connection operators automatically provide elliptic solutions of Yang- 
Baxter equations in  the "face" formulation for any type of Lie algebra g and arbitrary 
finite-dimensional representations of Uq(~). We conjecture that these solutions of the 
Yang-Baxter equations cover all elliptic solutions known in the contexts of IRF models 
of statistical mechanics. We also conjecture that in a special limit when q ---+ 1 these 

solutions degenerate again into Uq,(~) solutions with q' = exp \ k - ~ 9 , ] "  We also 

study the simplest examples of solutions of our holonomic difference equations asso- 

ciated to Uq(~[(2)) and find their expressions in terms of basic (or q-)-hypergeometric 
~ representations, we demonstrate that the connec- series. In the special case of spin - g 

tion matrix yields a famous Baxter solution of the Yang-Baxter equation corresponding 
to the solid-on-solid model of statistical mechanics. 

1. Introduction 

The recent development in mathematics and physics related to conformal field theory 
[BPZ, FS, S, MS] and quantum groups [Kr, Drl, J2] is a result of an astonishing 
interplay between various ideas of both sciences (see [0] for a partial bibliography). 
Mathematical roots of these theories lie in the representation theory of infinite di- 
mensional Lie algebras and groups, algebraic geometry and Hamiltonian mechanics. 
The physical intuition arises from quantum field theory in two dimensions, integrable 
models in statistical mechanics and string theory. For mathematicians conformal field 
theory is a representation of certain geometric categories of Riemann Surfaces [S] or 
a regular representation of a "Lie algebra depending on a parameter" (vertex operator 
algebra) [FLM, MS]. For physicists, it is first of all the theory that characterizes the 
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critical behavior of two dimensional physical systems; another fundamental role of 
conformal field theory is that it describes the classical limit of string theory. Presently, 
the general picture of conformal field theory is well understood from both mathemat- 
ical and physical points of view and one can wonder about its further generalizations. 
Here the different approaches suggest its own program of research (see [1-3] for ex- 
amples of several directions). In this paper we propose a few steps of an extension of 
conformal field theory using the ideas of the representation theory [1]). However, as 
a result of our work, we unavoidably arrive at new connections with the other areas 
of mathematics and physics [2, 3], which were previously essentially unrelated. Thus 
our work can also be thought of as another contribution to the remarkable synthesis 
that takes place in mathematics and physics. 

One of the most fundamental examples of conformal field theory is the Wess- 
Zumino-Novikov-Witten model (WZNW) [Wl]. It is based on the representation 
theory of affine Lie algebras (or loop algebras) and the corresponding groups [Koh, 
PS]. In particular, the genus zero correlation functions of WZNW model are the ma- 
trix coefficients of intertwining operators between certain representations of affine 
Lie algebras [TK]. The monodromy properties of the correlation functions contain 
the most essential structural information about specific conformal field theory. Thus 
the algebra of intertwining operators present a special interest for the WZNW model. 
One way to study this algebra is to show that the matrix coefficients of the in- 
tertwining operators satisfy certain holonomic differential equations first derived by 
Knizhnik and Zamolodchikov [KZ]. Since the simplest nontrivial examples appear 
to be differential equations for the hypergeometric function and its classical gener- 
alizations, the theory of Knizhnik-Zamolodchikov equations can be thought of as a 
far-reaching extension of the theory of hypergeometric functions. In fact, one can 
view the Knizhnik-Zamolodchikov equation as a connection on certain fiat vector 
bundles on p1 and more generally on an arbitrary Riemann surface and then proceed 
to study their structure by the methods of algebraic geometry. The relation of the rep- 
resentation theory and algebraic geometry via the Knizhnik-Zamolodchikov equation 
has a deep parallel in the quantum field theory in the Wightman program relating the 
algebraic structure of the Hilbert space of states to the properties of the correlation 
functions. The theory of Knizhnik-Zamolodchikov equation thus provides a perfect 
example of the realization of this program. 

The most substantial examples of quantum groups are certain q-deformations of 
the linear space of regular functions on a simple Lie group G. Its dual algebra Uq(g) 
is naturally identified with a q-deformation of the universal enveloping algebra U(g) 
of a simple Lie algebra g corresponding to G. One can extend the definition of Uq(g) 
to an arbitrary Kac-Moody algebra, in particular, to the affine Lie algebra 0 associated 
to g. We will call, for shortness, Uq(g) quantum algebra, and Uq(O) quantum affine 
algebra. 

It was gradually realized that the WZNW conformal field theory and the represen- 
tation theory of quantum groups have a profound link. In particular, the rnonodromies 
of the Knizhnik-Zamolodchikov equation are directly related to the intertwining oper- 
ators for the tensor products of quantum groups [Koh, D2]. Thus the quantum groups 
can be viewed in some sense as hidden symmetries of conformal field theory [MR]. 
This amazing relation is still not fully understood and is a subject of an intense study 
[SV1, SV2, KaL]. 

Apart from the remarkable but still mysterious relation to the conformal field 
theory, the theory of quantum groups and quantum algebras can be developed to a 
great extent parallel to the theory of simple Lie groups and Lie algebras. Practically 
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any aspect of the theory of simple and affine Lie algebras admit an appropriate q- 
deformation. To begin with, besides a q-analogue of the universal enveloping algebra, 
there exists a corresponding deformation of the highest weight representations [L, 
RO1]. However, the correct quantum analogues are not always straightforward and 
one should expect to encounter radically new phenomena. An important program for 
future research is a q-deformation of the entire structure associated to conformal field 
theroy. Only a few isolated results in this direction are presently known [FJ, BL]. 
One of the key questions towards realization of this program is to find an analogue 
of the Knizhnik-Zamolodchikov equation, study its solutions and identify its hidden 
symmetries. We address these problems in the present paper. 

Our main result is a derivation of an analogue of the Knizhnik-Zamolodchikov 
equation for quantum affine algebras. The new equation appears to be a certain linear 
q-difference equation satisfying holonomy conditions. As in the corresponding case 
of conformal field theory, this equation is deduced for the matrix coefficients of a 
product of intertwining operators. Our derivation uses the multiplicative approach 
to quantum affine algebras [RS], which we develop further in the earlier sections. 
Our next result concerns the properties of connection matrices for the solutions with 
different asymptotics. These matrices, which play the role of monodromies in the 
conformal field theory case, are not constant in the quantum case but they depend 
on a spectral parameter. Using a classical result of Birkhoff [Bi] from the theory of 
q-difference equations, we show that matrix coefficients of connection matrices can 
be expressed in terms of ratios of elliptic theta functions, or in other words, sections 
of a line bundle on an elliptic curve. We show that connection matrices satisfy a 
version of the Yang-Baxter equations known as star-triangle relations in accord with 
the terminology of the book [B2]. 

A 

For quantum M(2) we find an explicit expression of solutions of our q-difference 
equations in terms of basic (or q-)hypergeometric functions introduced in the last 
century [H1, H2], and we compute explicitly the connection matrix and identified it 
with the Baxter solution of the star-triangle relation for the solid-on-solid model [B 1]. 

Our results have two immediate implications, one in mathematics mad another in 
physics. We mentioned before the relation between monodromies of the Knizhnik- 
Zamolodchikov equation and quantum algebras Uq(rJ) [Koh, D2, SV1, SV2]. This 
relation alone involves a substantial number of different mathematical structures. In 
this paper we conjecture that a similar relation exists between the trigonometric limit 
(see below) of connection matrices and finite-dimensional representations of quantum 

(2rr i~  
affine algebras Uq,(~) with q' = exp \~T-gg// '  which now plays the role of hidden 

symmetries. Since this correspondence reduces to the previous one when the spectral 
parameter tends to infinity, one can expect a new level of mathematical structures. 
The elliptic case is even more interesting. The algebras that describe the hidden 
symmetries of our q-difference equation have not been defined yet. They must be 
further deformations of Uq,(~), which yield elliptic solutions of Yang-Baxter equations 
as intertwining operators. Since the solutions of q-difference equations are given by 
generalized basic hypergeometric functions, one can expect that the representation 
theory will allow to understand the conceptual meaning behind numerous remarkable 
identities in this chapter of mathematics [S 1, GR], and will suggest far-reaching 
generalizations. 

The physical implication of our results concerns integrable models in statistical 
physics. There exist extensive generalizations of the original Baxter solution of the 
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star-triangle relation for other types o f  Lie algebras and various finite-dimensional 
representations [DJMO, DJKMO, JMO]. We conjecture that all these solutions come 
from the connection matrices of our q-difference equations. The star-triangle relation 
is only the very first fundamental aspect of integrable models in statistical mechanics. 
We expect that many other physical concepts will also find their place and explanation 
in the representation theory of quantum affine algebras. 

There is another remarkable relation with physics. When the central element in 
acts by zero our q-difference equation coincides with one of Smirnov's equations for 
form factors in integrable two-dimensional models derived from basic principles of 
quantum field theory and the factorizability of the S-matrix a few years ago [Stall. 
This relation connects in a conceptual way deformations of universal enveloping al- 
gebras of affine Lie algebras and massive integrable deformations of conformal field 
theory [Z]. These models might be another class of examples where Wightman's pro- 
gram can be explicitly realized. We also believe that interpretation of form factors 
as deformed Knizhnik-Zamolodchikov equations will help to understand infinite dy- 
namical symmetries of integrable models [Be, LSm] and may lead to interesting new 
aspects of representation theory of infinite dimensional algebras. 

We will delay further discussion of the future problems and perspectives to the 
conclusion and will turn to the more technical description of our results. 

In Sect. 2 we recall the derivation of the Knizhnik-Zamolodchikov equations in 
the form convenient for our generalizations. To any irreducible finite dimensional 
representation Vx of a simple Lie algebra 9 indexed by a highest weight )~ one can 
associate two types of representations of the corresponding affine Lie algebra 3- One 
type is again the highest weight representation V)~,k of level k (equal to the value of the 
central element c). This representation has a Z-graded structure V;~,k = t~) V),,k[-n] 

nEZ+ 
compatible with the one of ~ and its top subspace V),,k[0] is naturally isomorphic to 
V;~. The second type is just a finite dimensional evaluation representation V;~(z), 
z E C\0, isomorphic to V~ as a vector space for which k = 0. The operators of 
the central interest to the conformal field theory are the intertwining operators qS(z), 
between V:~,k and V,,k | V~(z). To formulate the properties of qS(z) it is convenient 
to introduce a generating function J(z)  for ~ acting naturally on V~,k | Vu. Let {J~} 
be an orthonormal basis of 9 with respect to an invariant form normalized by the 
condition that the square norm of the highest root is 2, and let {Ja[n]; c}, n C Z, be 
the corresponding basis of 8. Then we define J(z)  = ~ Ja[n] | Jaz-  n-~ and the 

a~T~ 
commutation relations of ~ can be written solely in terms of this generating function. 

We deduce from the intertwining property of r that under the natural normal- 
ization it satisfies an operator of the linear differential equation 

d 
(k + g) ~z ~b(z) -- : J(z)r  , (1.1) 

where g is the dual Coxeter number and : : is a normal ordering of operators defined 
by means of the decomposition of J(z)  into the sum of "analytic" and "antianalytic" 
parts (2.12). 

The operator linear differential equation (1.1) immediately implies that the matrix 
coefficients of the product of ~ 's  

: ( V 0 , ~ I ( Z l ) . . . ~ ) N ( Z N ) " O N + I )  E Yl ~ - "  ~ VN,  (1.2) 
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where v0 belongs to V;~,k[0] and VN+ 1 is the highest weight vector in V0,k satisfies 
the Knizhnik-Zamolodchikov equation 

0~o ~ Dij 
(k + g) = zi (l .3) 

where Dis = 7ri(Ja) | 7rj(Ja) and 7ri is the representation in V/. Equation (1.3) is a 
holonomic differential equation and defines a flat vector bundle over p1 \{zi ,  . . . ,  zN }. 

The holonomic property of the Knizhnik-Zamolodchikov equations is tied to the 
Dij 

fact that ?~ij(Zi - -  Z j )  w. is a solution of the classical Yang-Baxter equation 
Z i - -  Z j  

[?~12(Zl - -  Z2), r l 3 ( Z l  - -  z3)]  q- [T12(Zl - -  Z2), r23(z2  --  z3)]  

+ [r13(z1 - z3), r23(z2 - z3)] = 0. (1.4) 

We show how to transform the Knizhnik-Zamolodchikov equation to the "trigonomet- 
ric" form with rij(zi - zj) replaced by a trigonometric solution of the Yang-Baxter 
equation ~ij(zi/zj). Choosing vo and VN+I to be lowest and highest weight vectors 
and multiplying ~P by apropriate powers of z~'s (denoted ~b) one obtains 

(k + g)zi =   j(zi/zj) +  i(A) (1.5) 
jr 

where A = (A0 + AN+~ +20)/2,  and 0 is a half sum of positive roots of g. Two forms of 
Knizhnik-Zamolodchikov equations admit two entirely different quantizations, which 
are now related to rational and trigonometric forms of the quantum Yang-Baxter 
equation 

R12(zlz21)R13(zlz31)R23(z2z31) = R23(z2z31)R13(ZlZ31)R12(zlz21). (1.6) 

In this paper we concentrate on the trigonometric case, which is based on the repre- 
sentation theory of quantum affine algebra Uq(9). The rational case is related to the 
representation theory of full Yangians (the double of the Yangian [LSm]) and can be 
obtained as a certain limit of our constructions. 

To prepare the necessary tools we first recall the basic facts on the representation 
theory of quantum algebra Uq(g) in Sect. 3 and then we proceed to the quantum affine 
algebra Uq(~) in Sect. 4. 

The main result of Sect. 3 is Theorem 3.2 which will be used in Sect. 5 when we 
derive the quantum analogue of the Knizhnik-Zamolodchikov equation. 

In Sect. 4 we remind basic properties of the algebra Uq(~) and their representations. 
This algebra (as well as U(~)) has two different classes of irreducible representations: 
highest weight modules VA,k and finite dimensional modules V;~(z). Intertwining oper- 
ators RUW(z) between two products of finite dimensional modules V(xz)  and W(x)  
are determined by the universal R-matrix for Uq(~). These intertwiners satisfy the 
Yang-Baxter equation. We prove that RVW(z) is a meromorphic function of z and 
that it satisfies the "crossing-symmetry" 

(((RVW(z)-l)  tl)-I) tl = (Try(q 2~) | 1)RYW(zq 2g) (Trv(q -2g) | 1), (1.7) 

(((RYW(z)-l)t2)-l) t2 = (1 | 7rw(q-2Q))RYW(zq -2g) (1 | 7rw(q2O)), (1.8) 

and the "unitarity" relations: 

R V W ( z  R W V  z -1  ) 21 ( ) = Iv |  (1.9) 
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Then we describe "multiplicative realization" of Uq(O) [RS] using the universal R- 
matrix. The multiplicative realization is crucial for our exposition since it allows us 
to define a quantum analogue L(z )  of the current J(z )  for affine Lie algebra. We end 
this section with the definition of intertwiners ~(z) parallel to those for ~ and obtain 
their relations with generators in multiplicative realizations. 

In Sect. 5 we deduce the operator linear difference equation for the intertwining 
operator 

qS(zq -(k+g)) = iL(zq-g)4)(zq(k+g))i. (1.10) 

Here the normal ordering !i is defined using the factorization of L(z)  into the "ana- 
lytic" and "antianalytic" parts (see Sect. 4). The relation (1.10) is a q-analogue of the 
differential equation (1.1). We define a general matrix coefficient of the product of 
intertwining operators as 

= (., ~ d z l ) .  �9 �9 ~N(ZN) ' )  ~ Vo | V1 |  VN | (VN+I)*, 

where V0 and VN+I are the top subspaces of the corresponding infinite dimensional 
modules. 

Equation (1.10) implies the difference equation for the matrix coefficients of the 
product of the intertwining operators 

T~Z = A~Y, (t.11) 

where T i f ( z i ,  . . .  , zi, . . .  , ZN) = f ( z l ,  . . .  , pzi, . . .  , ZN), p = q-2(k+g), and 

Ai(z )= R i i - l (  PZi ~ . . .R i l (PZ i~  ...RioT~i(q2#)(RiN) -1 
\ z i - 1 /  \ Zl / 

• R~N . . .  R~i+l zi . (1.12) 

Here Ri j  (z) E End(V~ | Vj) are the intertwining operators (R-matrices) corresponding 
to the pair of finite dimensional Uq(~) modules Vi and Vj an d /~ j  are corresponding 
Uq(~) intertwining operators. Then we show that the Yang-Baxter equation for Ri j  (z) 
implies that (1.11) is a holonomic difference system in the sense of [A1]: 

(T~Aj)Ai  = ( T j A i ) A j .  

We begin Sect. 6 with the study of the properties of solutions of our difference 
system (1.11). We show that the subspace of Uq(9)-invariant solutions to this system 
is naturally isomorphic to 

~ 1 , ' ~ } ~  1 = Inv ( ~  | V1 |  | VN | (VN+I)*). (1.13) Uq(g) 

We show that solutions with different asymptotics can be analytically continued and 
we define connection matrices between them. The space (1.13) admits a factorization 

(~vVo1vA1 | ~,~W21v.,k 2 |  V XN_IVN+I), (1.14) 
)~1 ""~N-1 

which provide corresponding natural choice of basis in (1.13). We describe explicitly 
the action of the connection matrices in this basis (1.14) and show that they can be 
expressed in terms of a product of elementary connection matrices arising from the 
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difference equations with N = 2 as in the classical case. We proved that the ele- 
mentary connection matrices satisfy the Yang-Baxter equation, a "unitary" condition 
and that their entries are ratios of theta functions. On the basis of these facts we 
conjecture that the elementary connection matrices of the system (1.11), (1.12) cover 
all known solutions of the Yang-Baxter equation [DJMO, JMO]. One of the corollar- 
ies of these results is that matrix coefficients of the intertwining operators allow an 
analytic continuation from formal power series to complex values of z. The analytic 
continuation, together with the factorization property of connection matrices, yield 
an exchange algebra for the intertwining operators (6.40). We also conjecture that in 
the limit q ~ 1, zi = qX~ and zi  fixed these connection matrices coincide with the 
action of Uq,(~j) intertwiners on the Uq(t~) invariant subspaces of tensor products of 

finite dimensional Uq,(O)-tnodules with q' = exp k,k-~9,/" This property of connec- 

tion matrices for the system (1.11), (1.12) can be regarded as a generalization of the 
correspondence between U(0)-modules of level k and the algebra Uq,(g) [MR, D1, 
SV1, SV2, KaL] and others. 

In Sect. 7 we consider a special example of solutions of our difference equation 
when ~ = ~[(2). It turns out that they are expressed in terms of the basic or q- 
hypergeometric series introduced in the middle of the last century [H1, H2]. We recall 
some facts of this theory including the integral formulas and the connection formulas. 
Applications of the connection formulas for basic hypergeometric series allows us to 
find explicitly the connection matrices in certain special cases. In particular, when V1 

and V2 are both two-dimensional representations of Uq(N(2)) we obtain 

K + I  ) 
wViV2(z) K K = 1 ,  

K T 1  

K ] [ K +  1 =ku] [1] 
wV~V2(z) K ~ I K • I = 

K [ u +  l] [K + 1] ' 

K ] [ u ] [ K +  1 • 1] 
wVIV2(z) K 2~ 1 K T t = 

K J [ u +  11[K + 1] ' 

(1.15) 

where q = exp(-Trir), z -- exp(27ri'ru), [x] = O(e 27riTx) and 69 is the Jacobi elliptic 
theta-function (6.29). This is exactly the famous Baxter solution of the star-triangle 
relation for the solid-on-solid model [B1]. 

In the concluding Sect. 8 we discuss some further problems and new directions 
of research, arising from our results and their comparison with the known facts from 
conformal field theory and quantum groups. 

2. Affine Lie Algebras and the Knizhnik-Zamolodchikov Equation 

We recall first several standard facts about finite-dimensional simple Lie algebras and 
fix the notation. Let ~ be a simple Lie algebra over C. We will denote by ( , )  a 
symmetric invariant bilinear form on ~ and identify g with its dual by means of this 
form. The form ( , )  is unique up to a constant which we will fix by the requirement 
that (0, 0) = 2 for the maximal root 0 of ~. We choose a triangular decomposition 
g = n+ @ ~ @ n_, where b is a Cartan subalgebra and n+, n_ are nilpotent subalgebras 
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of g, corresponding to positive and negative roots A+ and (--A+), respectively. We 
will denote by ~ the half sum of positive roots, and by g the dual Coxeter number. 

dim g 
IX .'[dim g 2 is the Casimir element Let t *Ji=l be an orthonormal basis of g, then C = ~ x i 

i=1 
in the universal enveloping algebra U(g). Let {V;~};~ep++ be a set of all irreducible 
representations indexed by their highest weight, which belongs to the positive cone 
P++ of the weight lattice P and we denote 7r;~ : g + End V~ the action of g. We will 
often use the module notation x v ,  instead of 7r),(x)v,  x E g, v E V~,. We denote by 
C(),) the value of the Casimir operator in the representation Vx. 

Next we recall some facts about the affine Lie algebra ~ associated to g (for more 
details see [Koh, FLM]). By definition ~ = (~  g'~ (9 Cc, where g'~ ~ g, n E Z 

nEZ 
as vector spaces, and e is in the center of ~. Then the commutation relations of the 
elements J2  C g'~, corresponding to x C g, are 

m n + m ~ . ~ + n  0 ( x , y )  c [ J ;  , Jy I = w~+n �9 '[x,y] , �9 (2.1) 

We will identify g with the subalgebra go of t~ and we will also write Jz instead of 
x for x E g. It is often convenient to use the language of the generating functions, 
namely 

& ( z )  = J+~(z) - J 2 ( z ) ,  

a + ( z ) = ~  T-n n-1 a x ( z ) = _ ~  Tnjx z - n - 1  �9 .I x Zr~ ~ 
n>0 n_>0 

(2.2) 

(2.3) 

where z is a formal variable. The commutation relations (2.1) admit the following 
form: 

1 ~ 
Jb,yl(W)), [ J r (z ) ,  Jy=k(w)] - -  z - w (J ix 'Y](Z)  - (2.4) 

_ _  + c ( x ,  y )  
1 (J ix , v ] ( z )  - J[~,y](w)) + (~--  ~-)2" (2.5) [J+(z), J~-(w)] - z - w 

Here (z - w) -1 and (z - w) -2 should be understood as power series expansions 

( ~ ) n  1 n~> 1 (_~)n--1 1 ~ and ~-~ n respectively, and the identities (2.4) and (2.5) 
Z n>0 
as the identities over C[z +1, w • and C[z, w- l ] ,  respectively. For more details on 
the formal calculus of generating functions for affine Lie algebras see [FLM]. 

Let ~+ = (~  gn G Cc be the maximal parabolic subalgebra of g and V be a 
n>0 

g-module. We introduce in V the structure of the ~+-module such that gnV = 0, 
n > 0, c V  = k V .  With each such a module we associate the induced representation 
of 

Vk = Ind~+V. (2.6) 

The space Vk has a natural grading consistent with the grading of ~, 

Vk = ( ~  V k [ - - n ] .  (2.7) 
n>_0 
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If  V is finite dimensional the spaces Vk[n] are finite dimensional as well. We define 
a graded dual module (Vk)* as a linear space 

(Vk)* = ( ~  (G[-n])* 
n_>0 

with the following structure of ~-module on it: 

(xv', v) = - (v', xv) .  

Here v'  E (Vk)*, v E Vk, x E 0 and ( , )  is a pairing (Vk)*| ---* C. The top subspace 
Vk[0] can be naturally identified with V. The representation V)~,k induced from an 
irreducible finite-dimensional representation Vx, )~ E P++, of g is irreducible for 
k 9 Q. If  k c Z+, Vx,k is reducible and its factor by the maximal ideal is an integrable 
dominant highest weight representation for A E p+k+ = {# C P++ I (#, 0) < k}. Any 
induced representation Vk of ~ can be extended to the semidirect product of ~ with 
the Virasoro algebra. In particular, L0 is the degree operator on Vk and its value on 
Vk[0] called conformal weight, is equal to h(.~) = C(.X)/2(k + g) for V = V),. We 
note, however, that in this work the Virasoro algebra is never used and the choice 
of the shift h(.~) in the definition of the degree operator will be motivated also by a 
certain differential equation. 

To any representation V of g and a formal variable z, we can also associate a 
representation V(z )  of ~, in which k is 0. As a vector space V(z )  ~ V | C((z)), 
where C((z)) denotes the Laurent series in z, and j n  acts by x | z n. One of the 
central objects of the conformal field theory associated to representations of affine 
Lie algebras are the intertwining operators 

~5(z):Vu,k ~ V~,,k | V)~(z)z -h()')-h(t*)+h(~') , (2.8) 

where A, #, t, E P++, and the shift in grading z -h()')-h(t*)+h(~') comes from the grading 
of representations and will play an important role. A fixed choice of an element 
v E V~* gives rise to an operator 

~'hv(Z): Vtt,k ~ V~,,k @ C((z ) ) z  -h(A)-h(l~)+h(u) , (2.9) 

or in the component form 

qhv(Z) = E ~hv[n]z-n-h(&)-h(tt)+h(z')" (2.1o) 
nEZ 

Since the intertwining property of ~5(z) does not depend on a multiplication by any 
power series of z we require in addition that the grading (2.10) is consistent with the 
graded structures of the representations, 

qhv[n]: V~,,k[m] ---* V~,k[m § n].  (2.11) 

By definition the intertwining operator ~v(z) satisfies 

[J~(w), ~v(Z)] -- - - 1  ~v(z) ,  (2.12) 
Z - - W  

where (z - w) -1 should be underestood as the corresponding positive or negative 

power series in ( w )  depending on the sign of Jx• We also define a normal 
ordering 

: J , (z )~v(z)  : = J+(z)q%(z) - ~ v ( Z ) J x ( z  ) . (2.13) 
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Remark 2.1. Heuristically, when z is set to be a complex variable, the definition (2.13) 
is motivated by the following expression often used in physics literature [BPZ]: 

1 f d~" :J~(z)q~v(Z): - 27ci T(Jx(~)r ~ - ~ ,  
Cz 

where Cz is a circle with the center in z with the counterclockwise orientation and T 
is the radial ordering of operators, namely T(Jx(~)q)v(z)) = J~(~)4)v(z) if ]~] > Iz[ 
and 4),(z)J~(~) if [z[ > Kt. The latter can be rewritten, using the Cauchy theorem 
for an analytic function of ~ with the three singular points 0, z and co, in the form 

:Jx(z)O~(z): = ----: J~(~)d~.(z) d~ 1 de 
z m  ~-L--z 2~vi qSv(z)J~(~) ~ - z ' 

CR Cr 

where CR and Cr are the circles with center in 0 and the counterclockwise orientation 
of radii R and r, respectively, and R > IzI > r. Here z and r are complex variables 
and all such identities should be understood in the weak sense, i.e. as the equality of 
arbitrary matrix coefficients of the corresponding operators. For more detail on rela- 
tions between the formal variable identities and their complex analytic counterparts, 
see the Appendix in [FLM]. One can show that in this form (2.14) the right-hand side 
is well defined and then this definition of normal ordering is immediately reduced to 
(2.13). 

We deduce first an operator analogue of the linear differential equation for ~ . (z) ,  
which we consider one of the cornerstones of the conformal field theory associated 
to the highest weight representations of the affine Lie algebra ~ (cf. [KZ]). 

Theorem 2.1. The intertwining operator q~,(z) defined as (2.8)-(2.12) satisfies the 
following differential equation." 

d 
(k + g) -~z ~)v(z) = E :J~(z)f)av(z): , (2.15) 

a 

where the sum is taken over an orthonormal basis of 9. 

Proof. We will give an induction proof. Let us first consider the matrix coefficient of 
~5~(z) on the top level. One has 

I (v~  | v | vo) 
(v~, 4).(z)vo) = zhO,)+h(u)_h(v ) , (2.16) 

where v E V~*. vo E V~-k[0] ~ V~. v~  E (V~k[0]) * ------- (V.)*. and I is a 9-invariant 

functional on V* | V~* | Vu. Then we find 

( d } I ( v ~ | 1 7 4  (2.17) 
v~, 4)v(z)vo = - (h(A) + h(#) - h(u)) zh(;~)+h(~)_h(~)+l , 

IVc~,~a :Ja(Z)qSav(Z):Vo} : z-1 ~a (vcc,~av(Z)Javo) 

I (v~ | Jay | J~vo) 
---- E zh()O+h(l~)-h('.')+l (2 .18)  
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Using the 9-invariance of I we get 

E I ( v ~  | J~v | J~vo) = 1 I ( Id  |  - C @ 1 - 1 | C ) v ~  | v | vo) 
a 

1 = ~ (C(u) - C(#)  - C ( A ) I ( v ~  | v | vo), 

where A is a standard comultiplication. Now, using h(A) = C(A) /2 (k  + g) we obtain 
(2.15) at the top level. 

The induction step is an immediate corollary of the following identities: 

a 

[&, ~P~(z)] = ~a,,(z). 

In fact, since Va,k is generated by its top level we only need to prove that the 
commutator of J2 ,  n E Z, with the left- and right-hand sides of (2.15) has the same 
matrix coefficients. Then by induction arbitrary matrix coefficients are reduced to the 
top level, where Eq. (2.15) has been checked. 

The proof of the identities (2.19) uses only the commutation relations (2.4), (2.5) 
and (2.12). One has 

since 

J+(w) 1 Ja, d ] 1 ~bav(z) 
- z ------7 ~ ~ ( z )  - -  ( w  - z )  - - - - - - - - ~  ' 

[ J + ( ~ )  1- zo,~,Mz)J?(z)- J;(z)~.(z)] 
z w 

1 1 k 
z - w ~Sb~(Z)J~abl(W) Z -- W J~'b](W)~b~(Z) (Z - -  W) 2 ~av(Z) 

1 k k + g  
- -  (Z - -  W)  2 ~)[ab]bv(Z) (Z -- W)  ~ ~ a v ( Z )  - -  (Z -- W)  - - - ' ' ' ~  ~)av(Z) ' 

E [ab]bv = ~ E [b[ba]]v = ~1 C(O)av = gay ,  
a b 

and similarly for J [ ( w ) .  
One can also reformulate the statement of the theorem in terms of the intertwining 

operators r Let us introduce the generating function J(z )  = ~ J,~ | Ja acting in 
a 

the tensor product V~,,k | Vx(z). Then the operator differential equation (2.15) admits 
the especially elegant form 

d 
(k + g) -~z qS(z) = : J ( z )~ ( z ) :  , (2.20) 

where : J ( z )~ ( z ) :  = ~ (J+(z)  | Ja)g'(z) - ~ (1 | Ja)q?(Z)Ja (Z ). The equation in 
a a 

this form will have a natural generalization for quantum affine algebras. 
The proof of the theorem implies the existence of the intertwining operators sat- 

isfying (2.16) on the top level. This shows that the dimension of the linear space of 
intertwining operators (2.8) is equal to dim Homg(Vu, Vv | Va). 

The differential equation for the intertwining operator now immediately implies 
the Knizhnik-Zamolodchikov equation [KZ]. 



12 I.B. Frenkel and N. Yu. Reshetikhin 

For abbreviation we will write 

~ I ( Z l ) . . .  ~N_I(ZN_I)RT)N(ZN) ~ (~l(Zl) @ l ' ' "  @ 1) . . .  (~N_I(ZN_I)  @ 1)~N(ZN).  

Proposi t ion 2.2. Matrix coefficients o f  a product o f  intertwining operators 

k~" = (., r  ~N(ZN).)  C Y (0) @ Yx1 @""  @ VA N @ (v(N+I)) * , 

where V(k ~ is the target space of  # l (Zl )  and V(k N+I) is the source space Of ~N(ZN), 
satisfy the following system of  partial differential equations 

0 ~  ~ f2ij g t  (2.21) 
(k + 9)b~Tz~ = z ~ - z j  

where zg+l = 0 and [?~j = ~ 1 | . . .  | a | . . .  | a | . . .  | 1, a appears at the ith 
and jth position, a 

Proof. In order to avoid the vector notation, one can introduce a scalar function 

~.) = (k~ I , v  0 @ Vl @ ' ' '  @ V N _ I  @ V N ) .  

Then, applying (2.15) and (2.12) one obtains 

0r  
Oz--5 = ~ i~o, .(J:(z,)~av,(z,)-~ov,(Z,)Jo(~,)).. VN+l> 

a 

~a l (Vo. " r  " ~avi(Zi) . . .VN+l)  = ~ - - - 7 7 _ j ~  �9 "" 

j<i 

--1 
+ E z;:  <vO, 

j < i  

This is equivalent to (2.21) for the vector-valued function ~.  We note that in the 
quantum case we will have to work exclusively in the "vector" notation. 

Finally, one can deduce from the derivation of the Knizhnik-Zamolodchikov equa- 
tion and also easily check directly 

Proposi t ion 2.3. The system (2.21) is consistent, i.e 

The consistency property of  the Knizhnik-Zamolodchikov equation directly follows 
from the fact that 

rij (zi - z j )  -- - -  (2.22) 
Z i -- Zj  

is a solution of the classical Yang-Baxter equation 

[r12(Zl -- z2), rl3(Zl -- z3)] -k- [rl2(Zl -- z2), r23(z2 - -  Z 3 ) ]  

@ [rl3(Zl -- z3), r23(z2, z3)] =- 0 .  (2.23) 

Besides the rational solution such as (2.22) the classical Yang-Baxter equation also 
possesses trigonometric and elliptic type of solutions studied in [KS, BD]. An example 
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of a trigonometric solution for any simple Lie algebra g (written in a multiplicative 
parametrization) is well known 

~ i j ( Z i / Z j ) -  TijZi 4-r j iz j  , 
zi - zj 

where 

= ~ h i |  x~ N x_~ 
i=1 ~EA+ 

is a "half-Casimir," {hi}~< is a basis of  b and x~ C g~, oz E A, and (x~, x_~) = 1 
for all c~ C A. 

It turns out that a simple transformation of the Knizhnik-Zamolodchikov equation 
(2.21) allows us to rewrite it in the trigonometric form with rij(zi - zj)  replaced 
by ~ij(z i /z j ) .  This transformation is related however to a more fundmnental fact of  
changing the polarization of the affine Lie algebra ~. Instead of "parabolic type" 
polarization (2.2), (2.3) we can choose the "Borel type" polarization 

oVa(z) = J+(z )  - J~-(z), (2.24) 

where J~(z) = zJ~(z),  

]~(z )  = 4-['jo o + Z ) (2.25) 

and x +, :c ~ :c- are, respectively, components of  x E 9 in the triangular decomposition 
g = n+ | b | n_. We can then define a normal ordering corresponding to the new 
polarization 

i & ( z ) ~ ( z ) i  = J+ ( z ) ~ ( z )  - ~ ( z ) J g  (z) (2.26) 

and similarly iJ(z)~(z)i .  One immediately obtains 

Proposi t ion 2.4, Normal orderings are related as follows: 

z : J ( z )~ ( z ) :  = i f f ( z )~ ( z ) i -  1 | - ~- § ~ qS(z), (2.27) 

where C is the Casimir operator and ~ is the half sum of positive roots. 

It is also natural to introduce 
I| 

~(z)  = z a(~+~)~(z). (2.28) 

Then the differential equation (2.20) admits the form 

d 
(k + g)z dz  ~(z)  = !](z)~(z)i  - 1 | 0 r  (2.29) 

Now, choosing v0 and vN+l to be the highest weight vectors we obtain the trigono- 
metric form of the Knizlmik-Zamolodchikov equation for k~ from 

Corol la ry  2.1. 0o{ } 
(k + g)zi ~ = ~ r + 1 ~((a0 + ~) + (;~n+l + ~)) ~ ,  (2.30) 
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w h e r e  

= {V0,~I(Zl).. .~N(ZN)VN). 

This equation can also be obtained directly from the Knizhnik-Zamolodchikov 
equation (2.21) using the fact that 

n+i 
E r ~ = r ~  and ~ = ~ v i ( � 8 9  (2.31) 
j=l 

R e m a r k  2.2. We have seen that the parabolic and Borel type polarizations of the 
affine Lie algebra ~ are related by a simple transformation, which gives rise to the 
corresponding relation between the rational and trigonometric form of the Knizhnik- 
Zamolodchikov equation. However these two polarizations lead to two different Lie 
bialgebra structures on 8. Furthermore the quantization of two bialgebras yields two 
different quantum analogues of 8, namely "full" Yangian ]Y(g) (or the quantum double 
of the Yangian Y(9) [S]) in the rational case and quantum affine algebra Uq(~) in 
the trigonometric case. A generalization of the results of this section to the above 
quantum analogues is our main goal. 

R e m a r k  2.3.  We also would like to note that one can deduce a differential equation 
for 

k~ = trlvx,k(~l(Zl)... ~N(ZN)qLO), 

where L o .  V;~,k[n] = (h(A)  - n)V;~,k[n]. Then ~(z) is likely to be replaced by an 
elliptic solution of the classical Yang-Baxter equation on 9-invariant subspace in 
V~ |174  VN. 

We would like to recall briefly the approach of [TK] in a slightly modified form, 
which we will extend to the quantum case in Sect. 6. We have seen that the solutions 
of the Knizhnik-Zamolodchikov equation can be obtained as matrix coefficients of 
the product of intertwining operators 

@ V, ( z ) z  h(Aj l)-h(Aj)-h(uJ) (2.32) ~)j(Zj):VAj,k --e. V)~j_l,k [.tj 3 

In this case we will need to specify the source and the target space of the intertwin- 

We will use the notation qSy ( z j )~  -1 . By the proof of Theorem 2.1, ing operator (2.32). 
J 

these operators are in one-to-one correspondence with elements of the vector space 

H~j -lu~ = HoI-I-I~(V)u , V~,j_ 1 @ Vlzj) ,  (2.33) 

M-)~j- l ,Uj We will write r  ( z j  ] a),  a E ~ ~,j , to specify a particular intertwining operator. 

Then qSj(z ] .) maps H ~  -luj into the space of intertwiners of a given type. Thus any 

element of the space 

H)~O~l ~-ll~j HAJI~j+I ~ AN lP'N (2.34) 
;~ | . . .  | H | , X j +  1 " ' "  | H),  N 

gives a g-invariant solution of the Knizhnik-Zamolodchikov equation (2.21). We ob- 

tain these solutions in terms of the formal power series in z2, . . .  , z ~  and the 
Zl ZN-I 

general theory of linear differential equations asserts that these series are analytic 
functions in the domain Izll >> Iz21 >> --- >> IZNI. The analytic continuation of 



Quantum AffineAlgebras 15 

the solutions into the domain, where ]Zi+ll ~ Izd, and the rest of the order is un- 

L changed can be done in two, x different ways arg zi+l(t) > 0 or < 0 at the point 

Iz~(t)l = [Zi+l(t)], t E [0, 1]} and defines a map of (2.34) into the space 
/ 

! 
.. HAN-I~N (~HAOU~ L/-AJ-I#j+I HAj~J | "@ AN . AI |  | Aj+1 

A~ J 
3 

(2.38) 

One can show from the analysis of the Knizhnik-Zamolodchikov equations (2.21) 
[see Sect. 6 for the case of Uq(~)] that this map has a local form 

1 |  | B~jp,j+ 1 [ )~ 
AJ-1 ] 

/~j | 1 7 4  
Aj+I 

where 

)~j-1 ] . y[Xj ll~j HAJl~j+I 
B ::[= A 3 Aj+I  " ~)~j  Aj+ 1 /zj/z j +  1 )kj | 

(~l-Aj-ll~j+l L/-A~/zj+I 
t"A,  | ~*A'. ) (2.39) 

3 3 

will be called the braiding map. All the structure about monodromies of the Knizhnik- 
Zamolodchikov equation is encoded in this map. 

Remark 2.4. Since the braiding map (2.39) arises from N = 2 case of Knizhnik- 
Zamolodchikov equation, the whole structure of monodromies is reduced to this case. 
After a simple substitution ~ = (Zlz2)h)~o-h)~2~ t, the latter becomes an ordinary 
differential equation in a variable z = ZlZ21 with three singular points z = 0, 1 and 

h 
c~. In the simplest nontrivial case, when ~ = s[(2) and m = 1 in A2 = #a +#2+A-m~ 
the system of differential equations has order 2 and the solutions are given in terms 
of the Gauss hypergeometric function F(a, b, c; z). General m and N give various 
generalizations of the hypergeometric function studied in [FZa, DFa, SV1, SV2]. We 
will consider a different generalization of the Gauss function arising in connection to 

the quantum analogues of sI(2) in Sect. 7. 
Since the solution of the Knizhnik-Zamolodchikov equation can be analytically 

continued from formal power series to complex values of zi we can define the analytic 
continuation of the product of intertwining operators ~(~51(z1)q~2(z2)), where -4- 
corresponds to two nonhomotopic paths as above. 

Theorem 2.2. Intertwining operators satisfy the following exchange algebra." 

AI P,2G• [ ")A2) 

= ~ ~ q : ( e 2 ( Z 2  [ *)A'l~bl(Zl I /V 1 a l  "]A 2 ) /~bu2 
A' 1 ~2 

where P~2 is the permutation of the factors in the tensor product VUl | Vu2 
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Corollary 2.2. 

I 1 ~B • )`'; )`'~ B~ )`~ )`~ =ex>l /Z2~ 1 /~1/~2 )`2 )`2 
(2.40) 

1) 
~2 | ~l/Z2 A3 . ~2 

(1  B4- [ i 2  )`1 

)`3 

( = E B-t- )`~ i 1 | 1 1 |  -t- / /*2/z3 /zi/z 3 )`1 )`2 
xl )`~ )`3 

),1] |  (2.41) 
)`2 

i ] The important special case of  the braiding map B • )̀ '1 )`1 arises when 
/'1/'2 )`2 

Ao = 0. We denote it by A ~ .  [A2], since in this case A1 = #1 and ),] =/~2. We can p,I/x2 
also identify H ~ TM C by singling out the intertwiner corresponding to 1 C C, 

(vo, ~(z )v)  = v ,  (2.42) 

where v0 E Vo* k is a fixed lowest weight vector. Using this identification, we obtain 

A~,/, 2 [)`]: H ~  '~2 ---+ H ~  2/~' . (2.43) 

The relations for B ~: can be best understood from the point of  view of a braided 
monoidal category, which we briefly describe [ML, RT]. By definition of a monoidal 
category g~, there is a bifunctor (tensor product) | : ga x ga + g~, identity object I ,  
and three natural isomorphisms 

ozx,y, Z : ( X  | Y )  | Z --+ X | ( Y  | Z ) ,  (2.44) 

A x : J |  o x : X |  (2.45) 

so that a satisfies the pentagonal diagram [ML], a ,  A, ~ satisfy elementary triangular 
diagrams A X |  o ozi,X, Y = )`x @ idg, ( idx | Ay) o ctX,y,  I = cox| and A1 = @I. A 

monoidal category is called a braided monoidal category if in addition there are two 
natural isomorphisms 

"~ff,y : X | Y --+ Y | X (2.46) 

so that 

+ (2.47) "/x,Y o .yTy, x = idx|  , 

(idg | "Y~r,z o ay,  x , z  o (7~(,Y | idz)  = av,  z , x  o 7 } , Y e Z  o a x , v , z ,  (2.48) 

and also Px = Ax o7~:,i. In this paper we will call tensor category an abelian braided 
monoidal category. We call pre-tensor category a tensor category without the axiom 
given by the pentagonal diagram. 
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Let us introduce a natural transformation which we call braiding, 

4- 
/3x,y, z . ( X  | Y )  | Z ~ ( X  | Z )  | Y ,  

4- 
/ ~ , g , z  = 7Y, X| o OI.y,x, z o (~/~,y | i d z ) .  

(2.49) 

(2.50) 

One can now reformulate the axioms of  the (pre-) tensor category using the braiding 
constraint. In particular, one easily checks 

Proposition 2.6. The axioms (2.47) and (2.48) are equivalent to the following ones." 

.,x,Y o/3. y, x = id, (2.51) 
4- 4- ( 4- 

0 /~.| /~.,X,Y | idz)  (/3.,y,z | idx)  o 

= / 3  • • (2.52) �9 |  o (/3. x ,  z | idy)  o/3 • .| " 

Now let us assume that ~ is semisimple, namely that every object is a direct sum 
of simple objects Xi,  i E X2, and I ~ C, Hom(Xi,  Xi)  ~- C. Then we have: 

Xi  | X j  = Hk y | X k  , (2.53) 

where H~ j is a vector space. Let 

( X  i | X j )  | X k = 0 H ~  | H n  m k |  X n . (2.54)  
m~?va 

Then/3},y,  Z induces on the vector space (~  H,~ | H ~  k a linear map 
m 

Bfk  m '  m : n 2 | 2 4 7 1 7 4  'j 
n 

and the identities (2.51) and (2.52) imply the identities (2.40) and (2.41), respectively. 
Thus we have seen that the monodromy of  Knizhnik-Zamolodchikov equation 

yields a semisimple pre-tensor category with simple objects indexed by P++. Operator 
product expansions of  intertwining operators or further analysis of the Knizhnik- 
Zamolodchikov equation reveals that the pentagon diagram holds and we have in 
fact a tensor category, which will be denoted by Monk(~). It also has an additional 
structure of  rigidity and balancing, which will be important for us in the case of  another 
tensor category associated to the finite dimensional representations of  quantum groups 
considered in the next section. 

3. Q u a n t u m  Algebra  Uq(g) 

Let q be a formal paramter, t? be a simple Lie algebra with fixed Cartan matrix 
A = (aij), i, j = 1, . . .  , rank 9 and di = 1,2, 3 such that diaij = djaji .  

Definition 3.1 [Drl, J2]. The algebra Uq(g) is an associative algebra over formal 
power series C [ [ q -  1]] with generators ei, f i  and invertible ki, i = 1, . . .  , l = rank g 
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and with relations: 

k~kj = kjk~ , 

ki - k~ 1 
e J j  - f - j e i  = ~ij " - - - - - ~  , 

q~ - qi 
1--aij 

e i e j e  i ~ 0 
k=O qi 

1--aij 

E ( - 1 ) k [  1 - a i j ]  ~ - a # - k s j f i k = O '  k J q~ 
k=O 

k i e j  qaij e j  ki  ki  f j  -a i j  ~e. k" 

i C j ,  

i C j .  

(3.1) 

Here 

[ 2 ]  _- In 0, 
q [n - m]q ! [mlq ! 

and [n]q! = [n]q ...[1]q, [n]q - - -  
qf~ - -  q - - n  

q _ q-1 ' qi = qa~" 

R e m a r k  3.1. Over C[[q - 1]] we can define elements 

h - -  logq = log(1 §  1) = E ( - l ) n - ~ ( q -  1)n 
n 

n>l 

and 

1 log (k~)=  1 2 
H1 - 2hd~ ~ log(1 + k i - 1). 

We will also use notation 
qA = exp(hA). 

The algebra Uq(9) is a Hopf algebra [Ab] with the comultiplication 

A ( k i )  = k~ | k~, 

A(e i )  = ei | ki + 1 | ei , 

A ( f i )  = f i  | 1 + k~  1 @ f i  . 

(3.2) 

From relations (3.1) and this form of the comultiplication it is easy to compute 
the action of the antipode on the generators: 

S(eO = - e ik~  1 S ( A )  z -- k i f i  • (k i )  = kS~ 1 

The subalgebra of Uq(g) generated by ki is isomorphic to the universal enveloping 
algebra U(b) of a Caftan subalgebra b of g over C[[q - 1]]. We denote by Uq(b+) 
(respectively Uq(b_)) the subalgebra of Uq(9) generated by ei and ki (respectively fi 
and kD. 

The remarkable property of Uq(g) is that it is a quasitriangular Hopf algebra, which 
means the following. 
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Proposi t ion 3.1 [Dr3]. There exists a distinguished invertible element R E Uq(g)~ 
Uq(g) (here ~ is a tensor product completed over C[[q - 1]]) which is called universal 
R-matrix and has the following properties: 

A'(a) = R A ( a ) R  -1 , 

(A | id) (R) = R13R23, (3.3) 

(id | A) (R) = R13R12, 

where A'(a) = a o A(a), cr is a permutation in Uq(g)| | y) = y | x) and 

Rle = R | 1, R23 -- 1 | R, R13 = (~r | id) (Rz3) are elements of Uq(g) r 

This proposition follows from the double construction of  the algebra Uq(g) [Dr3], 
(see also INS1]): Uq(g) = D(Uq(b+))/U(b), where D(A) is a "quantum double" of a 
Hopf algebra. Using this description of  Uq(g) it is easy to write a few first terms in 
the decomposition of R as a power series in ei and f~: 

R = e x p ( h  s 1 6 3 1 7 4  (3.4) 
i , j=l i = i  

Here B = (Bij)  is a symmetrized Cartan matrix: Bij  = diaij.  It follows immediately 
from the double construction that R = ~ ai| where ai E Uq(b+) and bi E Uq(b_). 

i 

We did not write in (3.4) terms of  the type x | y, where x C Uq(b+), y E Uq(b_) are 
monomials of  ei and fi ,  respectively, of  degree(x) = degree(y) > 1. 

The explicit description of  R in terms of  generators, ei, fi, ki can be found in 
[Ro2, KR2, LSo]. 

We recall a few standard definitions and facts related to a Uq(g)-module V. A 
vector v c V is called a weight vector with weight A = (A1, . . .  , /~ )  if 

k~v = @iv,  i = 1, . . .  , I. (3.5) 

A vector v E V is called primitive if 

eiv = 0 ,  i = 1, . . .  , I .  (3.6) 

The Uq(g)-module V is called a highest weight module with the highest weight A if 
it is generated by a primitive vector v:, E V of  weight )~. The vector vx is called 
the highest weight vector. Replacing ei by fi  in (3.6) one can define a lowest weight 

/ module generated by a lowest weight vector v~. 

Theorem 3.1 [L, Rol] .  i) any finite dimensional representation of Uq(g) is completely 
reducible, ii) An irreducible finite dimensional Uq(g)-module is uniquely characterized 
by its highest weight and weight subspaces in such modules have the same dimensions 
as the corresponding weight subspaces in an irreducible g-module with the same high- 
est weight. 

We will need some further facts about the category of  finite dimensional represen- 
tations of  Uq(g). Let us denote it as Repq(g) and let us recall some basic properties of  
this category. As we will see, the category Repq(g) is a tensor category (in the sense 
of  Sect. 2, i.e. abelian braided monoidal category) with a certain additional structure. 

First, the structure of  the monoidal category on Repq(g) is determined by the 
comultiplication in Uq(g). For, given two Uq(g)-modules V and W, define the repre- 
sentation ~rv| : Uq(g) ---+ End(V | W)  as 

7rv| = (Try | 7rw) (A(a)) ,  a E Uq(g). (3.7) 
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The associativity constraint ~ x , v , z  : X  | ( Y  N Z )  ~ ( X  | Y ) |  Z is trivial because 
of the coassociativity of Uq(g). An identity I object is by definition C considered as 
a trivial Uq(g)-module and the natural transformations Ax, Ox (2.45) are also trivial 
for any object X. 

It follows from Proposition 3.1 that the category Repq(g) is a braided monoidal 
category [JS] with the commutativity constraint 7 x , g  : X | Y ~ Y | X given by 

7 x , v  = p X V O r x  | Try) (R) ,  (3.8) 

where p X V  : X @ Y --+ Y | X is the permutation map P X V  (x @ y) = y @ x. From 
the action of the comultiplication on the universal R-matrix we deduce the hexagon 
identities for 7: 

7x| = (Tx,z | idy) (idx | 7Y, Z) ,  (3.9) 

7x,Y| = (idv | 7 x , z )  (Tx ,v  | idz) .  

Moreover, Theorem 3.1 implies that Repq(g) is a semisimple abelian category with 
irreducible finite dimensional representations as simple objects. 

Let us recall that a tensor category ~ is a rigid tensor category if for any object X 
of the category 4 there exists an object X* and a pair of morphisms s x  :X* @ X 
I ,  tx  : I ~ X | X* such that 

Ax*(Sx | id) (id | tX)Pxl. = idx*, ~x(id | s x )  ( i x  | id)Ax 1 = i d x .  

The category Repq(9) is a rigid tensor category. The module V* dual to V is by 
definition a dual linear space to V together with the following structure of Uq(fl)- 
module: 

(a.  l) (v) = l (S(a) ,  v ) ,  

where S is the antipode for Uq(9), I E V*, v E V, a E Uq(g). 
The next important property of the category Repq(g) is balancing. In a balanced 

tensor category ~ we associate with each object V E ~ an automorphism 7"v such 
that 

-1 -1 
~-x| = 7v, w T w ,  v~-v | ~-w, ~-v* = 0-v)*,  ~-I = id. 

For a tensor category ~ and an object V E ~ define a morphism v v  which is 
given by the following composition: 

id| V *  V * *  7| V *  | V * *  r174 V * *  
v v : V  > V |  | ~ |  > . 

This is an isomorphism with Vv 1 given by the composition 

id| id| 1 r174 
VV I : V * *  ) V * *  | V |  V *  ) V * *  |  |  > V .  

A remarkable property of balanced categories is that the isomorphisms 

6 v : V  ~ W** , 6 v = v v o TV 1 

are functorial [KaR]: 6v|  = 6y | 6w,  6I = id, (Sx,) -1 = (6x)*. 
Following [RT] we will say that a quasitriangular Hopf algebra A is a ribbon Hopf 

algebra if there exists a central element v E A such that 

A ( v )  = (R21R12)-I 'u  | V, S(V) = 73. 

Here R21 = or(R), ~(a | b) = b @ a. The category of representations of any ribbon 
Hopf algebra is a balanced tensor category. 
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The algebra Uq(g) is a ribbon Hopf algebra [D1] with 

V = u q  - 2 0  

where, if we write R = ~ ai | bi for the universal R-matrix, u = ~ S(bi)ai; and 
i i 

O is half sum of positive roots. For an irreducible representation V we have: 

7rx(v) = qC(X) . I v ,  (3.11) 

where C(A) = (A, A + 26) and (A, #) is the bilinear form introduced in Sect. 2. The 
functorial isomorphism ~Sy : V ---+ V** is given by the map a H q2Oa. 

The functoriality of 6v implies the following relations for R yW = Ory | 7rw) (R) 
[R], 

((((RVW)q)-l)tl  )-I = (q-2a | Iw )RVW (q2a @ IW) (3.12) 

and 
(q2O | q2e)Rvw = RVW (q2e | q2a) . (3.13) 

For a finite dimensional Uq(g)-module V we denote by L +,v the following ele- 
ments of Uq(g) | End(V): 

L +'V = (id | 7cv) (R21), L -'V = (id | 7cv) (R-a) .  (3.14) 

If we fix a basis {e~} in V, we can regard L • as matrices with matrix elements 

L~ 'v being elements of Uq(~). From the Yang-Baxter equation for R we get relations 

between L• 
jT~VW r .+ ,V  r . + , w  L + , W  -f + , V  R V W  

~ i  ~ 2  z ~ 2  ~ 1  ~ 

RVW L+'W L~ 'W L- 'W L+'V R gW (3.15) 
2 1 

RVW L~,V L~ ,W = L2,W LI,V RVW . 

By ~•  • ~1 , L 2 we understand the following matrices in V | W: 

L• = L• r• L• 1 @ I w ,  = I v  @ ~ 2  

where I x  is the unit matrix in X. From the quasitriangularity of Uq(g) we can obtain 
the action of the comultiplication on matrices L• 

/ • V r . •  A (L O' ) = Z  L~(; V @~ky " (3.16) 
k 

Proposition. For any finite dimensional representation V matrix elements Li~'v gen- 

erate Uq(9) (over C[[q - 1]]), such that L~j 'V generates Uq(bT) ~ Uq(9). 

Let (qsx)~ be an intertwiner 

(~x)~ :V~ ~ V, O Vs. (3.17) 

When V is Vx we will often write A instead of V~ in various indexes, e.g. L • 
instead of L • The following result will be important for the future. 

Theorem 3.3. Let ei be a basis in Vx and (~x)i be a corresponding map V~ --+ Vu, 
then 

dim(V),) 

(L+')~)ij(qS)~)k(q2O)kkS((L-&)jk) = qC(~)-C(~)(~5)~)~ , (3.18) 
j , k = l  

where C(A) is the value of 9-Casimir elemehts on Vx as in (3.11). 
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Proof. First let us prove the following lemma. 

Lemma  3.1. The map ~ (L+,X)i j(~a)k(q2e)kkS(L-,X)jk :V~ ~ Vu coincides with 
j,k 

the map Ai ,  where Ai  is a component of  the composition map 

id| "TuA| 
A : Vv ~ V.  | V;~ | ( Vx ) * ~ V;~ | G, | ( Vx ) * 

id|174 id|174174 
, v x | 1 7 4 1 7 4  , v ~ | 1 7 4 1 7 4  

id|174 7A,u 
, V),| , V u |  (3.19) 

where the morphisms t;~, "y;~u, ~, q20, e)~ are as above. 

To prove the lemma it is enough to compute the action of the composition map 
and to compare it with the map in (3.18). The computation gives 

u I t s v  p A %  = Z ( ~ x ( a j b k ) ) ~ ( % ( b j ) ) ~ ( ~ ) p  ffr,(ak)),~. (~a(q2e))~. (etU | e{). (3.20) 

Here we use matrix notation xei Y~ J = x i ej ,  and ai, bi are components of the universal 
J 

R-matrix: R = Y~ ai | bi. From the definition of L • we conclude that (3.19) 
i 

coincides with the left-hand side of (3.18). 
Now, using the identities of a tensor category, the functoriality of the morphism 

q2O in (3.19) and the balancing property of the category Repq(t~) one can show that 

A = qC(~>-c(,)(~. (3.2 I) 

The simplest way to do it is to use the "graphic representation" [Rel] of the category 
~ .  As it was shown in [RT] there exists a functor from the category of framed graphs 
to the category Repq(l~). The identity (3.21) corresponds to the following isotopy of 
framed graphs: 

Fig. 1 

= qC(V) - c(g) 

v~ 

Finally we would like to note that in Sects. 2 and 3 we have studied two classes 
of tensor categories namely Monk(~) and Rep(Uq(g)). The following deep theorem 
establishes an explicit relation between them. 

Theorem 3.3 [D2]. For q = exp(2~ri/(k + 9)) and k q~ Q there is an equivalence o f  
tensor categories 

Rep(Uq(g)) ~ Monk(~). 

We will not use this result in the present paper. However in the subsequent Sects. 
4, 5, and 6 we will study the quantum analogues of the above (pre-)tensor categories. 
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The statement of  Theorem 3.3 will suggest the corresponding conjectures which we 
will state at the end of  Sect. 6. 

4. Quantum Affine Lie Algebras 

Let 1~ be an affine Lie algebra associated to 9 with extended Caftan matrix .,t = (aij), 
i, j = 0, . . .  , 1 = rank ~ and let q be a formal variable. 

Definition 4.1 [Drl,  J2]. The algebra Uq(~) is an associative algebra over the ring of  
formal power series C[[q - 1]] with generators ki, ei, f i ,  i = 0, 1, . . .  , l, and with 
relations (3.1) between them. 

Definition 4.2. The algebra Uq(~) is an algebra over C[[q - 1]] with generators ei, 
ki, fi ,  i = O, . . .  , l; d and with relations (3.1) and 

[d,k~] = 0,  [d, ei] = 5i,0ei, [d,f~] = - S i , o f i .  (4.1) 

Algebras Uq(~) and Uq(O) are Hopf algebras with the comultiplication (3.2) and 

A(d) = d | 1 + 1 | d .  (4.2) 

Let z be a formal variable. Define an automorphism Dz of Uq(~) @ C[z, z -1] as 

Dz(eO = z~i,~ Dz( f i )  = z-5i,~ f i ,  
(4.3) 

D~(ki) = ki , Dz(d) = d,  

and define maps 

Az, A'z : Uq(~) | C[z, z -1] ~ Uq(~) | | C[z, z - l ] ,  

Az(a)  = (Dz | id)A(a) ,  Atz(a) = (Dz @ id)A'(a) ,  

where A ' (a )  = o- o A(a), a (a  | b) = b | a. 
Drinfeld's construction of  universal R-matrix that we used in Sect. 3 (Proposition 

3.1) can be generalized to an arbitrary Kac-Moody algebra [Dr3, Sect. 13], in partic- 
ular, to the affine case. We denote by ~ the universal R-matrix for Uq(~). It follows 
from the Drinfeld construction that 

~ Uq(~+)~Uq(~_) H u d ~ ) ~ u q @ .  

For any two finite-dimensional representations V and W of Uq(~) we would like to 
define an operator v@ V w  as a projection of  .1@ acting in V | W as in Sect. 3. This 
cannot be done in a straightforward way for two closely related reasons. First is that 
finite dimensional representations are in fact representations of  Uq(~) and not Uq(~), 
second is that if we would "gauge out" the element d the projection of  ~ still would 
be meaningless as observed in [Dr3J. We will resolve this problem in two steps. First 
we define a universal R-matrix ~.@(z) for Uq(~) depending on a formal parameter z 
by the formula 

~..~3(z) = (Dz | id) ( ~ ) .  

Then the Drinfeld construction implies that following. 
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Proposition 4.1. (1) There exist unique elements ~ ( z )  c Uq(b+ )~Uq(b_)|  H 

Uq(~ | | C[[z]], where ~ is the completion o f |  over C[[q - 1]] such that 

f fg(z)Az(a ) = AIz(a)ff3(z), 

(A z  | id) (J@(w)) = ~,@13(zq./J)~,@23(w), (4.5) 

(id | A~)  (o@(zw)) = ~o13(z)~12(zw) . 

Here 

.~12(Z)  = .~o(Z) @ 1 C Uq(~)  | @ C [ [ z ] ]  , 

. ~13 (z )  = 1 | ,~ (z )  E Uq(~)  ~3 | C [ [ z ] ]  , 

~@23(Z) = (0" | id) (~13(z))  E Uq(~) | | C[[z]] .  

(2) The element .~ (z )  has the followimg form: 

.~ (z )  = exp(h) ( \ ( c  | d + d | c) + Hj  
i , j=l 

x 1 + 2 sh ei | f i  + 2z sh eo | fo + . . . .  (4.6) 
i=I 

V Here di = a V / a i f o r  i = 1, . . .  , l, B i j  = diaij,  i , j  = 1, . . .  , l; ai, a i are labels o f  
the Dynkin diagrams of  Lie algebras g and 1~ v (with dual root system) respectively; 
c = Ho + Ho where 0 is a maximal root in ~. We omit the higher order terms over z, 
q - 1 and ei, fi.  All these higher order terms do not depend on d. 

The proof is based on the double construction for Uq(~) and is parallel to the proof 
of  Proposition 3.1 [Dr3]. We omit the details of  the arguments. 

An important corollary of  Proposition 4.1 is the Yang-Baxter equation with spectral 
parameter (cf. [F]) for the element ~ ( z ) :  

~o12(Z)~@13(ZW),..@23(W ) = ~23(W),..@13(ZW)o@12(Z) . (4.7) 

All factors in this equation are  elements of  Uq(~) ~3 | C[[z]] | C[[w]]. We will call 
~ ( z )  the universal R-matrix for Uq(~). 

Since the dependence of the element ~.@(z) on d is explicitly given by (4.6), we 
can define the universal R-matrix for Uq(~) as 

R(z )  = e x p ( - h ( c  | d + d | c ) ~ ( z )  . (4.8) 

Relations (4.5) give the following properties of ~,@(z): 

R ( z ) A z ( a  ) = (Dq~ I | Dqll)  (A'~(a)) - R ( z ) ,  

(A | id) (R(w))  = R13(wqC2)R23(w), (4.9) 

(id | A) (R(w))  = R13(wqCZ(Rlz(W) , 

Riz(Z)R13(zwqC2 )Rz3(w) = R23(w)R13(zwq c2)Ri2(z)- 

Here cl = c Q 1, c2 = 1 | c in the first relation and c2 = 1 | c | 1 in others. 
Now, for any two finite dimensional representations V and W we can define an 

operator 
R Y W  (z) =(Trv | 7rw) (R(z))  (4.10) 
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as in Sect. 3. Since for any finite dimensional representation V ~rv(c) -- 0, the oper- 
ators of the type (4.8) satisfy the Yang-Baxter equation with argument as in (4.7). 

Let V be a finite dimensional Uq(~)-module with 7cv:Uq(~) -+ End(V), and let 
Dz be the automorphism (4.3) of Uq(O) @ C[z, z- l ] .  We define a new representation 

7rV(z):Uq(~) --+ End(V) | C[z, Z -1] 

by the formula 7rv(z)(a) = 7rv(Dz(a)), a E Uq(~). Spezialising z to a complex number 
we get a one-parameter family of finite dimensional modules V(z)  connected by the 
action of the automorphism (4.3): 7rv(z~)(a) = 7rv(~)(Dw(a)). The definition (4.11) 
and the first equation in (4.9) also imply that 

H Y W  (z)Try(z~,)| A(a)) = 7rV(zw)| A'  (a) )RVW (z) . 

As in Sect. 3, for any module V we define a right dual module V* as a linear 
space which is dual to V and has the following structure of Uq(~)-module: 

(av ' ,v)  = (v ' ,S (a )v ) ,  v ' E  Y*, v E U .  (4.11) 

Proposition 4.2. V(z)** =+V(zqg), v F-~ q-2Ov, where g is a dual Coxeter number. 

Proof  To prove this proposition, it is enough to compute the action of the square of 
antipode: 

S2(a) = q2ODq~(a)q -20 . 

The latter can be checked easily on generators. 

Proposition 4.3. 

(S | id) (R(z))  = R(z )  - t  , (id | S -1) (R(z))  = R(z)  - I  . (4.12) 

Proof. This proposition follows from the action of the comultiplication on R(z)  from 
the property of the antipode: m ( S  @ id)A = m(id | S) A = ce and from the identity 
(e @ id)(R(z)) = 1 = (id | c)R(z),  which is a corollary of (4.5) and the identity 
(e | id)A = (id | e)A = id. Here e is a counit and m is a multiplication for Uq(~). 

Proposition 4.4. 
R V * ' W  (z)  = ( R V W  ( z ) - l )  tl , (4.13) 

where tl is a transposition over the first space. 

Proof. Let 

R(z)  = Z Z ai(n) | bi(n)z n . (4.14) 
n>O i 

For RY*,W(z) ,  we have: 

RY*'W (z) = ((7ry | 7rw) ((S | id)R(z))) tl . (4.15) 

Now the statement follows from Proposition 4.3. Similarly to the right dual V*, we 
can define a left dual module *V as a dual linear space to V with the following 
Uq(~)-module structure: 

(av', v) = (v', S - l ( a ) v ) ,  v' c ' V ,  v c V.  (4.16) 

Proposition 4.5. (1) **W(z) -z~W(zq-g) ,  v ~ q2Ov. 
(2) Rv,*W(z) = (RVW(z) - l ) t2 .  
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The proof is similar to Propositions 4.2 and 4.4. 

Proposi t ion 4.6. RV*,W* (z) = (RVW (z)) tire. 

Proof. This proposition follows from the definition of  V* and from Proposition 4.3. 

Theorem 4.1. For any pair of finite dimensional Uq(~)-modules, we have: 

(((RVW(z)-l)tl)-l) tl = (Trv(q 2~ | 1w)RVW(zq 2g) (Trv(q -2~ | 1w) ,  (4.17) 

( ( ( R V W ( z ) - I ) t 2 ) - I )  t2 = ( l v  | 7rw(q-2~))RVW(zq -2g) ( l v  | 7 rw(q2~  

Proof The theorem follows from Propositions 4.2-4.5. The first equality is a repre- 
sentation of  RV**'W(z). The second one is the representation for RV,**W(z). 

Theorem 4.2. Let V and W be two finite dimensional irreducible Uq(~)-modules. 
(1) The operator RVW (z) has the following presentation: 

RVW(z) = fvw(z)QVW(z),  (4.19) 

where QYW (z) is a matrix polynomial over z without common zeros. The function 
fyw(z )  is a meromorphic function on C such that fyw(O) = 1 and fyw(z)  
z -p(y'W), where p(V, W) is the degree of the polynomial QV, W(z). This representation 
is unique. 
(2) The operator RVW (z) satisfies the following unitarity condition 

V W  W V  - 1  R (z)R21 (z ) = I y |  (4.20) 

Proof. (1) By the definition of  RYW(z) and of R(z) the map PYWRVW(z) is an 
intertwining operator: V(z) | W ~ W | V(z), W --- W(1). If  z is a formal variable, 
modules V(z) | W and W | V(z) are irreducible. Therefore, such an intertwining 
operator is unique up to a scalar factor. 

Therefore, up to this factor, it is defined by the system of linear equations 

RYW(z) (Try | (Dz |  (A(a)) = (Try | (Dz | (A'(a)). RYW(z) (4.21) 

for a = ki, e~, fi,  i ---- 0, . . .  , I. Since this equation is linear over z, z -1 we have a 
factorized representation (4.19), where polynomial QYW(z) is fixed uniquely up to 
the constant. Fix this constant by the condition fyw(O) = 1. 

Let us prove that the formal power series f yw(z )  has an analytic continuation. 
Consider intertwiners V**(z) | W --+ W @ V**(z). Since z is a formal vari- 

able both of these representations are irreducible and therefore all such intertwining 
operators differ up to a scalar multiplier. From the definition of  V** we have that 

V * * , W  V W  1 t 1 1 t 1 $ *  e.a 2 9 P (((Q ( z ) - )  )-  ) is one of  them. The isomorphism V (z) = V(zq ) 
implies that pV**,g. Orv(q2O) | QVg(zq2g ) (Trv(q-2O) | Iw) is also an intertwin- 
ing operator V**(z) | W --~ W | V** (z). Therefore, there exists rational functions 
rvw(Z) such that 

(((QVW (z)-l)tl )-1) tl = rVW(Z ) (Trv(q 2~ | 1w)QVW (zqZg) �9 (Trv(q -20) | 1W). 
(4.22) 

Since QYW(z) is a polynomial the function ryw(z) must be a rational one. If  p(V, W)  
is a degree of  the polynomial Qyw(z), we have for the rational function rvw(z), 

ryw(O) = 1, rvw(z) ~ q-p(y,w)2g z ---+ oo. (4.23) 

From the definition of  QVW, we have also 

ryw(z)  = 1 m o d ( q -  1). (4.24) 
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Comparing (4.22) with (4.17); we obtain difference equations for f vw(z ) :  

f v w ( z q  2g) = r v w ( z ) f v w ( z )  

with the condition fvw(O) = 1. 
Let 

(4.25) 

p(v, w) 
where 

j ~ l  
(aj - flj) = 2gp(V, W)  and aj, ~j E C. 

where 

Proposi t ion 4.7. Equation (4.25) with the function r v w ( z )  given by (4.26) has a 
unique solution over C[[z]] | C[[q - 1]]. It has the foil| form: 

p(V,W) ( z q a j .  qZg)~ 

f v w ( x ) =  ~ I  ' (4.27) j=l (zq~Y ; q2g)c~ ' 

(z; q)~ = 1-I  (1 - zqn). 
n_>0 

The proof  is a straightforward computation. Uniqueness is obvious over C[[z]]. 
It is clear that we can continue the solution (4.27) from C[[q - 1]] to complex 

values of  q such that [q] < 1. Then we can continue the result from power series over 
z to complex values of  z. As a result, we obtain meromorphic functions of  z (for 
[ql < l) such that it satisfies (4.24) and f y w ( z )  TM z -p(V'W), where [z[ ---+ ~c. 
(2) Now the equality (4.20) makes sense. Moreover, from the irreducibility of  V(z)|  
W (we assume now that z, q E C, z ~ qn n E Z) we conclude that 

V W  W V  - i  
R12 (z ) /~ l  (z ) = 9vw(z)"  1v| (4.28) 

for some scalar function gvw(z) .  Or equivalently, 

RVW (z) -= gvw(z )  (RWV (z-1))-l . 

I f  we substitute this equality to the first relation from Theorem 4.1, we get: 

gVW(Z) ( (RgV(z_l)q)_l ) t l  20 W V  - 1 - 2 9  -1 -20 =Trv(q )R21 (z q ) 7rv(9 ) gyw(Zq 2g) 

or  

9vw(z )  (((RYW(z_~)t2)_l)t2)_ 1 = 7cw(q_20)RYW(z_1q_2g)Trw(g2e). 
gyw(zq  2g) 

Now from the second relation of Theorem 4.1, we conclude that 

9vw(zq  2g) = g y w ( z ) .  (4.29) 

Lemma 4.2. g y w ( O )  = 1. 

Proof. The definition of R(z) implies that RVW(0) = / ~ y w ,  w h e r e / ~ v w  is the Uq(g) 
R-matrix in V | W regarded as Uq(g)-module. From the relation (4.28) we conclude 
that RVW(cxO = gvw(ff~wY) -1 for some 9 v w  =- 9vw(O). The definition and the 
properties of  RVW(z) imply that the morphisms p v w R v w ( c c ) :  V | W ~ W | V 

p(V, W) 
r v w ( z )  = 1-[ 1 - - q ~ z  j=l 1 -- q~J z ' (4.26) 
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satisfy the hexagon identities (3.9) in the category Repq(g) as well as other identities 
for the commutativitiy constraint "Tv, w (3.8). Therefore g v w  is such that 9v| = 

-1 9u, g9w, g, 9v, g| = gv, ggv, w,  and 9v*,w = 9g, w = gv, g*. The category Repq(9) 
is a semisimple tensor category, i.e. any representation can be obtained as a summand 
of tensor product of  fundamental representations (for most types of  g it is sufficient 
to consider just one fundamental representation). The above identities imply algebraic 
equations for 9v, w for fundamental irreducible representations V and W. Because of  
this and the condition 9 v w  = 1 mod(q - 1) we conclude that g v w  ---- 1. 

Since there is only one solution to (4.29), with the condition 9vw(O) = 1, we 
have 9vw(z )  = 1, which ends the proof of  the theorem. 

Remark 4.1. Let v and w be Uq(g)-highest weight vectors in V and W respectively. 
Since QVW(z) is an intertwining operator 

QVW(z)v | w = Pvw(z )v  | w ,  (4.30) 

where Pvw(z )  is a polynomial of  degree p(V, W).  This polynomial is quite remark- 
able. It is closely related to polynomials introduced in [Dr2] for a description of  finite 
dimensional representations of Yangians. 

In some cases polynomials QVW(z) can be computed explicitly [J1]. For example, 
if V, W are fundamental n-dimensional representations of  Uq(~) for g = ~[(n), we 
have: 

QVW(z) = (q - zq -1) ~ Eii |  
i=l 

+ (1 - z) E .  | E j j  
i#j 

+ (q _ q-l) ~ E i j  @ E j i  

i<j 

+ z(q--  q- l )  Z Eij | E j i .  
i>j 

The function r v w ( z )  can be easily computed in this case as well: 

r v w ( z )  = 
(1 - z ) ( 1 - z q  n) 

(1 - zq n- l )  (1 - zq n+l) " 

As a simple corollary of  relation (4.7), we obtain the Yang-Baxter relation for 
RVW(z):  

V W  VU WU WU VU V W  R12 (z)R13 (zw)R23 (w)=R23 (w)R13 ( zw)R12  ( z ) .  (4.31) 

Now we are going to introduce "current type" generators for Uq(O). 
Let 

L+'U(z) = (id | Try(l)) (R21(zq~)), 
--1 _c_ L- 'Y(z )  = (id| q 2)). 

(4.32) 
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So, by definition L+,V(z) E End(V) | Uq(fi) | C[[z+l]], 

Here V and W is a pair of two finite-dimensional representations. 
From the formulas (4.9) for the action of the comultiplication on R(z) we have: 

A,(L+,V(z)) = L+,V(zq 5}) | L_ V(zq~) ,  
(4.34) c2 c 1 

A' (L-,V (z)) = L- ,V (zq-r ) | L-,V (zq-~ -) , 

where | means the tensor product over End(V). 
Fix some basis in V. Let L+,V(z) = y~ L ~ z  +,n. Then the explicit form (4.6) 

n_>0 
of the expansion of R(z) implies the following: 

Proposition 4.8. For any V, the matrix elements of L ~  generates the algebra Uq(8) 
(over C[[q - 1]]) and L +'V (~) , L~g~ generate subalgebras Uq(b_) and Uq(b+) respec- 
tively. 

Let Uq(8+ ) be a subalgebra of Uq(8) generated by e0, el, fi, i = 1 , . . . ,  1. It 
is a quantization of the universal enveloping algebra of the maximal parabolic Lie 
subalgebra 8+ ~ 8. For Uq(9)-module V we define a Uq(8+) module structure on 
V such that eoV = O, Try(c) = k lv .  Set Vk to be Uq(8)-module induced from 
Uq(8+)-module V: 

.uq(o) 
Vk = lnCluq(~+)  V .  (4.35) 

If the representation V is irreducible with the highest weight .~ we will denote corre- 
sponding Uq(8)-module as V;~,k. 

As well as corresponding ~-modules, representations Vk are naturally Z-graded 
modules Vk = (~) Vk [--n], where Vk [0] -- V. 

n_>0 

Let us describe the action of L• in highest weight modules. 

Proposition 4.19. Let 7r :~,k : Uq(8) --~ End(V;~,k) be a highest weight representation of 
Uq(~) then 

(Tr;~,k @ id)L• 6 End(Vx,k) @ End(V) | C((z)). (4.36) 

This proposition follows from the definition of L• and from the fact that any 
vector of the finite level from Vk ~ is annihilated by L(s V for sufficiently large n. 

Let V~k be a Z-graded Uq(8)-module dual to V;~,k: 

V;~,k = O (V),,k[-n])*, (4.37) 
n>_0 

where (V~,k[-n])* are finite dimensional spaces which are dual to V;~,k[-n]. The 
action of Uq(~) in V;~,k is usual: 

(av', v) = (v', S(a)v) , v' e V~k, v e Y2,,k . (4.38) 
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The module V~k is a lowest weight module with the lowest weight vector v~ which 
is dual to highest weight vector v;~ E V:,,k. We have: 

kiv~ = q-~v~ , f~v~ = O, ev~ = kv~ . (4.39) 

Lemma  4.3. (1) Elements L• (z) have the following action on zero-level subspaces 
of V),,k and V~k respectively: 

L+'V(z) (u' | v) = [~v~,k[~ | v) ,  
(4.40) 

L- 'Y  (z) (u @ v) = ( ff~V'Y)',k[O])-l(u | V). 

Here u E V;~,k[0], u' E V~k[0], v C V and RV, W is a Uq(g) - R-matrix acting in 
V Q W .  
(2) If u = v;~ or u' -= v~, we have 

L+'V(z) (v~ @ v) = q~v~ @ v ,  
(4.41) 

L-'V(z)  (v~ | v) = v~ | q-~v.  

Proof. As it follows from the definition of L+,Y(z), it has the form L+,Y(z) = 
~ 7ry(bi(n)) @ ai(n)z ~, where ai(n) C Uq(b+), bi(n) C Uq(b_). Any monomial 

n>_O i 
from Uq(b+) which contains e0, annihilates any vector of level zero. Therefore in 
(4.41), only those monomials ai(n) will act nontrivially which contain only real root 
generators. As we have seen in Sect. 3, these monomials form [~y,w. The proof of 
other statements is similar. 

Now we would like to exhibit the relation between the generating functions 
L• and their undeformed analogues J• Since the algebra Uq(~) is a de- 
formation of U(~) in the sense of the identification U(t~) ---- Uq(~)/(q - 1)Uq(~) we 
can identify the first nontrivial term of the (q - 1)-expansion of L+'Y(z) with an 
element in U(~). One can show that 

dim g 

L• = 1 | I v  § (q - 1) E Y~(z) | 7rv(J~) + O((q - 1)2), (4.42) 

where a is a basis of 9, ]~(z)  are the generating functions (2.24) for 8, in the Borel 
polarization, whose components satisfy the commutation relations (2.1) of the affine 
Lie algebra. 

For any highest weight module V with c = k, define the operator 

(Trf~ | id) (L V (z)) de=e (Trf s | id) (L+'V (zq-~ ) ) 

• (Tr 9 | id) (S(L- 'Y(zq~))  C End(V) | End(V) | C((z)). (4.43) 

Assuming that it acts only on highest weight modules, we will denote this operator 
just as LY(z). 

From (4.33) we have the following relations for LY(z): 

R12 ( z )  LI(Z)Rll (Zq2k) L2(w) 

:L2(zo)RI2 (Zq 2k) L2('w)R121 ( z ) .  (4.44) 
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This operator is a quantum analogue of "current" generator: 

LV(z )  = 1 | I v  - (q - 1) E Ja(z) | ~y (Ja )  + O((q - 1)2), (4.45) 
OL 

where Ja is a basis in 9, Ja(z) are "currents" for ~ (see Sect. 2). 

Remark 4.2. In the case of affine Lie algebra ~ any finite-dimensional represen- 
tations can be obtained from the tensor product of the evaluation representation 
V),(z) described in Sect. 2. In this case the parameter z is fixed by the conditions 
~ ( e o )  = zTr),(x_o) and 7~)~(f0) = z- l~) ,(xo) ,  where xo and x -o  are elements of the 
Chevalley basis of 9, corresponding to the maximal root 0 and its negative. In the 
q-deformed case of Uq(~) there exist analogues of the evaluation representations. In 
particular, one can always extend an irreducible representation V~ of Uq(~[(n)) to a 

representation V),(z) of Uq(~[(n)). Then the parameter z can be chosen consistently 
with the undeformed case. For other types of quantum algebras Uq(9) one generally 
has to enlarge V~ by adding certain "smaller" irreducible representations in order to 
extend the resulting representation to Uq(~). An explicit description of this extension 
is an important open problem. 

We conclude the section introducing intertwining operators which are analogues 
of (2.8). For highest weight Uq(~) modules V~,k and Vmk with e = k and for finite 
dimensional V we define intertwining operators 

(qsY(z))~ : V;~,k ~ Vt~,k | V ( z )  | C((z)) �9 z h(;~)-h(~) , (4.45) 

where h(A) and h(#) are the same as in Sect. 3. 
From the definition of these intertwiners and from (4.34), we have the following 

relations (we will omit indices A and # of ~ Y ( z )  when it is not misleading 

(4.47) 

In the next section, we derive difference equation for intertwining operators (4.46), 
which is an analogue of Eq. (2.29). 

5. Difference Equations for Intertwining Operators 

In this section with all definitions in hand we are ready to derive the quantum analogue 
of the Knizhnik-Zamolodchikov equations following the similar line of arguments as 
in Sect. 2. 

Theorem 5.1. The intertwining operator ~SV (z) satisfies the following difference equa- 
tion: 

~V  (zq-(k +g)) = !L V ( zq -g )~V  (zqk+~)i , (5.1) 

where 
+ k !LV(z)~U(z)!  = L (zq-  ~) (~V(z ) t (qe~  (5.2) 
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Proof. The proof is similar to the proof of  Theorem 2.1 and uses an induction by the 
level of  vectors in the matrix coefficients of  both sides of  (5.1). We have to prove 
that for each v E V),,k and for each v ~ c V* ,,k we will have: 

(v', qSV (zq-(k+g))v) = (v', iL V (zq-g)g)V (zq(k+g))iv} . (5.3) 

Assume that v r C V*k[-n],  v E V),,k[-m] are elements of  corresponding graded 

components of V* and V;~,k, respectively. 
t t , k  

L e m m a  5.1. Left- and right-hand sides of (5.1) have the same relations (4.48) with 
elements LT'V (z). They are both intertwining operators of type (4.47). 

Proof. Direct computations and Proposition 4.9. 

We will prove (5.3) by induction over n + m using this lemma. 
1. Proof of  the induction step. Assume that we proved (5.3) for any (n, m) such that 
n + m <_ N.  Any v C V;~,k[-(rn + 1)] can be presented as a linear combination 

L +'V for some u C (~  V;~,k[-s] and r > 0. By Lemma 5.1, the of  the vectors ij(_r)u 
s<_m 

commutation relations of  L+~ V) with both sides of  (5.1) are the same. Besides the 
result of  the commutation belongs to the level (n - r, m - r). The similar argument 
can be applied to any v ~ E V~a[n+ 1], which can be presented as a linear combination 

T - , v  t for some u t of the vec to r s  Lij(r)U C (~ V*k[s] and r > O. 
s<_n 

2. Proof of  the induction base. Let n = ra = 0. From Lemma 4.4 we conclude that 
we have to prove in this case the following equality: 

(v', qSV (q-(k+g)z)v) = (v t, Rv"'v (~sV (z)t(q-O)~z(R~ V~ ) t 2 ) t v )  . 

We have used here isomorphisms: 

v .  [03" ~ v *  v~ [01 ~ v~ , k  ~ ~ , k  ~ �9 

Now, using Theorem 3.2, we can transform this equation to 

(v', 4)V (zq-2(k+g))v} = qC(;~)-C(,) (V', qSV (z)v} . 

From the definition of  4)V(z) we have 

(v', ~V(z)v) = z h(")-h(:')(v', ~ v  [0Iv). 

And therefore Eq. (5.3) holds. 
The relation (4.46) shows that (5.1) is indeed a q-analogue of  (2.29) in the sense 

that it gives the last one when q --+ 1. 
Denote 

H v ,,;~ = Homug(g)(V;~, V~ | V) .  

Corol lary  5.1. The dimension of the space of intertwining operators (r (z))~ is equal 
to dim(HVt~). 

Proof. The proof of the previous theorem was constructive and, in fact, we proved 
that if (v ~, ~sv[0]v) is nonzero then qSV(z) is also nonzero. But qsv[0] acts on zero 
level as Uq(g) intertwiner from H y .  

Let a E H y ,  then the corresponding intertwining operator (qSV(z))~ will be also 

denoted as (~SV (z l a)) ~. 
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Now we consider a product of  intertwining operators 

~V10:Z:VNN(Z1 , . - .  , Zg):Y)~u, k ~ VAo,k @ Yl @ " "  @ WN 

N 
H ( (  Z2 Z3 "" zN ) ) ~ V I o : : : ; N ( x I ' ' ' ' ' Z N )  @ zh(A/-1)-h(Ni) C Z1 ' Z l '  Z2' ' ' ZNT_ 1 
/=1 

= | �9 | . . .  ( e  

(5.4) 
We will also use the abbreviation as in Sect. 2: 

V1 "~0 72 A1 VN ~N-1 ~iV1""VN(zla0...A N , "" " , ZN) = ( e l  (Z1))Al((-b2 (Z2))A 2 . . . .  ( ~ N  (ZN))A N (5.5) 

We will omit the subindices A0, . . .  , AN when it will not lead to misunderstanding. 
Let 

Tj(~sVI""VN(zl, . . .  , ZN)) ---- ~VI'"VN(zl, . . .  , z jq  2(k+g), . . .  , ZN) (5.6)  

and denote p = q-2(k+g). 

Theorem 5.2. The product of intertwining operators (5.4) satisfies the following sys- 
tem of difference equations: 

Tj(~SV~VN (zl, .. . , ZN)) 

I@VjVj l ( Zj p~ _VjV 1 ( Z j  p~ L+,Vj( . fI_~_2g,e~VI. . .~ 1 = .. l~j~ j ,zju j -  (zl, zj-1)  
\ Zj-1 il \ Zl ./ 

. . .  ( Z j . ~ t j  tj 

\ Z j - 1 /  \ z1,] 

X ~)Vj+I'"VN(zj+I, . . .  , ZN) .  (5.7) 

Proof Relations (5.1) and (4.48) imply: 

Tj(RsVI'"VN (zI,  . . . , ZN) ) 

__I2~VjVj_I (Z j  p'~ ]2~VjVI(Zj )L-}-,Vj 3 k 2  .r V,. 
- - * v j j - 1  "'" ~1  J "'" ' \ Z j _  1 / ~Vjl P (z jq  2 g)~)Vl'" g l (Zl ,  Zj_l ) 

• (q 5Vj (Zj)td (q2O)~j S(La. ,yj (zj q-  ~-~g)t~)tJ qvYj+l..Vg (Zj+I ,  . . .  , ZN).  

From (4.48) we can also deduce the following relation: 

~ , ~ ( L 2 ' V ( z ) ) t 2 ~ V I ( w ) - - ~ ( - ~ 1 2 ( ~ q - k ) ~ ' 2 ) - I . ~ , ~ V I ( w ) . S ( L 2 ' V ( z ) )  t2 . 

Using repeatedly this relation, we obtain (5.7). 
Now we consider matrix coefficients of  products of the intertwining operators 

~VI"vVN (z 1 .. ZN) �9 VA 0 @ VN @ . ' '  @ V1 @ (VAN)* O.../,N ~ �9 
N 

H h ( (  Z2 ZN ) )  @ Z (Ai 1)-h(Ai)c Z i , - - ,  . . .  , - -  , (5.8) 
i=l Zl ZN-I  

"~VI'~VN(z1 ' '" Zg)---- E <" ~V10:::VNN(ZI' Zg) ' )  (5.9) 
0 "AN ~ """ ~ " 

i 
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Theorem 5.3. The matrix coefficients defined by (5.8), (5.9) satisfy the following sys- 
tem of difference equations: 

Tj(5~V",'VN (zl, . . .  ZN)) 
..~O...A N 

V* 
. . . .  -/ 'gjl ~ j j - i  ~j,O ~q )J " (RN+I,j \ zj-1 / \ zl / 

--VjVN ( zj ) RVjVj-I ( ~ )  of?~VI'"VN(zl, . ZN) 
X 1giN ~N . . . . .  j j-1 A0...A N "" 

=-- A j ( z l ,  . . .  , ZN) " ~ . : ~  VN (zi . . . .  , ZN). (5.10) 

Here fit v 'w  is the Uq(g) - R-matrix, acting in V | W ;  ~ v w  = RVW(o) .  

Proof. The theorem follows immediately from Theorem 5.2 and from the action 
of L~:,V(x) on zero level subspace in lowest weight and highest weight modules, 
respectively. The explicit expression for this action is given by Lemma 4.4. 

Thus we obtained a new system of difference equations together with its solutions 
given in the form of power series. In fact, the matrix coefficients (5.8), (5.9) form a 
certain subspace in the space of all solutions of the system (5.10). The description of 
this subspace is given by the following proposition. 

Proposition 5.1. 

(1) ~ . . .  ZN) E Invud~)(VA o | V1 |  @ VN @ (VAN)*) AO,..,,~ N 

I ( I I )  Z2 ZN 
| zl, 

i=1  ZN-1 

(2) The dimension of  the space of  intertwining operators of  type ~sYl0:::YN(zl, . . .  , ZN ), 
where Ai, i = 1, . . .  , N ,  run through all the dominant weights, is equal to 

dim(Inv~yq(9)(VA0 @ V1 |  | VN | (VAN)*)- 

(3) Invuq(g)(VA0 | |  "@ VN@(VAN ) * ) is an invariant subspace for linear operators 
A j ( z l  . . . .  , ZN). 
Proof. (1) This statement follows immediately from the form of 5 as matrix coeffi- 
cients of a product of the intertwining operators, which by definition commute with 
the action of Uq(g). 
(2) Corollary 5.1 implies that an intertwining operator is uniquely determined by its 
zero level component. The space of zero level components for the product 4 ~yv''yN 

/ ' 0 . . . "N  
for all possible Ai, i ---- l, . . .  , N, has the dimension equal to 

HV~|174 * 
d i m  A0,A N ----- dim(Invud~)(VA o | 1/'1 |  @ VN | (VAN)). (5.11) 

(3) It follows from the commutativity Aj ( z l ,  . . .  , Zg) with the action of Uq(g). The 
latter is a corollary of the formula for the comultiplication [see (3.16)]. 

("ff AO @ 7"f 1 |  @ 7"( N @ 7r~N) (AN+I(L+'V)) 
�9 V = RVVxo RVVI . . .  RVVN (RV~N )-  1 

(similar for L - , v )  and the Yang-Baxter identity (4.31) with z = 0. 
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We will see in the next section that the system (5.10) gives an altemative character- 
ization of matrix coefficients of products of intertwining operators, as Uq(9)-invariant 
solutions of (5.10) meromorphic for all values zi r 0, c~. As a corollary, we will 
obtain an "exchange algebra" for the intertwining operators. 

The system (5.10) simplifies if we define a vector function 

z=) |  | VN 

Z2 ZN 
| Z ( ) ~ i - l ) - h ( ) ~ i ) C  Zl~ - - ~  . . .  

i=1 Zl ~ Z~7-1 

a s  

k~.I~N(zl ,  . . . ,  Z N ) =  (V~o,~OIII;NN(Zl, . . . ,  ZN)V),N), (5.12) 

where v'~0 is a lowest weight vector in V*:~0,k and v/~ u is a highest weight vector in 

g)~ N , k .  
It follows from Theorem 5.3 that 

. . . . .  j j + l  ~ " " " 

We will use this system in Sect. 7 in order to compute explicitly solutions of (5.10) 
h 

for Uq(912). 
Thus we found a collection of systems of commuting difference equations from the 

analysis of the representation theory of Uq(~). The main ingredients in these systems 
are solutions of the Yang-Baxter equation. Systems of this type are interesting by 
itself. They are examples of q-holonomic systems studied by Aomoto and others [A1, 
A2, A3, M]. Now we can construct generalizations of systems (5.11) to a more general 
class of solutions to the Yang-Baxter equation. 

Let us assume the following: 
1 ~ For a collection of vector spaces �89  . . .  , VN and a set /~ C C of complex 
codimension 1, we have a set of linear maps RV~Vj(x), where x E C and R V W ( x )  
are nondegenerate for x C C \ / L  
2 ~ The maps R~4v~ (x) satisfy the Yang-Baxter relation: 

R V 1 V 2 .  " . r ' ,V IV3 .  n V 2 V  3 . \ r ~ V l V  3 . . . .  V l V  2 .  \ 
12 kX)/%13 ( X  q-  y)RV232V3 (y) = / % 2 3  (Y ) /%13  [ x  t y ) 1 ~ 1 2  ( x ) .  (5.14) 

3 ~ For each i ---- l, . . .  , N we choose di 6 End(V/) such that 

(di | d j )RviVJ(x)  -~ RViVJ(x)(di @ d j ) .  (5.15) 

Then we have a theorem 

Theorem 5.4. Let ~; E C, xi - x j  C C \ F  and 

A i ( x l ,  . . .  , XN) 

" ~ V i V i - 2 /  ]:~ViVl I X  
= R i i - l ( X i  - -  x i - 1  -Jr- l~ ) . t~ i i_  2 ( X  i - -  x i _  2 -~- I~) . . . . .  i l  \ i - x l  + ~)di 

r ~ V N Y i "  . ~V~+ I Vi . 
X / % N i  ( X N  - -  X i )  - I  �9 . l ~ i + l i  ( X i + I  - -  X i )  - 1  (5.16) 
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Here  we  use the notation f o r  R-matr ices  acting in V1 |  | VN  as in the previous 
sections. Then the system o f  difference equations 

5 ( x l ,  . . .  , x~ + ~, . . .  , XN)  = A i ( x l ,  . . .  , X N ) • ( X l ,  . . .  , x i ,  . . .  , XN)  (5.17) 

is a system o f  commut ing  difference equations. 

Proof.  The proof follows directly from the Yang-Baxter equation (5.14). We have to 
check that 

( T j A O  ( x ) A j ( x )  = ( T i A j )  ( x ) A i ( x )  , 

where T i f ( x l ,  . . .  , XN)  = f(Xl,  . . .  , xi+t~,  . . .  , XN)  and A~(x) are given by (5.16). 
In terms of  R-matrices, this is the following identity (we assume i < j )  

R i i - l ( X  i - -  X i -  1 -~ t ~ ) . . .  R i l ( X i  - -  X 1 "~- t ~ ) d i R N i ( X  N - -  x i ) . . .  R j i ( x j  - x i  ~- /~)-1 

. . .  R i + l i ( x i + l  - V x )  - 1  . R j j _ l ( x  j - x j _  1 ~- I ~ ) . . .  R j i ( x  j - x i ~- I~) 

. . .  R j l ( X j  - X l  q-  I ~ ) d j R N j ( X N  --  x j ) - l  . . .  R j + l j ( X j + l  - x j )  - 1  

: R j j - I ( X j  - x j - 1  + ~) : . .  R j i ( x j  - x i ) . . . R j l ( X j  - Xl + ~) 

• d j R N j ( X N  --  X j ) - l . . .  R j + l j ( X j + I  - x j ) - l R i i - l ( x i  - x i - 1  --~ t~) 

�9 .. R i l ( X i  - Xl q- ~ ) d i R g i ( X N  -- x i ) - l . . .  R~l+li(Xi+l -- Xi ) .  

Here we omit the indices Vi, Vj in R i j  (x i  - x j ) .  We first move Ri+li(Xi+l - xi) - I  
in the left-hand side to the right and at the same time Rj i+a(x j  - x i + a  + a) to the left 
using 

R i + l i ( X i + l  --  x i ) - l  R j i + l ( X j  - -  X i + l ) R j i ( x  j - x i q- I~) 

~- R j i ( x j  - -  x i  -~- I ~ ) R j i + l ( x j  - X i+l  ~- I ~ ) R ~ : l , i ( X i + l  - x i ) ,  

which follows from the Yang-Baxter relation. Then we repeat the same with 
Ri+2i(xi+2 - x i )  -1 until we reach R j i ( x j  - x i  + e;) -1 which cancels R j i ( x j  - x i  + ~). 
Then we consider the right-hand side and move R j i - l ( x j  - x i - t  + tQ to the right and 
simultaneously R i i - l ( x i  - x i - i  + ~) to the left using 

R j i ( x j  - x i ) R j i _ l ( X  j --  x i _  1 -~ i ~ ) R i i _ l ( X i  --  x i _  1 -~- t~) 

= R i i - l ( X i  - x i - I  -~ t ~ ) R j i - l ( X j  - x i - 1  + t ~ ) R j i ( x j  - x i ) ,  

and so on until we cancel R j i ( x j  - x~) and R j i ( x j  - x i )  -1. Once we use the identity 
(5.15). 

R e m a r k  5.1. In light of this theorem, we can regard the Yang-Baxter equation as a 
"flatness condition" for a "difference connection" (5.16), (5.17). Of course, in order 
to make sense of  this sentence, we have to define what is the "difference connection." 

There are three known basic types of  R-matrices: 
(i) with rational dependence of  additive parameter x, 

(ii) with trigonometric dependence of  this parameter, 
(iii) with elliptic dependence of  the parameter x. 

The representation theory of  quasitriangular Hopf algebras Uq(f?) gives us trigono- 
metric solutions of  the Yang-Baxter equation and we studied them above. As it was 
pointed out earlier, trigonometric solutions R V W ( z )  related to Uq(~) in the limit 
when z = q~, and q --+ 1 yield solutions of the Yang-Baxter equation with rational 
dependence of  x. These solutions arise from representation theory of  Yangians. 
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The algebraic structure of the elliptic solution of the Yang-Baxter equation [B1, 
Bel,  JKMO, JMO] has not been studied enough yet. Some results in this direction 
can be found in [Chl]. For elliptic R(x) the system (5.16) is a holonomic system on 
a torus and the rationality of t~ (with respect to module of the torus) will be important 
in this case. 

In all three cases, it is natural to look for solutions of the difference equations with 
certain analytic properties, e.g. meromorphic in C N. In the next section we will show 
that the matrix coefficients of products of intertwining operators represented above 
by formal power series do have the right analytic properties. 

6. General Analysis of Solutions of the Difference Equations 

In this section we will study solutions of the system (5.10) for complex values of z. 
Let us start the analysis from the description of specific convenient basis in spaces 

Invuq(o)(Va0 | V1 |  | VN | (VAN)*). 
We have isomorphisms of linear spaces: 

Invuq(9)(Vao | V1 |  | VN | ( V a N ) * ) ~ . ~ Y l " ~  "VN-Z-~ ~ ~VI'"VN (6.0) 
"l~a0ab..a N A0,/, N 

al...a N 

where 
.~AV01.::~VNN : .~VoIAI | ~V'12~2 | 1 7 4  .~aVNN laN 

and chains A1, . . .  , AN-1 of highest weights are such that there exist nonzero era- 
beddings Va~ ~ VA~+I | Vi+l Denote this composition isomorphism as t--Vl""Vn~-i �9 ,J/ao AN ) �9 
The inverse map is a direct sum 

V, .. VN V, ... VN 
~AoAN = 7]AOal...AN 

A1...AN_ 1 

where 

VI'"VN | , ~ L  N , .-.+ Invuq(g)(VAo | VI | | V N  | ( V A N ) * )  "AOAl...a N :~V001A 1 |  N_IA N " '"  . 

Let {ai} be a basis in H~i_lAi. Then 

~TV~...VN ,_ ~V~:::VN (al .. aN) (6.1) 
aO...A N I,•l | " " " | a N )  : = 

is a basis in Invuq(g)(VA0 @ V1 |  | VN) | (VAN)*). 
According to the factorization (4.19) we represent RVW(z) as 

RVW(z) = fvw(z). ~VW(z), 

where 

[~VW(z) - QVW(z) f vw(z )  = Pvw(z) fvw(z)  
pVW(z ) ' 

and QYW (z), pyw(z),  f yw(z )  are defined in Sect. 4. 
Then we can write if" in the factorized form: 

n J u V I ' " V N ( x I ,  ' ' '  , Z N ) :  G i j  Zi F V I ' " V N ( z l ,  . . .  , Z N ) ,  

i< j  



38 I.B. Frenkel and N. Yu. Reshetikhin 

where 
Gij(zq -2(k+g)) = fViVj (zq-2(k+g))Gij(z), (6.2) 

and FV1""VN (zl, . . .  , ZN) satisfies the following system: 

TjFVl'"VN (zl, . . .  , z y )  = Ayl'"VN (zl, . . .  , zN)FVI'"VN (zl, . . . ,  ZN). (6.3) 

Here Zl, . . .  , ZN E C • and 

AYl""VN(zl, . . .  , ZN) 

~VjVj_I ( Z j  p~ ff~y~V1QZj ) ~Vj,VAo{~20. [ff~V~,N,Vj)_I 
: "~fij-1 "'" ~1 p "'~jl ,0 ~.'-1 ]j~ N+I, j  \ z j - 1  / 

X I~jN ~N . . . . .  jj+l 

Starting from now we assume that q E C x, Iql < 1, and, for convenience, that 
k + g  < 0. Then p = q-2(k+g) is such that IPl < 1. The function f �88 is an analytic 

(~i,~j) 
function at z = 0. Equation (6.2) has a unique solution over z -  2(k+g) C[[z]], which 
can be continued from C[[q - 1]] to complex values of q with Iq] < 1. For these 
values of q this solution is given by the following product: 

(uit~j) 
Gij (z) = z -  2(k+g) H ~o n f~v~ (zp ), (6.5) 

n>_l 

where #i and/zj are Uq(9)-highest weights of If/and Vj, respectively, and f~  = 

q-(m'"3) f vw j ( z  ). 
We will study first the system of q-difference equations (6.3), (6.4) with rational 

coefficients. Its solutions differ from the solutions of the original system (5.10) by a 
product of the scalar functions (6.5). We also consider only Uq(g)-invariant solutions, 
therefore we restrict the system (6.3) to the subspace (6.0). Generally speaking, there 
exist infinitely many linear independent solutions of this system even if we require 
the analyticity of solutions in a certain neighborhood of C N. In fact, one can always 
multiply a given solution by an analytic function invariant with respect to the shift 
operators (5.6). However, if we fix an asymptotic behavior of solutions at Izlt >> 
Iz21 >>  . , -  >> IZNI (or any permutation of the indexes) by considering the limit of 

zi 
the coefficients (6.4) at - -  -+ oc for i = 1, . . .  , N - 1, we can construct formal 

Zi+l 
( (  z2 ZN ) )  multiplied by solutions in terms of the power series in C Z l ,  z-~ ' " ' "  ' Z'~-- 1 

an appropriate asymptotic function. By the general theory of q-difference equations 
developed in the case of one variable in [Ad, Bi, C] and generalized to several 
variables in [A1] these formal power series solutions are analytic functions in the 
domain Izll >> . . .  >> IZNI. One can then show (see [A1]) that for generic coefficient 
functions (6.4) these solutions can be extended to meromorphic functions in (C• N. 

Here generic means that the eigenvalues of functions (6.4) in the limit z ~  ~ oc 

for i = 1, . . .  , N -  1, do not differ by an integral power ofp.  In our case of Eqs. (6.3), 
(6.4), this is guaranteed by the condition k ~ Q (see Lemma 6.1 below), which we will 
assume in this section. By the construction, the dimension of the space of solutions 
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obtained by the analytic continuation of  the formal power series with asymptotics 
determined by the limit of  the coefficient functions is equal to the dimension of  the 
q-difference system. This fact justifies the name q-holonomic system of difference 
equations and makes it analogous to holonomic systems of  differential equations such 
as the Knizhnik-Zamolodchikov equation. 

In order to describe an asymptotic basis of solutions of  (6.3) a t  [ Z l [  > >  [z21 > >  

- . .  >> ]ZN[, let us consider first asymptotics of  Aj(z) in this limit. We define 

ff~yv..VN __ ~V~,Vj 1...fft;~o, VO(q20)j -V;,N'V~)-I t~,Vj+,,Vj)-lqm~(NJ) (6.6) 
- -  " ~ j , j - 1  , " ( R N + I , j  " ' "  t ~ j + l , j  , 

where mj(N,  1) = (#j ,  #N + '  "" + #j+l  - -  / Z j - 1  - -  

weight of  Vj regarded as Uq(9)-module. Clearly, if 
we have: 

" '  - -  P l )  and pj  are Uq(O)-highest 
Z i  

- -  ~ oe fo r i  = 1, . . .  , N - l ,  
Z i +  1 

A Y V " V N  ( z l  . . . Z N  ) ~ 2 ~ ;  I ' ' ' V N  " 

L e m m a  6 . 1 .  

A?'"VN V~._VN �9 ~,ko...)~Ntal, aN) = qC()'J)-C()'J-I)'~ aN) qmj(N,l) 
. . . ~ "l)~o....,~ N �9 . . , �9 . 

Proof. This lemma follows from the formula for the action of the comultiplication 
on R-matrices and from Theorem 3.2 combined with the definition of  ~]-basis. 

Now we can construct a basis for the solutions of  the asymptotical system obtained 

system (6.3) in the limit z__j_l ~ o c f o r i = l , . . . , N - 1 ,  from the 
Zi+l 

T j  F V I ' " V N  ( z I  . . . Z N  ) = f ~  ; I ' " V N  f i ' V I " ' V N  ( z I  . . . Z N  ) . (6.7) 

Definition 6.1. Let (A,a) = ( ( ) ~ 0 ~ / ~ 1 ,  . . . ,  ~ N ) , ( a l ,  . . .  , aN))  be as in (6.1). We 
~ V 1  . . . V N  define " (~,a) as a solution of  the system (6.7) such that 

N h m ( N  1) 
(~-l)-h(;~O- ~ Vv..VN, 

= I I  z, a N )  
i = 1  

(6.8) 

It is clear that these solutions form a basis in Invuq(g)(V),o| t |  "|174 ). 
�9 - V i . . . V N ,  Definition 6.2. Let r(X,a ) (zl, . . .  , zN) be a solution of the system (6.3) such 

that 

F ~ i , a ; W N ( z l ,  . . . ,  ZN)- - - - -~  f i ~ l , a ; V N ( z l  , . . . ,  Z N )  (6.9) 

at ]z I >> Iz2[ > > . . .  >> IZN]. 

Proposi t ion 6.1. (1) Solutions ff((~,~i "VN form an asymptotic basis of solutions of(6.3) 

at - -  -*oc,  i =  l , . . . , N - 1 .  
Z i + t  
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Let ~z~., ~ c~ for a fixed index i. In this limit, the basis F ( A , a ) ( Z l  . . .  Z N )  has (2) 

the following factorization property: 

( F ~ I o ' ; ' V N ~ N ) ( a l . . , a N ) ( Z 1 ,  . .  . , Z N ) )  

• (F2'o:P  >Ul ..... o >(zl, . . ,  zi)  
t ryVl . . .VN [ ~ 

X I_r()~l . . . . .  )XN)(ai+ 1 . . . z N ) ( ~ i + l  . . . Z N )  ) 

i N 

• H za "h~(i+l'N)" H z~ j(l'i)' (6.10) 

j = l  j = i + l  

1 
where hi(k,1) - 2(k + g ~  (#J '  ttk + ~tk+l -t- �9 �9 �9 q- #z)for h < I. 

be matrix coefficients of Aj  in the v-basis: Proof. Let (Aj(z l  . . .  zu))(),,,~,) 

_ ~ ( ) J , A ) _  Ay(z~ . . .  ZN)?~()%a) = E (Aj(Zl . . .  ~ N ) ) ( A , a  ) 'tl()d,at ) �9 

(At ,a  I) 

Using the formula for the action of the comultiplication on /~ and the explicit 
form of Aj  we obtain the following factorization of these matrix elements when 

zz-~ 1 ---~ ec: for j _< i, 

~ ~x(,~,a) . . .  ZA~(A0 , . . - ,  (Aj (z l ,  .~N)) (Xt ,a t  ) --~ (Aj(Zl ,.,.,(A, ~ ' Ail(al'''ai)'r 
�9 " ,  .... >,i) (a'l...al)O~0"~ 

N 

• H 5AtA'zSatAt " q(IZJ'"N+'"+"i+l)' 
l=i 

for j _> i ,  

(Aj(z l ,  . �9 �9 ZN))((~;?: , )  --~ (Aj(z i ,  �9 �9 �9 ~NI)-,,(~,i, ..... ~N)(a~+~...aN), , 
~ ( ~ i '  " " '  )~N) ( a i +  1 ...a N )  

i i 

• 1-[ II  6a, 
/ = 0  /=1  

Together with the definition of F(~,~)-basis of  solutions of (6.3) this gives the 
factorization. 

T h e o r e m  6.1. Let SN be a symmetric group of order N and let w E SN. Solutions 
F(V1 ""VN )~,a) can be analytically continued to ]z~l [ >> . . -  >> Iz~,N l for any w and they 
form a basis of linearly independent solutions in each of such regions. 

Proof. Our holonomic system (with matrices of  coefficients A j ( z l , . . . ,  zN)) sat- 
isfies the conditions of  Lemma (6.1). It follows from [A1] that under these con- 
ditions the solution of the holonomic q-difference equation with rational functions 
Aj(z l ,  . . .  , ZN) with asymptotics (6.8) can be analytically continued into the region 
Iz (1)l >>. . .  >> Iz (N)l. 

Another basis of  solutions of (6.3) in the asymptotic regions Iz~,(l)l >> . . .  >> 

[Z~(N)] can be obtained from the following symmetry of m y l V N ( z l . . .  Z N ) .  
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Proposition 6.2. Let Ri j  ( Z i / Z J )  : Pij Ri j  . The following relations hold 

ii+l ~ 

A ...V~+IVi...VN (. . .  Zi+l, Z i . . .  j ,  ~ , (6.1 1) 

Rvj-I vj ( zJ-I ~ A VI'"vj-I vJ'"vN ( . . z j - l ,  zj . . . ) 
J-~J \ z ip / 

.'~{:?vJ-IYJ (ZJ - l  ~ , (6.12) : A j - ' [v jv j - l ' "YN( . . . z j , z j -1  ]~ j - l j  \ zj / 

~VjVj+ 1 ( z j p ~  AV1...VjVj+,...VN( zj,  Zj+l ) 
jj+L k zj+~ J J . . . . . .  

aVv..Vi+IV~...VN( , ~,VjVr ( ~ )  (6.13) 
= ~ ' j + l  ~... Zj+l, Zj . . . , , , v j j+ l  " 

Proof. The relation (6.11) follows from the Yang-Baxter equation, others are corol- 
laries of  (4.20). 

For a given vector spaces N { V / } i = I ,  w E S N  and 

= ~(Zl ,  . . . ,  Z N ) E  (C• | z'--~i ~ q n p m , n ,  rft ~ Z,[zw(i) ] > Iz.w(i+i)l~ 
k zj ) 

let [T]w, ~-, w E Sly, be a space of  functions F:g2w -+ V~-(1 ) | - . .  | V~-(N ). For a 
simple transposition 8i E SN we define a map Rs~ : [7-]w ---+ [si'r]s~w such that 

R~i(FV~(1)'"V'~(N)(zl, . . .  , ZN)) 

---- "~ii+if~Vv(i)V~(i+l)(zz-~+l) FV'r(I)'"VT(N)(zI' . . .  , ZN), (6.14) 

w h e r e  RVT(i)V~-(i+l)(~~ PVT(i)V'r(i+l){~~ 
~i i+l  ~ )  "~ ~ ii+l ~)"  

For any (7 E SN let cr ---- sil . . .  sq be a minimal decomposition of  (7 in the product 
of  simple transposition. We define 

Ro = R ~  . . .  R %  . 

Proposition 6.3. The operators Ra, (7 C SN, are well defined and the map a ~ R~ 
is a representation of the symmetric group Sic. 

Proof. Relations R ~  = 1 follows from (4.20), other relations follow from the Yang- 

Baxter relation for R�88 (z) and from the definition of  Rsi. The SN-relations imply 
that the definition of  R~ does not depend on a decomposition. 

Proposition 6.4. If F G [~-]~ and if it is a solution of the system 

T~o({) F v'~(~)''v~(x) (zw(~) , . . .  , Z~I~(N )) 

AV~-(I)-..V~-(N). 
----- ~v i <Zoo(l), . . .  , ZCO(N)).J'~V'r(I)'"VT(N)(Zcu(1),..., Zw(N)), (6.15) 

then R ~ F  C [cr~-]~ is a solution of the system 6.15 with w ~-+ craJ, ~- ~-+ ~7"r. 

Proof. The statement is a corollary of  Proposition 6.2. 
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Therefore, if we have a basis for solutions to the system (6.3) for (zt, . . .  , ZN)  E 
f21 we can continue it to other sectors ~ in two ways. First, we can use Theorem 
6.1 and continue it analytically. Second, we can use Proposition 6.4. Bases obtained 
in these two ways will be different. We will call the matrix, which transforms one 
basis into another (according to [Bi]) the connection matrix. 

~(vm)...v~(N)) ,~ 
Let r(~,a) t~l, . .- , Z N )  be a basis for solutions to (6.3) in [~-]1 define the 

_ \~(At,at)~ 
elementary connection matrix ( (C[ (zl . . .  ~N )J(~,a) ) as the following connection ma- 
trix: 

Rsi F(VR1)'"V~'(N)) ( zI , . . .  , Z N  ) = 
~p( U.r( 1)"" Vr(i+ i) V'r(i)"" V'r(N) ) ( 

E ~(At,at) , . . . .  Zi+t~ Zl . . )  
Or ,d) 

x ( ~ U z ~ , . . . ,  ..(~,',a') ZN))(A,a) . (6.16) 

Note that here (A, a) is a sequence corresponding to the set (V~-(~), . . .  , V.r(N) ) and 

0r a ')  is the sequence corresponding to ( . . .  V~-(i+l), V~-(~)... ). 

Theorem 6.2. The elementary connection matrix C[  is a function of  z i / z i+l  and does 
not depend on other z-arguments: 

e i  ( z ,  . . . z N )  = e ;  (6.17) 

and it acts "locally" on the basis F(~,a): 

[a~_ 1 ~ a~ l 
(C~ (z))(~,a) ~i+1 / (Z) 

a~-a A~ a~ j 

N N 

j r  i -  1 kTLi 
j=l k=0 

(6.18) 

Here (A, a) is a set corresponding to (V~-(1), . . .  , VT(N)) and ( A', a') is a set correspond- 
ing to (Vr . . .  , V~(N)) where a = sit. 

Proof. The connection matrix C[  can depend only on the ratios z--!, zi 
Z2 .Zi+l _ 

ZN-1. From the factorization property (6.10) we conclude that it does not depenc, on 
ZN 

zj . with j r i, "locality" of  C[  also follows immediately from this factorization 
zj+l 
property. 

We can reformulate the statement of  Theorem 6.2 in a more invariant language. 
We proved that the connection matrix C[( z )  is a linear map: 

~'r  gz~. ~Vr(1)'"V'r(i)V~-(i+I)'"V~'(N) __+ ~Vz-(1)'"VT(i+I)VTti)'"V~-(N) 
i \ }" .,~O.~N AO.~ N 

~ [ ( z )  = 1 | . . .  | WvT(~)v'(i+l)(z) | . . .  G 1. 
(6.19) 
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Here the linear map 

is given by 

ITvV'~(~) V'm+~)(z) : ~ ~ d  y~-(~) ,~ _~v~(~+~) 

hi 

- ,  | ) 
~ Xi_ 1 X~ XiAi+ 1 

,k( z 

Ai-1 ] 
wVr'i)Vr(i+I)(z) : ~ 0 ~vV'r'i)V'r(i+l) ~ h i (Z) ,  

x~ x i A~+~ 

where 

A~_~ 
W V'r(i)v'e(i+l) A~ 

)~i + 1 

in a specific basis admits a form as in (6.18): 

[ ai_l  
ai | ai+l ~ E ~vVr(i) Vr(i+l) )ki-1 

at a t ai-1 
i i+1 

(6.20) 

,~V.r( i)  ff~r V'r(i+ 1) ff~V'r(il) t ~V~( i )  
)k i (Z) .  Xi 1~ 1 | Ai.,~i+I ~ Ai_IAi | AiAi+l 

l Ai+11 (z). a~+, | a'~, (6.21) 
Ai ai 3 

t t ~.~dfV~-(i) ~Vr(i+l) ~.V~.(~+~) ~VT(i) 
where ai, ai+l, ai+ 1 a i are bases in x~_l;~i' ~v~A~+~ ' J~A~_I;~ and in 

respectively. 

Theorem 6.3. Elementary connection matrices satisfy the following relations." 

~SiT18iT ~SiT ~7" [~siSi+lT { "w'~Si+IT {~/q,~,~g~T (q,~-~ C~ (w)C~+l(ZW)C ~ (z) = (6.22) 

O:~-(z-1)O~ (z) = I z  . (6.23) 

~.~Vro)...Vr(N) ~ . Here I .~ is the identical operator in JVAo;~ N IT). 

Proof. Both of  these relations follow from Proposition 6.3. 

A remarkable consequence of  the locality (6.19) of  connection matrices is that we 
can compute them from the analysis of a two point correlation function F v~ VZ(zl, z2). 
Therefore, let us consider the case of  two point correlation functions in more detail. 

Proposi t ion 6.5. Let F(;~,~) be a basis of soluiions for  the system (6.3) described above 
then for N = 2, 

F(k,,a)(Zl, Z2) = (ZlZ2) 2 (O(X,a) . ( 6 .24 )  

Proof. From (6.3) and (4.20) we have: 

~-~V1VAo/ 2Ox v-~Vl(VA2)* ~-~V2VAo r 2~9\ ~ V 2 ( V x 2 ) * ~  
(TIT2)F(zl ,z2)  = n12 tq )1/%13 /~20 tq )2-t~23 /~[Zl, Z2)" 

Since F(z l ,  z2) E Invudg)(Va 0 | Vl | Vz | (Vx2)*), it follows from Theorem 3.2 that 

(T1T2)F(x,~)(z~, z2) = qC(a2)-c(a~ z2) . 
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This implies 

(T1T2)(fl()~,a)(Zl, z2) = ~(,k,a)(Zl, z2 ) ,  

where ~ is given by (6.24). From the definition of  F ,  we conclude that 

h(..~o)+h(.~2)-2h(,k I )-2h I (2,2) 

~(~,~)(zl, z2) E ~ C z2 
\ \ z : /  

and therefore ~(X,a)(Zl, z2) = qo(X,a) . Remember  that ha (2, 2) - - -  

#i  is a Uq(g) highest weight of  Vi. 
So, the functions ~p(x,~)(z) form a basis for solutions to the system 

C(ao)-C()~2)~v1g)~o,. 20, ~=jVl(V-k2)* ~, . . . .  
T ~ ( z )  = q 2 n~o [q )1n13 n 1 2 t z ) ~ z )  

and 

(#1, #2)  and  
2(k + 9) 

(6.25) 

h('ko)+h()~2)-2h(~l)-2hl(2'2) I I l l ) 
~9(.,~O~l~2)(ala2)(Z ) E Z 2 C . 

The general theory of  linear q-difference equations has been studied in [Ad, Bi, C] 
(and references therein). In particular, in the case when the coefficients are rational 
functions bounded at z = 0 and z = c~, the solutions to the difference equations 
are well defined meromorphic functions in the complex plane with possible essential 
singularities at z = 0 and z = c~. We can apply this general theory to the equation 
(6.25). 

First consider an example of  scalar difference equation (we had such an example 
earlier in Sect. 4): 

1 - z p  '~ ~ ( z ) .  
c p ( z p ) -  1 zp~ 

There exist a unique solution to this equation in C[[z]]: 

(zp~; p ) ~  
(flo(z) - (zpC~; p ) ~  , (6.26) 

and a unique solution over z~-ZC[[z -1] ] :  

~ ( z )  = z ~-~ ( z - lP-~+I;  P)~  
(z_lp_Z+l;p)  , (6.27) 

where 
( z ; p ) ~  = 1-I (1 - zp'~). (6.28) 

n>_0 

Clearly, ~0(z) can be continued for IPl < 1 to a meromorphic function on C with 
essential singularity at z = exp. In the same way z ~ - ~ ( z )  can be continued to the 
meromorphic function on C • regular at z = ~ with essential singularity at z = 0. 
The ratio 

C(z)-  ~0(z) 
~ ( z )  

is called the connection matrix and (6.26), (6.27) imply that 

O ( z )  = z ~ ~ O ( z P ~ )  
e ( z p ~ )  ' 
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where 
O(z) = I I  (1 - pn+t) (1 - zp n) (1 - z - l p  n+l) (6.29) 

n_>0 
is the Jacobi elliptic theta function. Since 

O(zp) = C(z) (6.30) 

such functions are also called pseudoconstants [Bi]. 
Now we return to a nonscalar case of (6.25). As it follows from the analysis given 

in the beginning of this section there exist two bases of  fundamental solutions to this 
equation 

V1V2 r , h()~o)+h(A72)-2h(Al)_hl(2,2)(t Vl V 2 (../~.~ 
~9(;k,a)~Z ) = Z - t y ( j k ) ( a ) \ ~ ] ] ~  , 

h(Ao)+h(A2)-2h(At 1 ) 
- --1 V2V1 -1 I-h1(2,2)/ _V1V2 , \ .  RZl(Z ) ~ ( . V , a t ) ( z  ) = z 7 t ~ ( A , ) ( a , ) l Z ) ) o .  

," V1V 2 . . . .  VIV2 e ",'. Here t~()O(,~)tz)) ~ is a regular function at z = c~, and t~(y,a,)tz))o regular at z = 0. 

Let us write these fundamental solutions simply as zZi(~S1Y2(z))o~ and 

z,~i ( ~p Sl v2 (z))o, respectively. 

Since coefficients ffgvlV2(z) of the system are rational functions regular at z = 0, oc 
we can analytically continue both these solutions to meromorphic functions [Bi]. We 

can continue (~iv1V2(z))o to C and (~ivJV2(z))~ to C x. Therefore, for finite values of  
z there must exist the connection matrix 

z ~ i  (~)V172 (Z))o = Z O i j  (Z )Z ~ i  (~gY 1 V2 (Z) )~176  ' (6.31) 

J 

where the coefficients C~j(z) are pseudoconstants (6.28). The results of [Bi], part IV, 
implies 

Proposition. The coefficients of the connection matrix Ciy (z) have the form 
a 1 a m 

~ i j ( Z )  ~--. CijZOq_13 j O ( z p  i j ) . .  O ( z p  i j )  (6.32) 
b I b m 

O(zp q ) . . .  O(zp q ) 

where a~j, bi~, cij are constants and 

m 

~"=1 

Thus the connection matrices for the system (6.3) satisfy the Yang-Baxter equation 
and the unitarity (6.22), (6.23) and matrix elements of these matrices have the form 
(6.32). In fact, as it follows from the explicit form of chosen basis for solutions, we 
can "gauge out" power functions form matrix elements of connection matrix. Indeed, 
from (6.31), we conclude that 

(~ylV2(z))0 = E C i j ( z ) ) ~ ~  1g2(Z))~176 ' 
J 

where C~j(z) is a ratio of  them functions. Since elementary connection matrices 
are determined by two-point function connection matrix, we proved the following 
theorem. 
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p v1v2 Theorem 6.4. Let ~ (;~,a) be a basis to solutions of (6.8) described above, then 

N mi(N,l ) 
r'~ rnV'r(1)'"Vr(N) .. h()~i-1)-h()~i)- 2(k+g) 
1"s t Z l ,  " ' '  7 Z N )  I I  Zi 

i=1  

= E F V'r(1)'"V'r(i+l)V'r(i)'"VT(N)t'Z . . . .  
( ) , t a t )  ~. 17 �9 ~ Zi+l~ Zi7 �9 ~ Z N )  

()d,s 

N h()~(_.)_h(A~)_2}(N@ ("i,"j)  
H - 7 (A ,a ) x zi ~ '  ,~.~, k+~ (C~ (z~/zi+l))(~,',~)' , 
i=1  

(6.33) 

where matrix elements of C[ (z) are ratios of theta functions and C[ (z) satisfies Eqs. 
(6.22) and (6.23). 

Elliptic solutions to the Yang-Baxter equation were constructed for all classical 
types of g, when V~ are vector representations, in a series of papers [Bel, JKMO, 
JMO] which are far reaching generalizations of the first solution of these equations 
by Baxter. For 9 = sin series of solutions were also constructed corresponding to 
symmetrical and antisymmetrical powers of vector representations (DJKMO, DJMO]. 
All such known solutions are expressed in terms of ratios of theta functions. So, we 
propose the following conjecture. 

Conjecture 1. All unitary solutions to the Yang-Baxter equation obtained in [DJMO, 
JMO, JKMO] are equivalent to solutions given by the connection matrix C(z) for the 
appropriate type of a simple Lie algebra 9 and finite-dimensional representations of 
u~(f~). 

Now we consider functions 5Vl""VN(z17 . . .  7 ZN), which are solutions of the orig- 
inal system (5.10). Let o~-Vl...vN~_ J'(;~,a) ~1, . . .  7 ZN) be a basis for solutions to (5.10), such 
that 

,a) t Z l ,  . Z N  ) --__ G i  j z i  ~ v  1 . . .v N , �9 " 7 1~()%a) tZ17 " '"  , Z N ) "  

i < j  

(6.34) 

Then the asymptotic behavior of Gij and/~(A,a) t Z l '  " '"  ' z N )  at [zl[ >> [z21 >> 

>> IzNI given by (6.5), (6.8), and (6.9) implies 

,a)  ~Z17 . . .  7 Z N )  E . Z l ~ - - 7  ' ' '  7 - -  
i=1  Zl  Z N - 1  

and 

N 
h()~i-1)-h()~i) VI"'VN "a 

'~(~,ldi 'VN(zI '  " '"  ' Z N )  ----+ H z i  T]AOAI...AN(. 1, " ' "  , a N ) .  

i=1  

(6.35) 
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Moreover, these functions can be analytically continued to any region ~ and 

N 

Rsi'~(VA,Ta~ I )V~(N)  (zl~ " " " ~ Z N )  H z (h(Ai -1)+h(Ai )  

i=l  

= Z ~:2,';v~"+'~v~'~v~(~l, , Z . l , Z ~  . . . .  , z N )  
(At,a l) 

• (6.36) " z / ~ ( A ~ + ~ ' " A ~ ) ~  ,' (A,o) " 
i=1 

(,.~- (Z'r ~ ) Here t i ~ Z ~ ( A , a )  are matrix elements of a linear map 

~'i ~Z;). J'&AOAN AOAN 

and 

S[(z )  ---- Kr(i)r(i+l)(z)C[(z), (6.37) 

where C'[(z) is given by (6.33) and K~j(z) is a "gauged out" connection matrix for the 
system (6.2). Since Rv~vj (0) =/~viv~, and, by definition,/)vivj (Z)Vo | wo = wo @ vo 
(v0 and w0 are Uq(g) highest weight vectors in V/ and Vj, respectively) we have 
fv,  vj(O) = q(mUj), where #i is a Uq(g) highest weight of V/ and /zj is a highest 

weight of Vj. Then, using the unitarity (4.20) of RV'Vj(z) we obtain two solutions 
for (6.2) given by power series at z = 0 and z = ec, respectively: 

(~zilzj) 
G i j ( Z ) o  Z 2 ( k + g ) I I  ~0 n - - 1  = f�88 ) , 

n>_l 

(#ilzj) 
Giy(z)~ = z 2(k+g) I I  f~y~(z~O -lp~)-1 , 

n>_O 

where f ~  ) = q- (mu3) fvw(z  ). 
Therefore, 

Y0 (Z-1 n-  
K i j ( z ) -  Gij(z)o (,i,j) nII> ~ J�88 P ) 

- -  ?o (6.38) Gij(z)cc z k+g = _ f~vJ  (zpn+I) 

Let us identify now solutions to the q-analogue of the Knizhnik-Zamolodchikov 
equation with matrix elements of intertwining operators. 

Theorem 6.5. Let ~((~,~i'VN (Zl, . . .  , ZN) be the basis (6.34) for Uq (9)-invariant solu- 
tions to the system (5.~0), then 

~u( AV1-.. VN , V N ~AN--I 
,o) ~ , ,  , ZN)= ~ ( ,~(z~  l a~)~. ~N (ZN I t . . . . .  a N ) A N  " 

i 

where qhV(z [ a)~ is a Uq(~)-intertwining operator corresponding to a ~ H~ V ,  and 

(( N (Ai_l)_h(Ai) C Zl ,  , . . .  , the equality holds over 1-I z - -  - -  
i=1 Zl Z N  1 
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Proof. By definition left and right sides of  (6.39) satisfy (5.10). Both of them have 
the same asymptotics at Izi0 >> Iz2] >> .--  >> [ZNt. Therefore they. coincide on 

F l z i  . c  Z l , - , . . . ,  . 
i=1 Z1 1 

Since we have analytic continuation of the solution ~'(~,,~i "vN (Zl, . . .  , ZN) to other 
regions, this theorem also describes the analytic continuation of products of  vertex 
operators. In fact, all matrix coefficients of  the composition 

(v, , -vl ,  -~,0~v2- -~'1 , v '  * tff 1 tZ1)Altff 2 tZ2)A2 v) , V E VA2,k , C VAO,k 

can be extended to meromorphic functions defined for all nonzero complex values 

of  zl, z2. Thus we can define an operator o(~Vl(zl)~v2(z2))  defined by its matrix 
coefficients. 

Consider the following intertwining operators: 

1 [Z1)A1W2 kz2)A 2 " VX2,k 

((2;1)) h(A0)-h(A1) h(Al)-h(A2) �9 C Zl~ --~ VAO,k @ Ul(z1) @ V2(z2) ~9 z 1 z 2 

112 ,Xo Vl 1. pV1V2 RV1V2 ( ZI ~ At 
\ Z 2 ]  ~ib2 (Z2)Atl~ibl (Z1)A2 "VA2'k 

-'-+ VA0,k @ Vl(z1) @ v2~,z2) @ z I z 2 " C z2' ~2 " 

For analytical continuation of these operators, we have the following. 

T h e o r e m  6.6. Intertwining operators satisfy the following exchange algebra: 

( Z1 / -AO ~V2- ~1 ]gRVIV2 ~2 ~(~IVI(z1 [ al)~1~2 ['Z2 [ a2)~2) 

),0 V1 [ 

4 4 

(6.40) 

where S V1V2 is given by (6.37) and both RvIvz(z) and sYlVz(z) are unitary, crossing- 
symmetrical solutions of the Yang-Baxter relation (in vertex and IRF formulation, re- 
spectively). 

Another quantization of U(O) is the full Yangian ~'(g). The Yangian Y(~) is an 
infinite dimensional Hopf  algebra described in [Dr1] which is a deformation of the 
universal enveloping algebra of the parabolic Lie subalgebra ~+ ~ ~. We call the 
full Yangian corresponding deformation of U(~). The algebra ~'(~) can be naturally 
considered as an appropriate quotient of  the double i f (Y(9) ) .  Such a description of 
Y(9) was given by Smirnov [Sml].  

Similarly as we did it for Uq(~) one can construct for Y(~) elements o~+'V(x) 
which will play the role of currents J (x )  in a parabolic polarization. All relations 
between ~+'V(x) and intertwiners one can obtain in the limit z = qZ, q ~ 1 from 
our formulas. In particular, this limit in Eq. (6.40) gives us a difference analogue 
of Knizhnik-Zamolodchikov equations for 1~(~). In the same way, one can define 
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connection matrices for ~(g). But now they will be trigonometric functions of z. 
Since the intertwiner of ])(g) can be obtained from Uq(0)-intertwiners, we expect that 
the following conjecture is true. 

Conjecture 2. Let q' = exp k,k + g ] and RvlVz(z) is a finite-dimensional R-matrix 

_VIV2 for Uq,(~) and q)~o;~2 is the isomorphism (6.0). Then 

= r/~,o~ua2 - S vlv2 1~ 11 (qX), (6.41) 
q--* 1 12 

where S vlv2 1' z t l  is a linear map ~ | ~ 2  --~ ~ v ~ '  1 | ~ 2 a 2  
12 

determined by (6.37). 

This conjecture can be thought as a generalization of Theorem 3 on the equivalence 
of the tensor categories Monk(0) and Repq(g). In fact, the Yang-Baxter relation (6.22) 
and the unitarity condition (6.23) generalize the alternative axioms (2.51), (2.52) of 
pre-tensor category defined in Sect. 2. The new ingredient in our case is the analytic 
dependence of the connection matrices on the complex parameter. This suggests the 
notion of analytic pre-tensor category, which differs from the pre-tensor category by 
assigning now to any three objects X, Y, Z a family of meromorphic maps 

/~x,y,z(x):(X | Y) | Z ~ (X | Z) | Y ,  

where x E C, C/Z or C /Z  | ~-Z, satisfying the star-triangle relation and the unitar- 
ity. The three cases correspond to the rational, trigonometric and elliptic solutions, 
respectively. In the trigonometric case setting 

x,g,z = lim /3x,y,z(z) 3:---+4-0o 

we recover a pre-tensor category. 
The above considerations point to the problem of defining a natural notion of 

analytic tensor category, which should include an appropriate generalzation of the 
pentagon identity. For our example, this translates into the problem of finding a quan- 
tum analogue of the operator product expansion in conformal field theory. Here the 
positions of poles and zeros of operators RVW(z) should play an important role. 
Additional structures of solutions of star-triangle relations (and/or Yang-Baxter oper- 
ators) such as the crossing symmetry (4.17), (4.18) should provide the analytic tensor 
category with the additional structures generalizing the rigidity in the case of tensor 
category defined in Sect. 3. 

A 

7. Examples of Solutions of the Difference Equations for Uq(~i[2) 
and the Theory of Basic Hypergeometric Functions 

Solutions of the Knizhnik-Zamolodchikov equations are given by the vast general- 
ization of the hypergeometric functions associated to any simple Lie algebra. These 
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solutions have a very rich structure. In particular, the monodromies of the solutions 
are closely related to the trigonometric solutions of the Yang-Baxter equation and 
manifest hidden symmetries realized by quantum groups. It is natural to expect that 
the solutions of the holonomic difference equations associated to the quantum affine 
algebras are certain q-deformations of the generalized hypergeometfic functions and 
that connection matrices for these q-hypergeometric functions are elliptic solutions of 
the Yang-Baxter equations, which is fully confirmed by the results of Sect 6. It is an 
important open problem to find an algebraic structure of hidden symmetries of our 
difference equations, which should be an elliptic version of quantum groups. 

In this section we will consider the simplest nontrivial example of our equations 
associated to quantum affine algebra Uq(N(2)). However, already this example allows 
us to grasp the essence of one of the classical chapters of mathematics, the theory of 
basic hypergeometric series. 

A q-analogue of the hypergeometric series known as the basic hypergeometric 
series was introduced in the middle of the last century [H1, H2]: 

Fq(a, b, c; z) = ~ (q~)n(qb)'~ 
n=O [n]! (qC)n zn ' 

(the standard notation is 2r a, qb; qC; qZ)), where we denote 

(a)~ = (1 - a)(1 - aq). . . (1 - aq~-l).  

(7.1) 

(7.2) 

The basic hypergeometric function Fq(a, b, c; z) satisfies the difference equation 

(z[6 + al [5 + b] - [51 [6 + c - l])Fq(a, b, c, z) = O, (7.3) 

where 

and 

1 _q6+a (qe+a)o 
[ 5 + a ]  . . . .  (7.4) 

1 - -q  (q)o 

q 6 f ( z ) = f ( q z ) .  (7.5) 

Omission of the square brackets in (7.3) yields the ordinary differential equation for 
d 

the classical hypergeometric function with 5 = z dzz" There also exist q-analogues of 

various special functions. For example, the q-analogue of the gamma function Fq: 

- -  (q)------~-~ (1 - -  q ) l - a ,  ( 7 . 6 )  Fq(a)- (qa)~ 

and the power function 

(1 - z)2q m -- (q-mz)~176 (7.7) 
(q'~z)~ 

When q ~ 1, these functions tend to their classical counterparts. Most of the identities 
for special functions have their q-analogues. However, in some cases, new phenomena 
appear. 
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One can also introduce q-analogues of  differentiation and integration 

dqf 1 f ( t ) -  f(qt) (7.8) 
d q t  ( t )  = y . 1 -  q ' 

f(t)dqt = c(1 - q) E f(cqn)qn' (7.9) 

0 n > 0  

. f  f(t)dqt = c(1 - q) E f(cq~)q~ " (7.10) 
c n < 0  

Again, when q ~ 1, these operations become the usual differentiation and integration. 
As in the classical case, the basic hypergeometric function has an integral presen- 

tation, but now in terms of  Jackson integral [Ja], 

1 

Fq(a,b,c,z)= Fq(C) ~ / t a-1 (qt)~(qbzt)~ dqt. (7.11) 
Fq(a)l"q(e -- a) __ (qC-az)~(zt)~ 

o 

The main property of  the basic hypergeometric series that we will need is the 
connection formulas between the solutions with prescribed asymptotic behavior at 
z ~ 0 and z ~ c~. In accordance with the general theory of  linear q-difference 
equations, the connection coefficients should involve the Jacobi elliptic theta functions. 
In fact, the following connection formula for the basic hypergeometric series is valid: 

Fq(a, b, c; z) = I'q(e)rq(b - a) O(qaz, q) 
l"q(b)Pq(e - a)  O ( z ,  q) 

• F q ( a , a - c +  1 , a - b +  1, qC+l-a-bz-1) 

r q ( e ) P q ( a  - b) O(qbz ,  q) 
+ 

_Fq(a)Fq(C -- b) O ( z ,  q) 

x Fq(b ,b-  c+ 1 , b -  a +  1,qC+l-a-bz-1). (7.12) 

When q --+ 1, the ratios of the theta-funcfions in (7.14) tend to ( - z )  -a  and ( - z )  -b 
respectively, Fq and Fq tend to their classical counterparts and we get the connection 
formula for the classical hypergeometric function. 

Remark 7.1. Basic hypergeometric series appear as the matrix coefficients of the 
quantum group associated to SU(2), [SoV, Koo, MMNNU]. However, their most 
important properties such as integral presentation and connection formulas can only 
be revealed in the representation theory of  quantum affine algebras. 

Let us consider a simplest nontrivial example of  holonomic difference equations 
associated to quantum affine algebras, where the above formulas find the conceptual 
meaning. Let g = ~[(2), and let V be an irreducible representation of  Uq(g) of dimen- 
sion M + 1, i.e. has highest weight Ma/2 ,  where a is the positive root of  s[. One, 
may choose the basis vo, vl, ...  , VM SO that 

7 r ( e l ) V n  = [n]vn-1 , 7r(fl)Vn = [M - n ] V n + l  , 7 r ( k l ) V n  = q M - 2 n v  n . (7.13) 

This representation can be extended to a representation of  Uq(O) depending on a 
nonzero parameter z, 

7c(e0) = zTr(fl), 7r(f0) = z- lzr(e l ) ,  7r(k0) = 7c(kl) -1 . (7.14) 
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Let us show that solutions to the system (6.25) can be naturally described in terms 
of  q-hypergeometric functions. Consider the simplest case when V1 --- V2 - V~ are 

two-dimensional Uq(~'[2) modules. Also in this case, we can directly use system (6.25) 
and we will use the isomorphism 

Invuq(s~2)(Vxo | gl @ V2 @ (V),2)*) ~ (V1 @ V2) {/~0 - X2}, (7.15) 

which holds in this particular case and we will reduce (6.25) to a simpler system. 
Assume that .k0 = M ~ ,  ~2 : )k0 4- OZ. Then, choosing in (6.1), a i  = 1, we have 

the following basis in the left-hand side of  (7.15): 

~:~0,:~o+~,Xo+~ = v0 | vo | vo | v~ + . . .  , 

rb~o,;~o+~,), o = v0 | vo | vl [M + 1~ Vl | vo | v~ + . . .  , (7.16) 

~]A0,,X0_~,)~ 0 : V 0 | V 1 | V 0 | V~ -}- . . .  , 

?']A0,A0_~,A0_c~ = V 0 | V 1 | V I | V~ 4- . . . .  

Here v~ is the lowest weight vector in (Va2)*. In (7.16), we only write terms containing 
the highest weight vector in V~ o and the lowest weight vector in Vx2. 

The isomorphism (7.15) is given explicitly by the map 

g1"~0,)~1,'~2 ~ ~0,~1,)~2 : (V0 | id | id @ vo,  ~0.~1)~2} �9 

Let us return to the system (6.25). Let ~(x,~)(z) be a basis to solutions of  this system. 
The following proposition is a simple corollary of  (4.42) and (4.43). 

Proposition 7.1. Vectors ~b(;~,~)(z) = (v~ | id | id | vo, ~(;~,~)(z)} are solutions of  the 
system 

C(Ao)-C(;~ 2) 
Tr = q 2 (qa)2fg12(z)r (7.17) 

where ~ = ~o 4-/~2 + 2& and r C (I11 | V2) {/k2 - .ko}. 

In our case, since we have the isomorphism (7.15), there is a one-to-one corre- 
spondence between solutions to (6.25) and (7.17), and we can study simpler system 
(7.17) in order to obtain solutions to (6.25). 

By definition of/~(z) ,  we have: 

-ff~(Z)Vo | VO = V 0 | V0,  /I~(Z)Vl | Vl = V 1 @ V l .  

Therefore, if )~2 ---- )~0 "4- O~, we have the following solutions of  (7.17): 

h(~2)-h(.k0) M+2 
CXo,;~o+~,Xo+MZ) = z 2 2(k+g) vo | vo, 

h(.X2)- h(..k0) M+2 (7.1 8) 
~.~O,)~O_~,.~o_O~(Z ) = Z 2 2(k+g) v l  | Vl . 

The case when ,k2 = Ao is a particular case of  the following system. Let in (7.17) 
(y Og 

V1 VMI~, 172 ~-- VM2~, and )~o = Mo ~-~' )~2 = (Mo + M1 + M2 - 2) -~. It is not 
2 2 

difficult to find solutions explicitly in this case also. From the definition of/~12(z) as 
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an intertwining operator we compute its action in the basis vl | v ~  (see [KR] for 
general matrix elements): 

R ( z ) v o  | Vl - -  zqM1 --  qM2 
z --  qM1 +M2 VO | Vl + 

/~(Z)V 1 | V0 (q 2M2 - 1) -- vo |  + 
qMI+M2 --  Z 

z ( q  2M1 --  1) 
qMI+M2 --  z Vl | VO 

z q M 2  _ qMi  

z --  q MI+M2 v l  | VO. 

(7.19) 

Solutions of  the system (7.17) in the subspace (Vul | V.2){#1 + #2 - a }  can be 
given in terms of  basic hypergeometric functions which we will write in the integral 
form: 

~ ( ~ 2 )  = ~ l ( Z l ' Z 2 ) v O | 1 7 4  

Then we have 

and 

h(A2)-h()'O) ()%/~1 -cO 
_,.z Zl 2 2(k+g) it 

= f~ (Zl ,  Z2) 'q~ j 

z]() 
m 1 - m - 1  

f [ '  (Zl ,  z2) = p r a l - m  ~1 \ Z2 / 

0 

x 6 + 1 - ~ p z2 /p  

z i (~ml - -m  - m2--rt~-- 1 ( --2ml (7.22) 

\ zl / \ z2 / zl / v 
o 

- -  dpt, 
z2 /p  

f l  (zl, z2) = p - � 8 9  

z[' 

o+ (,_ (1_ 
t i p  

r p .Z+.  ~ ( ~ )  -,+m ( ~ )  m2+- ( z, ~-2 . ,  (7.23) 
f~ (zl, z~) = 1 - 

z~ Tip 

x 0~- ( 1 -  zz~-Zm2dpt 
t i p  

where we denoted 0p ~ -- 

! 
Zl z Z l p  - m I  

dp• and  
dp• t 

z; = z 2 p - m 2  , r 
Z 1 = Z l p  rnI ~ Z~ f ~ z2pm2 , 
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Here mi = M i l 2 ( k  + 9), m = (M0 + M1 + M2 - 2) /4(k + 9). The expression of 
our four solutions by means of the basic hypergeometric series immediately yields 

the correct asymptotic behavior, thus f2 '  and fl" are power series in z2 while f l '  
Z1 

and f2" are power series in --.zl Let us denote for simplicity the components of  the 
Z2 

connection matrix by B(z)}, i, j = 1 or 2, so that 

\B(=)I t , F )  (7.24) 

In order to find B(z)}, we can either use the connection formula for the basic 
hypergeometric functions (7.12) or deduce it directly using the method of Mimachi 
[M] from the Cauchy residue formula for the following meromorphic functions, which 
relate in each case three out of  four Jackson integrals in (7.22) and (7.23). The final 
answer for B(z)} has the following form: 

Proposition 7.2. 

B(z) 
Zral +raz+2ra O(Zp-2m)O(P 2rrq ) 

O( 2;p-ml-m2 )0(pra2-ra 1-2ra) 
z2rr~20(p--r~ -rr~l -rr~2+ 2rr~ ) 

0 (/.0--~, 1- rr~2 Z )0 (/.Orrz2- rtT. 1--2m) 

z2ml O(pml-ra22 )OQ9 -ral-m~- 2rn 
0(p-rr~l --rr~ 2 Z)0(pml -m2 +2frl 

Zml +m2_2rr~ O(p2mz)OQ O-2rr~2 ) 
O(p-ml-'~2 z )O(pml -m2 

(7.25) 

This concludes the description of the connection matrix for the quantum affine 

algebra U1(~'[(2)) for/~0 -=/Zl q- ~2 a t- /~2 --  O~. The generalization to the case A0 = 
/L1 -~- ~2 n t- J~2 --  TLOZ, where n is an arbitrary positive integer is an interesting technical 
problem.  It is clear that the solutions are given by multiple Jackson integrals, which 
are q-analogues of the explicit solutions of  the Knizhnik-Zamolodchikov equations 
obtained in [SV1]. Their monodromies will be given by ( n +  1) x ( n +  1) matrices with 
entries expressed in terms of the products of  elliptic theta functions as in (7.25). For 
a given #1 and #2, (7.25) give corresponding matrix elements elliptic solutions to the 
star-triangle relations, which in the ~[(2)-case were computed explicitly in [DJKMO]. 
In fact, in the case when n = 1 one can easily check the coincidence of our connection 
matrix (7.25) with the corresponding formulas in [B 1, ABF, DJKMO]. 

2 t 
Let us return to our case Ma = M2 = 1. Solutions ~b (Zl, z2) and @"(Zl,  z2) are 

given by power series in z~ and it is easy to check that for Ms = M2 = 1, 
gl 

~/~2 (Z1, Z,2) = 2~)~0,AI+c~,A0 Z1 , 

1 (:2) (zl ,  z2) = ~x0,~0-~,x0 z~ 

(7.26) 

Therefore, we can identify now matrix elements of  (7.25) with matrix elements of 
elementary connection matrices (~[(z) from Sect. 6 and therefore with solutions to the 
Yang-Baxter equation. Formulas (7.25) and (7.26) give the following ratios of  theta 
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functions. Let us set q = exp(-iTr~-), z = exp(27ri~-u), [z] = O(exp(27ri'cx)). Then 
one has 

Corollary 7.1. 

W la M - 1  M - 1  ( z ) = W  11 M + I  
M - 2  M + 2  

M ] [u] [M + 2] 
W 11 M + I  M - 1  ( z ) =  [ u + l ] [ M + l ] '  

M 

[ M ] [u] [M] 
W 11 M - 1  M + I  ( z ) =  [ u + l ] [ M + l ] '  

M 

M ] [M + 1 - u] [1] 
W al M - 1  M - l j  ( z ) =  [ u + l ] [ M + l ] '  

M 

M ] [ M +  1 + u] [1] 
W 11 M + I  M + l j  ( z ) =  [u + l] [M + l] " 

M 

M + I ]  (z) = 1, 

These formulas are exactly the solution for Eq. (6.22) which was found by Baxter, 
[B1] (see also [ABF, DJKMO]). 

The exact coincidence of the formulas are manifest from the comparison with 
(2.1.4a, b, c) in [DJKMO], provided that their solution is normalized by multiplication 

[11 
[u + 1-----~ and the parameter ~ = 1. Note that the star-triangle relations will be preserved 

under any shift of M, which explains the additional parameter ( in [DJKMO]. 
The description of the analogue of half-monodromy for the intertwining operators 

in terms of elliptic theta-functions indicates the presence of a new hidden symmetry. 
By comparison with the conformal field theory, where the exchange algebra reflects 
the presence of the trigonometric solution of the Yang-Baxter equation, our elemen- 
tary example yields the elliptic solution of the Yang-Baxter equation. Moreover, the 
trigonometric solutions of the Yang-Baxter equations immediately bring us to the 
notion of the quantum group, which is the hidden symmetry of the conformal field 
theory. Thus we are forced to conjecture that the symmetry of the corresponding q- 
analogue is described by a new algebraic structure related to the elliptic solutions of 
the Yang-Baxter equation. In fact, a candidate for a new algebraic structure intimately 
related to the elliptic solutions of the Yang-Baxter equation, has been introduced in 
[Skl, Sk2]. However, until recently it was not clear how this algebraic structure gen- 
eralizes the Hopf algebra structure of quantum groups. We believe that the parallel 
between the trigonometric and elliptic solutions of the Yang-Baxter equations aris- 
ing from the difference equations will shed new light to these previously formidable 
problems. 

8. Conclusion 

Results of this paper provide only the very first steps towards the understanding of 
a q-analogue of conformal field theory, of an elliptic generalization of the quantum 
group, the relations between them and the mathematical and physical implications of 
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these new structures. However, already at this stage we can formulate a number of 
concrete problems and directions for future research. 

The first problem discussed in Sect. 6 is an extension of the correspondence be- 
tween the monodromies of the Knizhnik-Zamolodchikov equation and the representa- 
tions of quantum algebras Uq(~) to the case of the difference and q-difference equa- 
tions. We naturally expect that the corresponding connection matrices will be related 
to the trigonometric and elliptic solutions of the Yang-Baxter equation. Moreover, 
since we know that the trigonometric solutions can be interpreted as the intertwin- 
ing operators for the finite dimensional representations of the quantum affine algebra 
Uq(~) one can ask for a similar algebraic interpretation of the elliptic solutions; That 
is: what is the elliptic deformation of Uq(~) and how it yields the connection matrices 
for the q-difference equations? Certainly an appropriate cohomological interpretation 
of the relation analogues to [SV2] could be of great interest. 

The next problem is to understand the algebraic structure of a q-analogue of con- 
formal field theory, in particular, a correct generalization of the operator product 
expansion or fusion. The solution of this problem should provide an explicit ax- 
iomatic definition of tensor categories with dependence on a complex parameter or, 
as we call them, analytic tensor categories. 

As we explained in Sect. 6, the connection matrices for the q-difference equations 
provide elliptic solutions of the star-triangle relations for any type of the root sys- 
tem, thus bringing this large subfield of statistical mechanics into the realm of the 
representation theory. It can be fruitful for both fields to further extend the concep- 
tual understanding of the integrable models of statistical mechanics. For example, 
an explanation of the coincidence of affine characters and local state probabilities 
[DJMO1] can now be more accessible than before. The similar remarks also apply 
to the massive integrable quantum field theory. As it is shown in [Sml], the latter 
admits a striking reformulation in terms of axioms for form factors, which are directly 
related to our q-difference equations. 

Besides the basic problems related to a correct understanding of a q-analogue of 
conformal field theory and its new symmetries, one can pose some further questions 
related to other known features of the undeformed case. We will briefly address the 
ones we consider most important. 

One of the most subtle properties of quantum groups is its behavior when the 
parameter q is equal to a root of unity. At these points the naive parallel with the 
classical theory breaks down and one encounters new arithmetric phenomena. In the 
case of quantum affine algebras and associated elliptic algebras, the role of two special 
parameters (namely the deformation parameter q and the level k in the case of the 
quantum affine algebras) can be even more significant. The arithmetic of the circle 
is now being replaced by the arithmetic of the elliptic curve. It is interesting to note 
that the values of q which are roots of unity correspond to the cusps for the modular 
group PSL(2, Z). The representation theory of quantum affine algebras may bring a 
new meaning to formulas of the arithmetic theory of elliptic curves. 

The WZNW-model was first formulated [Wl] as a certain Lagrangian theory and 
only later was translated in a pure algebraic language. In the case of its q-deformation, 
we can ask an opposite question, what is the geometric, i.e. Lagrangian, formulation of 
the algebraic theory that we described in Sects. 4 and 5. Certainly the answer should 
involve a certain example of noncommutative geometry. This could be a natural 
example for the general program of A. Connes. 

Quantum algebras Uq(fJ) and WZNW conformal field theory have important topo- 
logical applications to knot and 3-dimensional invariants [W2, RT1]. One can naturally 
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ask about the topological implications of our q-deformed case. Since our connection 
matrices and the appropriate tensor categories depend on a parameter, one should try 
to associate with them a pure topological data. One can compare this situation to the 
passage from the conformal field theory to the topological field theory one dimension 
higher. Since in our case we have categories depending on a parameter, one should 
expect that a similar step will yield certain 2-categories, which in their turn are related 
to 2-knot invariants in R 4 and eventually to the four-dimensional invariants. 

Finally we would like to recall the analogy with the quantum mechanics, which 
is a quantization of classical mechanics, again admits a classical interpretation us- 
ing functional integrals one (functional) dimension higher. One can expect that the 
representation theory of the quantum affine algebras can be obtained from the repre- 
sentation theory of double loop algebras like quantum groups appear as symmetries 
of conformal field theory. 
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