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We consider the particle-kink and kink-kink S-matrix elements of tile two-dimensional 
(~¢)2 model, where the Majorana spinor ~ is an O(N) isovector. Our results confirm many 
qualitative ideas about the model, including the mass spectrum, the decoupling at N = 4, 
and the isospinor nature of the kinks. 

1. Introduction 

One of the most interesting and best understood two-dimensional field theory 
models is the multifermion ( ~ b )  2 model. This model has asymptotic freedom, dy- 
namical symmetry breaking and non-perturbative mass generation [1 ]. It also has a 
rich bound state spectrum [2]. 

Recently A. Zamolodchikov and AI. Zamolodchikov have determined the exact 

S-matrix of the elementary fermions and their bound states in this model [3]. How- 
ever, the model is believed to have additional states, the kink states, whose existence 
is related to the dynamical symmetry breaking [4]. The purpose of this paper is to 
complete the determination of the S-matrix of the (~ff)2 model, by calculating the 
kink-elementary particle and kink-kink S-matrix elements. 

When one attempts to calculate a two-dimensional S-matrix by the methods of 
A. Zamolodchikov [5] and of Karowski, Thun, Troung and Weisz [6], one encounters 
equations that are strongly overdetermined, if a solution exists, this is a good con- 
firmation of the qualitative assumptions on which the calculation is based. This is 
probably the greatest interest of our calculation ** 

The following are some of the qualitative ideas that our calculation tests. 

* Research supported in part (Yale Report No. C00-3075-196) by tile US Department of Energy 
under Contract No. FY-76-C-02-3075. 

** For a review of refs. [3,5,61 see ref. I71. 
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For our calculation, we need to know the kink quantum numbers. In a previous 
paper [8] by one of  us it has been argued that the kinks are isospinors, and that there 
is a 3's symmetry in isospin space. 

A. Zamolodchikov has suggested [9] that tile elementary fermions of  this model 
disappear from the spectrum at N = 4, and that for N < 4 the spectrum consists only 
of  kink states. In addition, it is known that at N = 4, this model consists of  two 
decoupled sine-Gordon equations [10[. Finally we expect the semiclassical spectrum 
[2] to appear as poles in the kink-kink S-matrix. We derive here the kink-elementary 
particle and kink-kink S-matrices. Our results, though not fully explicit ,  contain the 
essential features (pole structure, factorization etc.) that corroborate the conjectures 
we set out to verify. Explicit solutions may always be obtained by a straightforward 
application of  the techniques reviewed in ref. [2]. In the kink-kink case, we restrict 
ourselves to even N, for the odd N case has additional supersymmetry properties [8]. 
Also, since the computat ion involves Fierz transformations which are very involved 
for arbitrary N, we give the full details only for N = 4 and 6. We emphasize that it is 
the lack of  motivation (given the goals listed above), and not conceptual obstacles 
that induce us to restrict ourselves in this manner. 

2. The kink quantum numbers and the disappearance of the elementary particles 

Since this is essential in what follows, we would first like to explain why we think 
that the kink is an isospinor. This was argued in ref. [8] on the basis of  some semi- 
classical arguments of  Jackiw and Rebbi [1 1]. Here we will give a simple argument 
using a technique, the bosonization of  fermions [ 12], that is special to two-dimen- 

sions. 
First we will illustrate the Jackiw-Rebbi phenomenon in a simple example. The 

simplest model that possesses solitons is the scalar field theory 

= fa~I-~(a,~)~ - x(~ ~ - ~)~ l .  ( l )  

It possesses, in the classical approximation,  two ground states, 0 = +-.a, as well as soil- 
tons which, for instance, interpolate between 0 = - a  at x = _oo and ¢ = a at x = +co. 

Now we couple to fermions 

£ = / d x [ ~ ( a u O )  2 + ~ i~b  - k(¢ 2 - a2) 2 - g 0 ~ ]  , (2) 

in such a way that there is a discrete chiral symmetry,  ~b ~ 7sff, ¢ ~ - ¢  (4  is a Dirac 

fermion). 
Jackiw and Rebbi claim that the single soliton state of (1) becomes a pair of  states, 

of  fermion number +1, in model (2). To see this in a simple way, we replace ~ by a 

boson field o in the standard way 

~ i ~ ,  = ~ ( a . o )  ~ , 

~O = cos(x/Tffo). (3) 
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The Lagrangian becomes 

£ = f [½(ou4))2,  (ouo)2 _  (4)2 _ a2)2 _ g4) c o s (  4x/'-~--o)] . ( 4 )  

Now instead of  two minima at 4) = +-a, we have two families of  minima, one family 
at 4) = - a ' ,  o = nx/Tr, and the other at 4) = +a', o = (n + ½) x/Tr where n ranges over the 
integers (a' is the minimum of  the function (4) 2 - a:)2 _ g4)). Previously we con- 
sidered the soliton state that interpolates between 4) = - a  and 4) = +a, now we must 
also specify what is happening to o. 

When 4) changes from --a' to +a', o must change by a half-integral multiple of  X/n. 
Presumably the lowest energy states will be those in which o changes by +-½x/n. Thus, 
there will be two kinds of  soliton states; if the field at x ~ _0% is, for instance, ( - a ' ,  
0), then the field at x ~ oo may be (a', ~x/Tr) or (a', -½~/lr). These two states, with 
two possible values of  the field at x ~ oo are the two states described, from another 
viewpoint, by Jackiw and Rebbi. 

We can also see that these two states have fermion number ½. (By "fermion num- 
ber" we mean the conserved quantum number Q = f ~  dx3") ,° 4.) 

To do this, we must first realize that this model also has soliton states in which 
(4)) does not change, for instance, transitions from ( - a ' ,  0) to (-a~ x/Tr). As shown 
by Coleman [12], the fermion number is 1 [x/~r times the change in o, so these states 
have fermion number one and can be identified with the original fermion ~ of  
Lagrangian (2). 

On the other hand, the pair of  states discussed earlier, with transitions from ( - a ' ,  
0) to (a', +-½x/Tr), have o changing by only +~X/n, so, by the same reasoning, they have 
fermion number +-~. This confirms the claim of  Jackiw and Rebbi. 

Let us now apply this reasoning to the model of  main interest in this paper, the 
(3qJ) 2 model, which has the Lagrangian 

N N 

where the ~i, i = 1,2 ..... N, are N Majorana fermions. This Lagrangian has a discrete 
chiral symmetry ~0 i + 7s ~i. The symmetry is spontaneously broken, resulting in 
vacuum states with positive or negative ( 3~9 ). Accordingly, they are soliton or kink 
states, for which, for instance, ( 3 ~  ) < 0 as x ~ _0% and ( 3~b ) > 0 for x ~ oo. 

If we assume that N is even, we may replace (5) by an equivalent boson Lagrangian. 
We group the Majorana Fermi fields in pairs, replacing each pair by a Bose field. 
Altogether there will be I N  Bose fields: 

i - - 2 -  

3, q~, + 32 ~2 = cos(x/~4), ), 

1 -  i 1 3 N i ~ N  I 2 " ~ N - - I  ~ N - 1  + = , 

3N--  ! ~IN-- 1 + "~N~'/N = C O S ( N / / ~ 4 ) N / 2 )  • ( 6 )  
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The Lagrangian becomes 

X/2 N/2 

£ = f d x [  .~  ½(3u()i) = +g( ~ cos(v '~¢i) )2  ] . (7) 
t= l  i=1 

The potential energy is now - ( E  c o s ( x / ~ i ) )  2. There are two families of  minima: 
~i = (hi + ½) x/rr, tile n i being arbitrary integers. We will refer to these as positive and 
negative vacua respectively, because they correspond to positive and negative values 
ot'~ ¢ = Zi cos(x/~¢3. 

Let us first consider soliton states that interpolate between two positive vacua or 
between two negative vacua. For such a soliton, each ¢i changes by an integral mul- 
tiple o fx /n  between x ~ _oo and x ~ 4-oo. The lowest energy states presumably are 
those in which ½N 1 of the Oi do not change and the remaining one field changes 
by +x/n. There are N such states, since we must choose one of  the ~jV 0i fields and 
then must decide if it is to increase or decrease by x/n. These N states can be identi- 
fied with the N elementary fermions of  (5). 

We also have transitions from a positive vacuum to a negative vacuum. In this case, 
each 0i must change by a half-integral multiple ofx/n .  Presumably in this case the 
lowest energy states have each field changing by +½x/n. If, for instance, we have a 
configuration (0, 0, 0 ..... 0) at x ~ _0% the field values at x ~ oo may be (+½x/n, 
-+lx/n ..... +½x/n). There are 2 N/2 states of  this type, because we must make ½U 
independent choices of  the sign. 

These states are the usual kink states of  (5) because they represent transitions 
between positive and negative expectation values of  ~9 .  They form an irreducible 
representation of  the O(N) symmetry of (5), because they are rotated into one another 
by the discrete symmetries of  (7), which is a subgroup of  the original O(N) symmetry. 
The only irreducible representation of  O(N) of  dimension 2 N/2 is the isospinor 
representation; therefore, the kinks of  (5) are isospinors. 

We can also see that the kinks are isospinors because they have h',df-integer quan- 
tum numbers. They involve half-integral changes in the fields q~i and this corresponds 
to half-integer values of  the O(N) quantum numbers. Only the isospinor representa- 
tion (and larger representations built by combining it with tensors) has half-integer 
quantum numbers. 

Finally, we may give a heuristic argument in support of  A. Zamolodchikov's idea 
that for small enough N, the elementary particle becomes unstable and disappears 
from the spectrum. 

A kink, which involves a change in ( ~qJ ), can certainly not be built from a finite 
number of  elementary particles, each of which involves no such change. But can an 
elementary particle be built from kinks? 

As far as the quantum numbers are concerned, an elementary particle, in which, 
for instance, the field jumps from (0, 0 ..... 0) to (x/n, 0, 0 ..... 0), can certainly be 
regarded as a succession of  two jumps, first from (0, 0 ..... 0) to (½x/n, {x/n ..... ½x/n), 
then from (½x/n, ~x/n ..... ~x/rr) to (x/n, 0, 0 ..... 0). Each of  these two jumps corres- 
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ponds to a kink state, since in each case each field changes by +x/Tr. Thus, the ele- 
mentary particle has the same quantum numbers as a pair of  kinks. 

We thus ha~e a dynamical question, a question of energetics: is the elementary 
particle unstable against decay into a pair of  kinks'? 

We do not have enough dynamical information to answer this, so let us make a 
crude guess. We will guess that the energy of a soliton state is proportional to the 
distance in field space by which the field jumps. 

This distance is x/n for elementary particles but x/~-Nn for kink states. Thus, for 
large N, the kinks are much heavier (in confirmation of what is known from ref. [4]). 
But for small N, the masses become comparable, and it is perfectly conceivable that 
the elementary particle becomes unstable for small enough N against decay into a 
kink pair. It could then disappear from the spectrum. A. Zamolodchikov has argued 
that this happens at N = 4. 

3. The elementary particle-kink scattering amplitudes 

We now turn to a determination of the S-matrix elements that involves kinks. In 
this section we will determine the amplitude for the scattering of elementary fermions 
by kinks. 

The S-matrix for the scattering of two elementary fermions has already been ob- 
tained [3]. Denoting as la(0)) an elementary fermion of isospin a and rapidity 0, the 
S-matrix for scattering of two particles a(½0) and b(-½0) to c(½0) and d(-½0)is 

<d(QO), b(-½0)> 
_S(O)(~ac~b d 2rti ~ab~cd 21ri ~ad~bc) 

- ) V - 2  i n - 0  N - 2  ' (8) 

where S(0) is a function described by A. and A1. Zamolodchikov in ref. [3]. 
Our strategy is now to use the identity indicated in fig. 1 to determine the ele- 

mentary particle-kink amplitudes. (The ideas behind this were developed in refs. [3,5, 
6], and are reviewed in ref. [7].) The identity in fig. 1 is a cubic identity that involves 
the particle-particle and particle-kink amplitudes. Since the particle-particle amplitudes 
are already known (eq. (8)), the only unknown in fig. 1 is the particle-kink S-matrix, 
and fig. 1 can be used to determine it. 

Fig. 1. The identity that determines the kink-elementary particle S-matrLx. Solid lines are ele- 
mentary particles; wavy lines the kinks. 
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To do this in detail, we first need some notation. Let 7 i, i = 1,2, ..., N, be the 
usual 3' matrices of O(N), satisfying 

7i7 j + ~J7 i = 2 ~ij . (9) 

We also define 

o'; = ½ ( ~  - ~ v ; )  (10) 

If we denote a kink state of isospin a and rapidity 0 as l a(0)), then the most general 
form allowed by isospin conservation for the particle-kink S-matrix is 

<b(-~O ), fl(½0 )loe(~O),a(-½0 ) ) = U, (0)8bas~e, + U:(O) of~ba . (11) 

(Since the kink and elementary particle do not have the same mass, the outgoing 
kink must have the same rapidity as the incoming one, in order to satisfy the infinite 
sequence of conservation laws of this model.) The cubic identity of fig. 1 determines 
0"2 in terms of Ul, 

- 2 u ,  (0) 
U2(O) (12) 

(N - 2)(1 + 2lOin) 

(one derives this by following the standard procedure of the previous references.) 
Crossing symmetry implies that 

u l  (0) = u ,  ( i .  - 0 ) ,  

u~(o) = -u: q. - o), (13) 

while unitary implies 

4 ( N -  1) 
Ut(0) U I ( - O )  = 1 + ( N  - 2)2(1 + 402/n 2) " (14) 

In addition, Ut and U2 are expected to be metomorphic functions of 0. 
Eq. (14) and the first equation of (13), plus the meromorphic nature of U~, suffice 

to determine U~. The details will not be given here; for analogous calculations, see 
refs. [3,5-7] .  (Strictly speaking, U1 is determined only up to CDD ambiguities; the 
ambiguities can, as usual, be fixed by looking for a minimal  solution.) Once UI is 
known, U2 is known from (12). 

In the calculations leading to eqs. (12)-(14),  one encounters many cancellations. 
Without these cancellations, there would be extra equations, and no consistent solu- 
tion would exist. The fact that a solution exists is a good indication that the isospinor 
kink spectrum we have assumed is correct. 

4. Kink-kink scattering 

In this section we consider the much more difficult problem of the kink-kink 
S-matrix. We will be considering only the case of even N. Our strategy will be to use 
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t 
~ X  

Fig. 2. The identity that  determines  the kink-kink S-matrix. Solid lines are e lementary  particles; 
wavy lines the kinks. 

the identity indicated in fig. 2. In this identity the particle-kink and kink-kink S-ma- 
trix elements appear. Since the particle-kink S-matrix is already known from the pre- 
vious section, the only unknown quantity in this identity is the kink-kink S-matrix, 
and this identity enables us to determine it. 

Once again, we must introduce some notation. Let 

o ° = l ,  O'~ = " / i ,  

4" = l ('riV/ -- "~/'Y') , 

1 
O~il" ' in -- gl! (')'ii" "'" ~ ' i n ) A  ' (15) 

where A represents complete antisymmetrization, Also, let 

~ a  ® o ~  ~ "o n " :o n " ( 1 6 )  = . . . I, i l . . . i n J S a ~  i l . . . i n ) , y ~ .  
t l ,12 . . . t  n 

Now, we wish to write down the most general form for the kink-kink S-matrix 
allowed by the O(N) symmetry. What makes the kink-kink problem difficult is that 
the number of  invariant amplitudes is large, of  order N. Moreover, there does not 
seem to be any one choice of  these amplitudes in which all of  the necessary condi- 
tions (the cubic identity, crossing, and unitarity) can be stated easily. 

We will consider two ways of  expanding the S-matrix in invariant amplitudes 

N 
n n 

n=O n!  °6 ° t®  0~/3 

N 
: ~ w n ( o )  . 

n=o - n r  " °'r~ 0 o ~  . ( 1 7 )  

The V n are amplitudes with particles 6 and a coupled to definite isospin n" the Wn 

have "y and a coupled to definite isospin n. By a Fierz transformation, the Wn can be 
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written as linear combinations of  the Vn, (or viceversa), but unfortunately Fierz 
transformations for general N are rather complicated. 

Before proceeding, let us recall that from ref. [8], we expect a 7s invariance in 
isospin space. This means that Wn = 0 for odd n, or equivalently, that 

V N _ n  = ( - - 1 )  (N[2 )+n  V n . (18) 

However, we will not impose (18) as input in the calculation;it will emerge as part 
of  the output. 

With the kinematics aside, we now consider the identity of  fig. 2. After some 
fairly long calculations, with many cancellations, one finds that this identity is equiv- 
• ,dent to the recursion relation 

iO/n + 2 n / ( i  - 2) (19) 
Vn+2(O) = Vn(O) iO/--~ + 2(N - n - 2)/(N - 2) " 

This formula determines all Vn in terms of  Vo and V~. From this recursion relation, 
one can see that (18) is, in fact, satisfied. 

Next we must consider unitarity. We can write unitarity equations for the Vn in 
either the s-channel or the u-channel. The u-channel equations are particularly simple 
because the Vn are amplitudes of  definite u-channel isospin. Unitarity in the u-chan- 
nel implies 

16 VoqTr - O) Vo(iTr + O) = 1, 

16 Vlqzr - O) Vl(ilr + 0) = 1. (20) 

Eq. (20) corresponds to unitarity of  the S-matrix amplitudes with u-channel isospin 
zero or one. The u-channel unitarity conditions for isospin greater than one are identi- 
ties if eqs. (19), (20) are satisfied. 

One can also write s-channel unitarity equations. There are N + 1 equations in all, 
corresponding to N + 1 channels of  definite isospin. Two of  these equations are 

N 

N! Vn(O) Vn(-O)  = 1 , 
n=o ( N -  n) !n! 

N 
N! V,,(O) VN_,,(-O) = O.  (21)  

n=t ( N -  n) !n! 

The remaining N - 1 equations for s-channel unitarity are identities if eqs. (19), (21) 
are satisfied. (We do not have a general proof, but have checked this explicitly for 
N -  4, 6, and 8.) 

Finally, we must consider crossing. Unfortunately, the amplitudes Vn do not have 
simple crossing properties. For the Fierz transformed amplitudes Wn we can, however, 
write rather simple crossing relations 

Wn(iTr -- O) = ( - 1 )  n ( n - l ) / 2  Wn(O) . (22) 
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The deviation of (22) is rather subtle and is explained in the appendix. 
Eqs. (19)- (22) ,  together with the meromorphic nature of the V n and Wn, com- 

pletely determine the S-matrix, apart from CDD ambiguities. (It is not even necessary 
to use both (20) and (21).) In determining the S-matrix, however, one must make a 
Fierz transformation, either to re-express (22) in terms of the Vn or to re-express 
(19)-(21 ) in terms of tile Wn. Instead of attempting to carry out a Fierz transforma- 
tion for general N, we will here consider in detail the cases N = 4 and N = 6. 

(i) N -- 4. 
In this case the Fierz relations are 

4Vo = Wo + 1414 - 6W2 , 

4V1 = Wo-- Wa . 

4V2 = - (Wo + I+'4) - 2W2 • (23) 

By means ofeqs. (19), (23) one can determine W 2 in terms of Wo and W4: 

(14'o + w,)  
W2 - 2(1 + 2i0/7r) " (24) 

The crossing and unitarity equations are simplest in terms of the sum and difference 

Wo + Wa and Wo - W4. We find 

Wo(O) + I'94(0) = Wo(irr - O) + Wa(irr - 0 ) ,  

1 + 402/rr 2 
(Wo(O) + W,,(O))(Wo(-O) + Wa(-O))  - 4(1 + 02/7r2) ' (25) 

W o O )  - w 4 ( O )  = Wo(i~r - O)  - W4qTr  - 0 ) ,  

( W o ( O ) -  W 4 ( - O ) ) ( W o ( - O ) -  I4/4(-0)) = 1.  (26) 

Eqs. (26) has the obvious solution Wo - 1"4 = 1. If as is.usual, one looks for the 
"minimal"  solution without CDD zeroes or poles, then this solution is unique. Eq. 
(25) can be solved by the method of A. Zamolodchikov. 

The fact that I¢ 0 - Wa = 1, written in terms of states of definite (isotopic) 
chirality (that is, isospinor states with 75 = +1 or 3'5 = -1 ) ,  has a very simple inter- 
pretation. Wo - W4 is the S-matrix element for the scattering of a 75 = +1 kink by 
a "rs = -1  kink. The fact that Wo - I¢4 = 1 means that 75 = - 1  kinks are decoupled 
from 7s = +1 kinks. This decoupling is expected from field theory arguments [10,8]. 

Actually, it is known from field theory arguments that the N = 4 model should 
be equivalent to two decoupled sine-Gordon equations. Specifically, the two 75 = -1  
kinks of the N = 4 model can be regarded as the soliton and anti-soliton of a sine- 
Gordon system. The sine-Gordon coupling should be taken to be/32 = 87r-: at this 
value of the coupling the sine-Gordon spectrum consists solely of the soliton and 
anti-soliton. Likewise, the two 7s = +1 kinks of the N = 4 model are the soliton and 
anti-soliton of a second sine-Gordon model, decoupled from the first one. One can 
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check that the sine-Gordon S-matrix, of  refs. [5,6] at/32 = 87r-; coincides with the 
N = 4 S-matrix in the "rs = - 1  (or 3's = +1) sector, as described in our eqs. (24)-(26) .  
The correspondence between our formulae and the sine-Gordon S-matrix is that I4/o + 

!f2,  where f ,  and f2 are the soliton-antisoliton W4 equals f l  + -~f2 and W2 equals 2 
forward and backward scattering amplitudes of  the sine-Gordon model. 

In particular, it follows from this that the soliton and anti-soliton of  the sine- 
Gordon model at/3 2 = 8n- are related by an 0(3)  symmetry; they transform as an 
isodoublet. 

(it) N = 6. 
We will also consider in some detail the next simplest case, N = 6. 
The Fierz relations between the amplitudes Vi and Wi of eq. (17) are now 

6Vo = Wo - W6 - 15(W2 - I4/4), 

6V 1 = [4,' 0 + W 6 - 5([4,' 0 + I4/4) , 

-6 I I2  = Wo - W6 + (W2 - W , ) ,  

- 6 I I3  = Wo + W6 + 3(W2 + W4). (27) 

(V4, Vs, and I"6 are known in terms of  Vo, Vt, and V2 from eq. (19).) With the V's 
expressed by (27) in terms of  the los, we can now conveniently combine the informa- 
tion contained in eqs. (19)-(22) .  In terms of  W, (19) becomes 

W2 - W4 

( :01 Wo + W6 _ 7 +--~- . (28) 
W2 + W4 

If one now writes the unitarity in terms of  W and eliminates W2 and W4 by means 
of  (28), one can obtain two coupled equations for W o and W6 : 

(-~)~ + O~/Tr ~ 
(Wo(O) + w , ( o ) x w , , ( - o )  + w 6 ( - o ) )  - ~ (~ ~-~-i , 

(~Y + 02/7r ~ 
(Wo(O)-  W6(O))(Wo(-O)-  W6(-O)) -  _~ +-OZ--~ 2 . (29) 

These equations, combined with crossing, 

WoO) = Woqrr - o ) ,  

W6(O) = - W6 (in - 0 ) ,  (30) 

are a closed system of  equations for Wo and W6 which determine Wo and W6, up to 
CDD ambiguities. For instance, one could use eqs. (29), (30) to determine, iteratively, 
the locations of  the zeroes and poles in Wo + W6 and Wo - W6, following A. 
Zamolodchikov's reasoning in the sine-Gordon case. 
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A similar procedure can, in principle, be used for any N, to eliminate all ampli tudes 
in favor of  Wo and WN, obtaining thus a closed system of  equations for 14' o and W N,  

but we will not a t tempt to pursue this further. 
However, there is one qualitative question that we wish to discuss here. This model  

is known to have an extensive mass spectrum, with particles of  mass 

M n 2Msin(n}__~2) __N-4 (31) = , n = l , . . . ,  2 ' 

where M is the kink mass. The elementary particle is n = 1 ; higher values of  n are 
bound states. This spectrum was discovered in a semiclassical calculation by Dashen, 
Hasslacher and Neveu [2], and was shown to be exact by A. and A1. Zamolodchikov 
[3]. We would like to ask whether these particles (the elementary particle and the 
bound states) do, indeed, show up as poles in the kink-kink S-matrix. 

According to (2) and (3), there is a large isospin degeneracy in the spectrum. If 
we describe the channel of  antisymmetric tensors of  rank n as the nth isospin channel,  
then particles of  mass 23/sin(rrn/(N - 2)) are expected to be present in the isospin 
channels n, n - 2, n - 4 . . . . .  0 for even n, and n, n - 2, n - 4 . . . . .  1 for odd n. 

A particle of  mass 23 /s in (nn / (N - 2)) will correspond to a pole at 0 = in - 
( 2 r r i n ) / ( N -  2) in the s-channel; the crossed pole will show up at 0 = 2 r r i n / ( N  - 2) in 
the u-channel. The amplitudes Vn described earlier have the quantum numbers of  
u-channel isospin n. Therefore, we expect that Vn wil l  have poles at 0 = 2rr in / (N  - 2) 
2rri(n + 2)/(N - 2), 27ri(n + 4)/ (N - 2) ... rri(N - 4)/ (N - 2), for n even; the last pole 
is at rri(N - 5)/(N - 2) i fn  is odd. 

Now we wish to compare this with what we can learn from the recursion relation 
(19), which determines Vn+2 in terms of  Vn. Replacing n by n + 2, one will have the 
same series of  poles, but starting at 2rri(n + 2)/(N - 2) instead of  27r in / (N  - 2). In 
other words, Vn should have the same poles as Vn+2, plus an extra one at 2rr in / (N  - 

2). 
This agrees with the recursion relation (19), which can be rewritten as 

. . . .  iO/rr + 2(N - n - 2 ) / ( N -  2) 
v.(o) = -  Vn+ tv    7( 72j , (32) 

and strongly suggests that Vn will have a pole at 2rr in / (N  - 2) that is absent in Vn+2. 

The conclusion is not rigorous, because Vn+2(O) might have a zero at 2 r d n / ( N  - 2) 
that would cancel the explicit  denominator  factor on the right-hand side of  (32). 
Because o f  CDD ambiguities, we cannot expect a rigorous conclusion; the factoriza- 
tion, unitari ty,  and analytici ty equations alone cannot uniquely determine the struc- 
ture of  poles and zeroes in the S-matrix. At most we can hope that a particularly 
simple solution of  these equations has the expected poles, and (32) seems to show 
this. 

This thus provides support  for the idea that the exact mass spectrum is M n  = 2 M  X 

sin n r r / ( N  - 2). As A. Zamolodchikov has pointed out,  this formula has the partic- 
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ularly striking consequence that for N ~< 4, the elementary particle mass exceeds 
twice the kink mass, and the elementary particle would then, presumably, be absent 
from the spectrum. 

5. Conclusion 

We have in this paper analyzed the particle-kink and kink-kink S-matrix elements 
of the (~ff)2 model. The results are in satisfying agreement with qualitative proper- 
ties that the model is believed to have, including the mass spectrum, the decoupling 
at N = 4, the isospinor nature of  the kinks, and the absence of  the elementary par- 
ticle from the physical spectrum for N ~< 4. 

Appendix 

Here we would like to explain some facts about the O(N) 3'-matrices, and also to 
explain the derivation of  eq. (22). 

The gamma matrices of  0(4)  are well known to physicists. For example, one may 
choose 

o) 2:(0 o) 3=(0 "t; 
01 02 03 --il 0 3) 

We wish to generalize this to build up higher dimensional 7 matrices. Suppose that 
the 3' matrices have been defined for O(N). Then to define them for O(N + 2) we 
write 

3'~+2 = 3'kV ® 1, k = 1 .... N ,  

+ 1  - -  T/~N+2 _ (i)N(N-I)/2+ 1 ~N ® 0 , ,  

+2 - (34) 
- (iY o 3 ,  

where o~ and u3 are Pauli matrices and ~N = ~ 2 3"N3"N ... T~N is the generalization of  3's 
for O(N) gamma matrices. The peculiar factor of  (i) N(N-W2+I is needed in (34) 
because TeN by itself is Hermitian only when N = 2 modulo 4, but when multiplied 
by this factor it is always Hermitian. It is easy to check that all N + 2 matrices in 
(34) are Hermitian, have square one, and anticommute with each other. 

Note that, in going from O(N) to O(N + 2) gamma matrices in (34), the dimension 
of  our vector space has doubled; we took the tensor product with the 2 X 2 space 
of  the sigma matrices. This is how one can see that for any even N, the 7 matrices, 
and therefore also the isospinor representation, have dimension 2 NI2. 

Now we must consider crossing, to derive (22). What makes crossing non-trivial 
is the following. Under crossing, a particle with isospinor Uc, will cross into a par- 
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ticle with the complex conjugate spinor Uc~. The isospinor representation is equiva- 
lent to its complex conjugate and therefore the isospinor kinks can cross into them- 
selves, which is what actually occurs. But the isospinor representation is not ob- 
viously equivalent to its complex conjugate, in the sense that the group generators 
cannot be chosen all to be real. As a result, a non-trivi',d crossing matrix is needed, 
which relates the group generators to their complex conjugates. 

The semiclassical analysis of  ref. [8], and the bosonization argument of  sect. (2), 
show that the kinks form a single isospinor representation, which must therefore 
cross into itself. But we will see that the kinks cross into themselves in a non-trivial 
way. 

To be more specific, the kink states [c~) transform under an infinitessimal isospin 
transformation as 

Io~) ~ Ic~) + coi/o~l[3) , (35) 

where coi/are real, infinitessimal rotation angles and o ~  = ½ (re-r / -- v / v i ) , ~ .  The anti- 
particles I~) will then transform as 

I~) ~ I~)  + ~ i j o ~ ;  l~) , 

where o//* is the complex conjugate of 06. If the o 6 matrices were all real, then the 
states I~) would be transforming the same way that the states I~) transform, and one 
could identify the particles and antiparticles. 

Since the 06 for general N, cannot be chosen all to be real, we introduce instead 
a unitary matrix G with 

Goi/* = oiiG , (37) 

and now consider the states 

I~>' = G~t3 I~). (38) 

These states transform under an infinitessimal isospin rotation as 

I a )' = G ~  I~ > -+ G~O I ~ ) + G ~ c o i / o ~  I ~ ) 

Thus, the states la) '  transform as the states la)  do, and it is consistent with O(N) 
symmetry to assume I~)' = la). This leads to a relation between particles and anti- 
particles: 1~) = Gaal~), or equivalently I~) = G ~  la). 

If one accepts the semiclassical and bosonization arguments that the kink states 
are a single isospinor that crosses into itself, then we must identify particles with 
antiparticles in some way, and this is the only identification consistent with O(N). 

To find a G that satisfies (37) is very simple. Of the 7 matrices in (34), some are 
real and symmetric, some are imaginary and antisymmetric. We define G as the prod- 
uct of  all the imaginary 7 matrices. 
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To discuss crossing, we note that by general rules, if 

& ~ , ~ ( O )  = (6(0) 3'(0)la(0) ~(0)>, 

then 

s .~8 ,~  (irr - 0)  = <6(0) ~ ( 0 ) 1 7 0 )  t3(0) >. 

With our identification of  particles and antiparticles, 17) = G;~ 16 > and therefore 
<~1 = <olGo~ so 

s~,~(iTr - o) = Go~a:r~ < 6(O) a(O )t 6(0) ~(0) > 

: GoaG~ S6 o,#a (0) .  (40) 

With the def'mition of  Wn from the text 

N 

s ~ , ~ ( o )  : ~ w.(o)  
,=o - ~ - . v  ° ~ O ® ° ~ a '  (41) 

we see that (40) can be written 

N 

Sav,oa(iTr - 0) = ,=o  ~ Wn(O)n____~. °*an ® (GoaG~onoa) . (42) 

But (41), with 0 replaced by in - 0 and a replaced by 3', says 

N 

Saa,O.rqrr - O) = ~ WnqTr - O) n (43) 
. = o n ! °~t~ ® ova " 

If, therefore, we can show 

~,~ = ¢ , v , ( - - ~ ) / 2 c  c:-!,,". (44) 

it will follow that Wnqn - O) = ( - 1 )  n(n-l)12 Wn(O), which is eq. (22) of  the text. 
Let us first consider in (44) the case n = 1. We must show 

i - -  - 1  ' 3"~ - Go~GvaT~oa , (45) 

for each i. 
Now for each i, 3'i is real and symmetric or imaginary and antisymmetric. Suppose 

3"1 is real and symmetric. Then is commutes with G, which is a product of  an even 
number of  imaginary, antisymmatric 3' matrices. In this case 

- 1  i - 1  i 
Goc, G.va3"o6 = Go~G~Tao 

- 1  i 
= GaoGTa3"o~ 

= 3'/'ra (46) 

as was to be proved. If instead 7 i is imaginary and antisymmetric, it anticommutes 
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with G, and the calculation in (44) is still valid, except that the sign in one of the 
intermediate steps should be chaged. 

An analogous argument, keeping track of the anticommutativity of the gamma 
matrices, suffices when n > 1 in (44). 
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