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It is shown that for special valuesof the coupling constanta reduction is possiblein the
sine-Gordonmodel which preservesthe locality of certain operators.The reduced model
correspondsto perturbedM

2/(2fl~1)modelsof conformalfield theory. It is explainedthat for
any rational coupling constant,the reduction is possiblewhich leads to the perturbed Mp/q
model.

1. Introduction

Recentlyinteresthasarisenin massivetwo-dimensionalfield theorieswhich give
nontrivial conformal field theories(CFT) in the ultraviolet limit. Zamolodchikov
has shown[1—3]that in certain casesmassiveperturbationsof CFT [4] appearto
be completely integrable.Massive completely integrablefield theories(MCIFT)

aremuchmorecomplicatedthanCFT. However,greatprogresshasbeenmadein
the investigationof MCIFT. First, the theoryof factorizableS-matricesallows us

to presentexact S-matricesfor thesemodels[5]. Second,thereis a construction
which allows us for a given S-matrix to describeexhaustivelylocal operatorsin
MCIFT presentingall their matrix elementsin thephysicalspaceof states[6—8].A
goodexampleof a combinationof thesemethodswith thoseof CFT is providedby
the 3-statePotts model. In ref. [3] it was shown that the correspondingscaling
model is completely integrable,being the perturbationof the M5 CFT by the
operatorwith scaling dimensions(~,~). The specialcharacterof the conservation
lawsallowedus to confirm the validity of the hypotheticS-matrix of scalingtheory
[9]. In ref. [10] the matrix elementsof all the importantoperatorsin the theory
were obtained.With theseit was possibleto write down a convergentseriesfor
correlationfunctions in the scalingmodel.

The presentpaperconsidersspecialreductionsof the sine-Gordonmodel (SG)
which lead to nontrivial ultraviolet limits. Let usdescribebriefly the main results
of the paper;the details aregiven in sects.2—4.
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The SGmodel is describedby the lagrangian

~=f(~(a~)2+ ~(cos~ - 1)) dx.

Weusethe renormalizedcoupling constant~ = ~-y/(8~ — y). In the SGmodel for
~ <~ there are the following excitations: solitonswhich transferthe topological
chargeandtheir bound states(breathers),the numberof which being [~r/~].

The S-matrix of the SG model was obtainedin ref. [5]. The matrix elementsof
local operatorswere calculatedin refs. [6,8]. The operator~(x) is normalizedby
requiring that the topological charge of a soliton is exactly 2~-/%/~.The
energy—momentumtensor Tn,, is normalized in order that energy—momentum
obtainedfrom has proper eigenvalues(i.e. coincideswith (1/i)9,). There is
also a naturalmethod to normalizethe operatorscos~/~,sin~/~q~which will be
discussedin sect.2. Providedthe operatorsare correctlynormalized,the following
equationsarevalid for the quantummodel:

M~ ____

T~= 4 sin cos\/3~, u = ~_ sin~, (1)

where M1 is the massof the lowest breather(M1 = 2M sin(~/2),M is the soliton
mass).The commutatorsof local fields havethe following leading singularitiesat
the origin of coordinates:

[~(x), ~)(0)] = ic~(x), [T00(x), T01(0)] = ~~“(x) +

where x is a spacevariable.The centralcharge c of the SGmodel shouldbe equal
to 1. We believe also that in our normalizationc~= 1. Theseassumptionsare
discussedin sect. 2.

The principal resultof the presentpaperis thefollowing. For ~ = 2~/(2n+ 1) a
reductionis possiblein the spectrumof the SGmodel which preservesthe locality
of some operators.This reductionmeanscontractionof the model to the soliton-
free sector.Denote the projection operatoron the soliton-free sectorby P. The

reductionof an arbitraryoperatoris POP.The operatorsPT~Pand PçoP are not
local but the operator

= P(TPZ. + i2
5~2 p

is local:

[~~~(x
0, x1), S~y(0,0)}= 0, x~<0.
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The operator~9~’ is also local but .9~,and 3~’ are not mutuallylocal:

[5~,,(x0,x1), 5~’(0,0)} * 0, x~<0.

Moregenerallythereare two algebrasof local operators~%‘and ~‘* which arenot
mutually local. Sowe aredealingwith two equivalentfield theories.We havean
amusingsituationwhen the energy—momentumtensor is not seif-adjoint andcan
not be madeseif-adjoint without loss of locality. At the sametime energyand
momentumare self-adjoint and energyis positive. The situation underminesthe
usualviews, in particular it demonstratesthat the definition of positivity accepted
in CFT [11], which is nothingother than the assumptionof self-adjointnessof the
energy—momentumtensor,doesnot necessarilycorrespondto the principal ideas
of positivity of energyandunitarity of the S-matrix.

The abovereasoningsshow that thereis nothing strangein the fact that the

centralchargeof the reducedmodel is equalto

(2n + 1)2
c=1—6

2(2n+ 3)

for ~ = 2ir/(2n + 1), and that it correspondsto the “nonpositive” [11] minimal
modelsof CFT, M2/(2~~3).The model M2/(2~±3)containsthe primary fields with
scaling dimensions

(1— 1)(2n+2—1)
1=12... 2n+2.2(2n+3)

Evidently, ~ = ~2n±3—1~ All thesedimensionsarenegative,which is unpleasantfor
CFT itself (becauseof the increaseof correlations)but quite satisfactoryfor the
ultraviolet limit of the massivetheory. This fact only meansthat the correlatorof
the primary field goes to zero according to a power law near the origin of
coordinates,but decreasesexponentiallyat large distancesdue to the massive
spectrumof the model.

Usingeq.(1) one can easilyshow that

M~

= 4sin~(’~

The scalingdimensionsof are(—(2n — 1)/(2n + 3), — (2n — 1)/(2n + 3)). So

from the point of view of ref. [11we are dealingwith the perturbationof M2/(2~±3)
by the operatorof the kind (1,3). The calculationsdonein ref. [1] do not depend
on the “positivity” of the model; they are quite appropriate for any minimal
model. According to ref. [1] the perturbedmodel possesseshigher conservation
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laws with arbitrary odd spins. Part of these conservation laws is equal to
zero in concretecases.As will be clear later, in the reducedSG model for ~ =

2~r/(2n+ 1) only thoseconservationlaws occur whosespins areodd andare not
multiples of 2n + 1.

2. The sine-Gordon model

As has alreadybeen noted, the spectrumof the SG model involves solitons
transferringtopological chargewith mass M, and their bound states(breathers).
ThereareH-/c] breathers,their massesbeing M1 = 2M sin(~j/2).The soliton is a
two-componentparticle(soliton—antisoliton);the soliton—soliton S-matrix is

sinh~/3/3/~
S~(f3)=S~(/3), S~ ~(~3)= —s~(/~).

sinhw(f3—wi)/~

sinh~
2i/~

S O5inh(/3)/~~

= SI~I~(f3), S;~~(/3)= 0, E~+ E2 * ~ + E2,

oosink/3sinh~(~-—~)k
S

0(/3)=exp —if . dk
o k sinh~k cosh~irk

where/3 = ~ — /32 ~ /32 are the rapiditiesof the solitons),e~,e2,e~,e~areequal
to ±~- and characterizethe isotopicstatesof “in” and “out” particles.

The soliton-m-breather,and m1-breather—m2-breatherS-matricesare scalar
ones:

— rn icos~+sinh(/3—~i~(m+1—2j))

~ jiicos~—sinh(~—~i~(m+1—2j))’

S,~~j~3)coth ~(/3 — ~i~(m1 + m2))tanh~(f3 + ~i~(m1 + m2))coth~(I3 — ~i~jm1— m2~)

min(,n1, rn2)— I

Xtanh~(/3+ ~i~m1—m7~) fl tanh
2~(/3+~i~m

1 —m2~+2j))
i—I

211 IXcoth ~—~i~(~m1—m2J +2j)

There is an involved hierarchyof bound states.First, the soliton and antisoliton
createan rn-breatherwhen the rapidity shift is (~— ~rn)i; evidently, the point
(~-— ~m)i lies on physical sheet 0 < Im /3 <ir only for m <w/~. Second,the
soliton and the rn-breathercreatea soliton when the rapidity shift is ~-(7r + ~m)i.
Third, the rn1- and rn2-breathercreatean m1 + m2 breatherwhen the rapidity

shift is ~ji(m1+ m2)~.
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It is clear that beside the poles which correspondto thesephysically clear
possibilities the soliton—breatherand breather—breatherS-matriceshave many
additional poles. It is well known that singularitiesof the S-matrix areconnected
with the possibility to constructreducedgraphics[12]. The additionalpolesof the
S-matricescorrespond to the processeswhich involve “physical particles” as
intermediateones.Considerfor examplea 1-breather—I-breatherS-matrix

sinh/3 + sinhi~
S11(j3) = . .

sinh /3 — sinh t~

For ~> ~/2 the 2-breatherdisappearsbut the correspondingpole /3 = i~doesnot
leavethe physicalsheet.The samecanbe said aboutthe crossingpole /3 = (~r— ~)i.
Thisphenomenonis explainedasfollows: for ‘w> ~> ir/2 the inequalityM~>2M

2
holds, which provides the possibility to construct the reducedgraphics for 1-
breather—i-breatherscatteringwhich involves “physical solitons” as intermediate

particles.In a certainsenseit canbe said that the2-breatherexistsfor ~r> ~> ir/2
as a virtual state;the precisemeaningof this interpretationwill be clarified later.

Let us passto the local operators.In refs. [6,7] all the matrix elements(form

factors)of theoperatorsT~,,,~, exp(±i~/~~/2)wereobtained.Theseform factors
satisfy the systemof axioms [7,8] which guaranteethe locality of operators.The
form factor of an operatoris the analyticcontinuationof the matrix element

(0IO(0,0)I/3~. . .

from the range /3~> P~... > f3, to all valuesof the arguments.We denotethe
form factor by f(/3

1 . . . /3~)~ ,,. For the SG model the indices can be equal to
~ (soliton), — ~(antisoliton),and rn (rn-breather).A relationcanbederivedwhich

expressesthe matrix elementtakenbetweentwo arbitrarystatesin terms of form
factors f(/31 .. . I~k)[7,8].

The form factor as a function of /3k has simple polescorrespondingto bound
statesin the strip 0 < Im /

3k <ir, crossingpolesin the strip ~ < Im I3k <2ir, and
annihilationpolesat the line Im /3k = ~r.Threemain axiomsare

(I) f(/3

1 . . . /3k’ /3~+t . .. ~ -

=f(/3I.../3~÷I~/3~.../3kL k (2)

S~~isdiagonalwhen the ith or (i + 1)th particleis a breather.

(II) f(f31 . . . /3k-I’ /3k + 2~i)F k~~lEk=f(/3k’ /3~ /3k-I)~5~...~51’ (3)

(III) res f(/31.../3k)El13k = Ok — I + IT!

=

2 .c~k~If(/3I .. . /3k-2)E~...~2[~ .. . - S’~(/3~ - /31)

- /32) .. S~:~I~(/3k-1- /3k-2)]. (4)
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In the presenceof bound statesthe set of axiomsshould be supplementedwith
expressionsfor the residuesat the poleswhich correspondto boundstates.Forthe

SGmodel theseexpressionsaregiven by

(I) resf(/3l.../3kl$k)~l~kli~

=amf(/3I.../3k2,/3kI + ~(~i—i~m))~e
52m, (5)

with

/3k=/3k~l+~-i—i~m, m>i,

where

2 1/2

am= —50(iri—i4m)-—sin-—

2~

(II) resf(/3l.../3k_l,/3k)~...Ek2~m

=a~f(/3l...f3kl +i~(rn P)’/3k-l + ~i -~ii))E...~p, (6)

with

/3k=/3k_I+~ri+~i~(m—2p), p=0,...,m—1,

where

f(/31 . . . /3~—~I3~)~tk-I° ~f(/31.. . /3k— 1)Ti

a~= 27ra~pamp,p, p >0,

i 1/2
res S~(/3)

2~i

amm will be describedlater.

(III) resf(/31 .. /3k—2’$k—1/3k)Ej...E52m1m,

=a~mf(/3l.../3kl + ~i~(m2—p),$kl

+ ~i~(m1 P))EI...ml+m2~p,p (7)

with

/3k=/3k_1 + ~i~(m1 +m2 —p), p = 0,. ..,min(m1m2)—1,
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where

=
2~amm

2pam2p,p, p> 0,

1 1/2

res ~‘,n1m2(/3)
2irt O=~if(m1+m2)

(IV) resf(/3I.../3k_2/3k.I,/3k)~...~~k~2mIm2

=a~,~!2f(/3I.../3kI+~j~P,/3kI +~1

— ~i~(rn1 + rn2 — 2p))~1 k_2,InI—p,rnI—p’ (8)

with

/3k /3k—l + ~ri — +i~(rn1—m2 —p), p = 1,.. .,min(m1m2)
3~n

1m2’

where

ã~ =2ira a
tn1!!!2 ~ ~PP ‘~2~PP

The physical meaning of some of the poles is quite clear, for examplethe
soliton—soliton pole at /3k =

13k— I + ~ — i~rncorrespondsto the creation of an
rn-breather,the rn

1-breather--m2-breatherpole at /

3k = /3k—I + i~(m
1— in2)/2 cor-

respondsto the creation of an (m1 + rn2)-breather.Other poles correspondto
more complicatedprocesses,for example, the m1-breather—m2-breatherpole at

/3k =

13k- + i~(~-(rnI+ rn

2) —p) correspondsto thedecayof an m,-breatherinto a
(rn2—p)-breatheranda p-breather,followed by the creationof an (m1 + m2—p)-
breatherby an (rn2—p)- andan m1-breather.The kinematicalpossibilityfor these
poles to appearis provided by the inequality (M~’~)

2+ (M~)2>(M~~)2+
(M(k))2 where M(©, ~ and M~, ~~Tj(kI) are the masses of kth and
(k — 1)th particlesin the left- andright-handsidesrespectively.

It is worth noting that for particularvaluesof the couplingconstant,the r.h.s.of
eq. (7) loses its direct physical meaning.Considerfor examplethe case ~> ~r/2
which hasbeentreatedin connectionwith singularitiesof the breatherS-matrix.
Consider the form factor for which both the kth and (k — 1)th particles are
1-breathers.The pole at the point /3k = /3k—I + i~correspondsas well as in the
S-matrix to more complicatedprocessesthan just the creation of a 2-breather,
which is absentfor ~> ~7-/2.However,we preserveeq.(7) in this case,interpreting
a 2-breather as a virtual particle which does not appearin asymptoticstates.
Eq. (7) can be consideredas a definition of a virtual 2-breatherfor ~> 7r/2. An
essential requirement is that all possible definitions of virtual particles must
coincide. For example, the same2-breathercan be obtained as bound stateof
solitons at the point /3k = /3k—I + in — 2i~(5), which for ~> ir/2 lies out of the
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physical sheet.Such an understandingof virtual particlesensureslocality. Let us
discussthe point in moredetail.

The local commutativity theorem in the absenceof bound states has been
proven in refs. [7,8]. This theoremstatesthat the operatorsdefinedby the form
factors are local, provided the form factors satisfy the axioms eqs. (2)—(4). The
proof is rather straightforward.Considerthe commutator[O(x0, x1), 0(0,0)] (x~is

space-like).For the productsO(x)O(0) and0(0)0(x) onecanwrite down decom-
positionsinto the sumoverall the intermediatestates.The contoursof integration
in the integralsover the rapiditiesof intermediateparticlesfor O(x)O(0) can be
transformedin sucha mannerthat the integralsturn into thosefor 0(0)0(x). The
SG model possessesbound states.That is why one meets the poles of the
integrand by deforming the contours. So one has to show that all the pole
contributionscanceleachother.That is not the casefor termswhich correspondto
the sameintermediatestate.It canbe shown howeverthat eqs.(5)—(8) ensurethe
cancellationof polesafter thesum overall intermediatestatesis taken.The virtual
particlesdo not occur in physical statesbut theyappearin pole contributions.The
requirementthat all the possibledefinitions of theseparticles coincideprovides
the cancellationof pole contributions. For examplein the case ii-> ~> ir/

2 the
pole contributionsinvolving virtual 2-breathersobtainedfrom two 2-breathersand
from two solitons canceleachother. For ~ = 2ir/3 however,a virtual 2-breather
canbe identifiedwith a 1-breather,andfor certainoperatorslocality holdsin the
soliton-freesector.Thissituationwill beconsideredin the nextsections.

Let us considerphysically importantoperators.The energy—momentumtensor
canbe presentedin the form

T~=

where A is nonlocal operator.The form factors of A will be denotedby ft The
form factors of T~canbe easily expressedin termsof f~. For example,the form
factors of T~areequalto

(EMs sinh /3

1)

2f~(/3

1 . .. /3k)E

where M±l/2mM The form factors f~ arenormalizedin order that fT00(x)dx1
coincideswith the hamiltonian,which requirementis equivalentto the condition

res ((ME sinh/31 + ME sinh/32)f~f(/31/32)) = ~ sinh/31. (9)
2’rr

OperatorA generatesall the densitiesof higherconservationlaws in the theory.
In the SGmodel thereis an infinite seriesof conservationlawswith arbitraryodd
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spinss(Ii, Is). The eigenvaluesof theseintegralsare

k (EM~es0J)I/3l.../3k>E ...

ISI/31~../3k)E...E
5=(~MEJe ~)I/3l~./3kE, k’ (10)

where M~= M, ~ = 2Msin(srn~/2),s is odd. The local densities of these
integralsare

3I3XIA, 3t,19XA

where t
5, ~ means “times” associatedwith I~,I~.The form factors of these

densitiesareequal to

(~M~e±s0J)(EMEsinh/3J)f±(/3I.../3k)E

The operators‘I’ ‘I coincide with P11 + F1, P11 —

The operator ~ is not local due to the existence of solitons transferring
topological charge.True local operatorsare the topological currents = e~’

3.,~’tp

whose form factors can be easily expressedin terms of ~ form factors.We will
denoteform factors of ~ by f. Form factorsf~ are normalizedby the condition

res
/32 I~i+IT1

which meansthat the soliton hasproper topologicalcharge.
The operators Li A and D ~ coincide up to a coefficient with cos~/~qand

sin~i~q.How could onenormalizethe form factorsof cos~/~q~andsin~/~?The
recipe is the following. Let us denote the form factors of cos~/~,sin%/~~by
g~,g respectively.They coincideup to normalizationwith

(LME e0i)(EME e0i)f~(/3
1. . . /3k)E ...

(EMs e0i)(EME e~i)f(/3i . /3k)EI ...E~

For a certainnormalizationthefollowing asymptoticexpressionshold:

g#(/31.../3k/3~~1+A.../3/+A)

, g#(/31. . . ~ ~ (ha)
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if QI/31 . . . = 0, with Q the topologicalchargeand

/3k~/3k+1 + A,... ,/3~+ A)E EkEk±l E~= O(e~
2~). (lib)

if Q~131.../3k)E...Ek*O.
Eqs. (lla,b) are very important becausethey allow us to write down a virial

expansionfor the scalingdimensionof exp(i%I~7~).An exampleof this expansionis
given in sect. 4. The explicit formulasfor breatherform factorswill be given later;
the formulas for soliton form factors can be found in refs. [6,8]. Using these
explicit formulasonemakessurethat the asymptoticexpressionshold if

~ =

g~(/3
1.../3~)=~

Theseformulasclarify the origin of the quantumequationof motion (1).
The last pair of operatorswe will deal with is cos(%/~çt/2)and sin(~/~q/2).

Their form factors will be denotedby h ~, h —. For a proper normalization they

satisfy asymptoticexpressionssimilar to eqs.(iia,b).
Let us presentexplicit formulas for breatherform factorswhich are important

for what follows. To this endwe first define someauxiliary objects.
The function ~ is given by

2117m2 sinh~~(p+ +i~(mI — m2 — 2j))~/ (13)=cmIml

ml!fl2flrnl±m2—I cosh~(/3+ ~i~(m
1 +m2—2j))

sin
2~k(/3 + ini)cosh(~(in— ~m

1)k)cosh~ sinh~m2k
xexp4f . . dk

o k sinh~k cosh+irk sinhink

1~m2cosh~ink sinh~k — cosh(~— ~m1)kcosh~k sinh~m2k
c =exp2l dkmIm2 Jo k sinh~k coshkirk sinhirk

For m1 > m2,

‘~1Itfl2($) = ~‘~2mI(/3)

This function satisfiesthe equations

~<11m2(/3)~~nIm2(/3) = ~ ~/3) = ~,~(f3 — 2iri),

— ~i) = ~‘(/3 — ~i~m2)~’(/3 — iT! +
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where

— U ~cosh~(/3 + ~i~(rn —2j))

- 2fl~ sinh~(/3+ ~i~(m - 2j))~

The functions FA(/3l . . . ~ . .. ~ are definedby the integral

k—i k—I k
FA(/3I.../3k)mImk(~) jdai...f dak_lflfl~m(ai—/3J)

Xflsinh(a1—a1)exp(A(E/31—~a1)), A.0,±1,

(12)

where ~m is the contourenvelopingthe points /3, + ~i~(rn1— 21), 1 = 0, 1,.. . , m~,.
Evidently, this function is antisymmetricwith respectto /3, /3~(i, .1 <k) if m, = m1.
The argument/3k seemsto play a specialrole becausethe integrationover is
absent.In fact this is not the case.Considerthe integralover a1. The integrand
decreaseswhen a —~ ~, thus this integralcanbe transformedinto

f daj—~---Ef da1.
“‘I P~J

The integrals over can be omitted due to the antisymmetrywith
respectto a1 .. . a~.1a1÷1.. . a~~. Thus the integral over a1 in eq. (12) can be
replacedby — “k da1.

So the integral (12)can be rewritten asfollows:

FA(/31.../3k)mI...mk=(~)k_IfI~,daI...Tdaj...fI;,dak~~(ai_/3l)

xflsinh(a~—a1)expA(E/31— ~a1) . (13)
i<1 i+j

Thesereasoningsshow that /3~.. . /3k participatein FA(/3l .. . /3ic)mi. . mk on equal
footing.

Using the functions and F,, we can define the form factors of the
operators3~A(ft), ~ (f~) (3~ are light-cone derivatives), sin /3~q,(h),
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cos/~ (h~):

fldmfl~m(/3i~/3j)F±(/3l.../3k)mmk
k==1 i<j

4 sin ~

M1 ~ if rnI+ +mk=O(mod2),
= . (14)

s1n~V’~-

if m1 + +rnkm 1 (mod2),

fldmJfl~,rnJ(/3i~/3j)FO(/3l.../3k)ml...mk
j=1 1<]

— h~(/3I.../3k)m ~ if rn1+ +mk=0(mod2), 15

— h(/3i...$k)mi m~ if rn1+ +rnk=i(mod2), (

where

rn—I 2sin~m\~”
2

dm = fl sin ~1c~(2 —~ J . (16)
1=1 iT /

Eqs.(14) needsomecomment.It is evidentthat f~ shouldbe connectedwith f ±

by the relations:

f~(/3l.../3k)rnmk=(~Mrne±$J)f±(/3I.../3k)mmk. (17)

So definitionsof f~ and f~/ shouldsatisfy the condition of self-consistency:

(~Mrn e0i)f+~(/3
1.. . ~ = (~M~e0i)f~(/31. . . /3k)rn ~‘ (18)

whichmeansthat 9~&= ~ Eq. (18) canbe provenusingthemethodsimilar to
the one used in ref. [7]. Thus eqs. (14) can be regardedas two equivalent
definitionsof f ~. The structureof f~ and eq.(18) ensurethat by dividing f~ by
(~Mmjexp(±/31)),one gets no singularities in addition to those of f~. The
structureof the singularitiescan be easily investigatedand eqs.(4), (7), and (8)
follow.
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The normalizationof h± is chosenin orderto satisfy eq.(11). The normalization
of f~ is chosenin such a way that

2iTi res fi~i(/3I,/32)mim
2 =

6mi,n

2Mmj e±P1,
—

in agreementwith eq. (9). To checkthe normalizationof f one hasto know the
2-solitonform factorwhich is [6, 13]

— , 1 tanh~/312
f (/3~~~ = 2~ coshiT/2~(/312+ iT!)

~
Xexp f k sinh~k sinhiTk cosh~k dk

This form factor satisfiesthe requirement
21r

2ini res
/32=13—IT:

which meansthat the topologicalchargeof thesoliton is equalto 2iT/ ~ On the

otherhand,dueto eq. (5)

res f(/3i’ /32)~i~= a
1f(/31)1.

/32==l3+wi—i~ 22

This equationfixes the normalizationof f~ in eq.(14).
Eqs.(14) and (15) are suitablefor virtual breathersdiscussedaboveaswell as for

physicalones,the squareroot (sin m~*’
2in eq.(16) for m > iT/a is understoodas

i(sin(iT — ~m))1~2.This choice is connectedwith the interpretationof the square

root (resS~_
1,~)~

2in eq. (7); for m > ir/~ the residueis negativeandwe interpret
(resS~_

1,1)
1”2as i(~res~

Let us turn to the constantsc and cp. Evidently, they can be expressedas
follows:

c~=2iT ~ f f(0,/3
2.../3k)1

2d/3
2...d/3k,

El ...Ek Pk>Pk_1> ... >02>0

c=48ir
2 ~ f f~(0,/3

2.../3k)I
2d/3

2...d/3k.
El...Ek /3k>Pk_l> ... >/32>0

It wasclaimedin sect. 1 that

c=1, cQl. (19)

Unfortunately, we do not know a method for the exact summation of the
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series.However, onecanpresentc, c,,~,for small ~ as a powerseriesin ~. Soliton

form factors give no contributionto the expansion,being of order O(e~”~)for
—* 0. Breather form factors f ±(/3~. . . ~ . . . rn~, give contributions of order

+ ... ±Efli~) so one only needsto use a few breatherform factors to calculate
c, cQ up to arbitrary power of ~. Such calculationswere performed up to ~
yielding

c=1+O(~4), cQ=1+O(~4).

Theseresultsprovide uswith good evidencein favour of eq. (19). Note that the
calculationequivalentto that of Cç

1~ up to ~ has also beenperformedin ref. [13].

3. Reductionsof the SG model for ~ = 2’IT/(2n + 1)

Consider the SG model for ~ = 2iT/(2n + 1). The spectrum of the model
containsa soliton and n breathers.The poles of the breatherform factors are
connectedwith n physical breathers and n virtual breatherswith numbers
n + 1,... , 2n. Onecan formally considerthe S-matricesdescribingthe scattering
of both physical and virtual breathers.These S-matricespossessthe important

property

S~~(/3)~2n+I-1,m(/3),

which means that the virtual i-breather(l>n) can be “identified” with the
physical(2n + 1 — 1)-breather.

We want to show that such an identification can be made for breather
form factors.Considereqs.(14) and (15). A direct calculationshowsthat for ~ =

2ir/(2n + 1) the following equationholds:

~Im2(/3) - An+i-m1,m2(/3)

2n + 1 ‘rri(m1 + rn2) — 2n + 1 iTi(2n + 1 — m1 + m2)
sinh /3+ sinh /3+

2 2n+1 2 2n+1

(20)

Let us evaluate FA(/3l . . . /3k)m!...mk. First, rewrite the expression for
FA(/3l . . . /3k)rnl...mk in termsof the variablesx1 = e

0i, t, = eai:

~

x [~ (t~— t,7) [Jt~~
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where

2ini
~m(ea,e/3)=e_a_/3~~(a_/3), w=exp(

2 1)’

and the contour i~m1envelops the points wm~’
2~b

1,p = 0, . . . , rn. The struc-
ture of the poles allows us to use the following trick: divide the integral over
by FI,~, 1(x,Th± 1(— 1Y~i— x~+ 1( — U

m~) and multiply the integrand by
U~~

1(t7”~ 1 — (~ 1)mpx~~~l)~The valueof the integraldoesnot changeafter that.
Thus the integral in the r.h.s.can be replacedby

1

U~1Uj+1(x~I(_1)mJ _x7~1(_1)mI)

~ (~)k~~ fdt1 ~“k dtk_l mj(tj’ x1)

xflfl~~1(t1,x1)fl(t7—t7)flt~, (21)
j=l l+j

iPm(t, x) =y~(t,x)(t
2~ I — ( h)mx2~1)

rn—i 2n—m

= fl (t+w’~2’x) fT (t_wm/’2_Jx).
j=1 j=1

Now the integrandin the integralover is regularat the point t,~= 0 andhasno
singularitiesexcept for the poles at the points b

1wmj/
2P. That is why all the

contoursy~.canbereplacedby thecontoury which envelopsthe points b
3wm1/

2~

andzero. Rewritethe function prn(tj, x

1) in the form

1
~m(tj, x1) = ~ x1) t,~ — (~ 1)

m~xJ’~’ (22)

On the contour y one has the inequality t~> x
3 which allows us to expandthe

denominatorin eq.(22),

— (~i)miX2n±1 = ~ (23)
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Note that after substitutionof eqs.(22) and(23) into the integral (21), the terms
with q > k — 1 canbe omittedbecausethe integrandvanishesfor —s ~ Thenone
can antisymmetrizethe integrandwith respectto t~ ~ 1 andobtain

1 1 k—i

— 1)m~— (~ 1)mux~1) ~,-j

xfdt1 . . . ~ fJ~i(t~,x1) 111 (t~
2— ~)t~l_ (2n+1): (24)

Eq. (24) is equivalentto

1
FA(/31.../3k)rnrn’~’ 2n+1 iT!

UI~<
1sinh 2 (/3~/3~+ 2n+i(mj+mj))

x (~)k_lfi,dal . .. f dak_l fl~i~1(a1—/31)fl sinh(a~—a1)

xexP((2n+1)~(k_2i)ai+A(~/3i_ ~ai))t (25)

where

rn—i 2n—m

I4’m(a) = fT cosh4(a + ~i~rn — 2j)) fT sinh~(a — ~i~(rn + 2])),
j=1 1=1

and F=(r,i-+ 2iri) with i-an arbitrarynumber.
Thefunctions ~/s~(a)satisfy the importantidentity

~I1rn(a) = ~12fl+1_~(a).

This identity togetherwith eq.(25) showthat the form factorof a C-evenoperator
(say f+), containinga virtual (2n + 1 — m)-breatheris proportional to the form
factor of the correspondingC-odd operator(f) containingan rn-breather.More
precisely,considerthe operators

B=A+i2_5/2~~, B*=A_i2_5/2~~,

iv~exp z—~—— , exp —-—i-—— . (26)
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Their form factorswill be denotedby f, f, h,Ii respectively.Evidently,

~ if rn1+ +rnk=0(mod2),

rn1...m5 —5/2 Y —

i2 —~—fm~~~ if rn1+ +rnk=1(mod2),

etc. Usingeq. (25) one obtains

f(/31../3k)ml...mkI2n+1—mkf(/31.”/3k)rnI...mk, (27)

f(/3I/3k)rnI...rn512n+l-rnk f(/3I.../3k)mm. (28)

The sameequationshold for h,h.
In sect.2 it wasmentionedthat for the proofof local commutativityonehas to

use eqs. (5)—(8) which guaranteethe cancellation of pole contributions. Eqs.
(5)—(8) link essentiallysolitonsandbreathers.However,for ~ = 2ir/(2n + 1) it can
be shown that due to the possibility of identifying physicalandvirtual breathers,
locality of operatorswhoseform factors satisfyeqs. (27) or (28) takesplacein the
soliton-free sector. This means that if we calculate the matrix elementof the
commutator[0(x11,x1), 0(0,0)], x~<0 takenbetweentwo soliton-free statesand
only use soliton-free statesas intermediates,it appearsto be equal to zero. The
pole contributionscanceleachotherdueto eqs.(27) and(28). It is very important
to note that the operatorwhoseform factorssatisfy eq. (27)appearsto be nonlocal
with respectto the operatorwhoseform factors satisfy eq. (28). Sowe havetwo

setsof local but not mutually local operatorsas wasclaimedin sect. 1. Thesetwo
algebrasof operatorsareequivalent. Let us denoteby ~ the algebracontaining
operatorswhoseform factorssatisfy eq. (27) (the secondalgebrais equalevidently
to 4~*)~Let us denoteby P the projection operatoron soliton-free sector.The
operator ~ = PBP is not local becauseits two particle form factors havepoles.
The local operator ‘~~E canbe obtainedfrom ~,

=

This operator is equal to the energy—momentumtensor of the reducedmodel
(RSG(2/(2n + 1))). Note that

M~

~
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Obviously, the operator /~ = f~7~(x)dx is the well-defined energy—
momentum:

~/31”~/3k)m~...rn

5 (~Mm.(e13~+(_1)ke0l))I/3l.../3k)mlmk.

The samecan be said aboutthe operatorS1~’.
The existence of two equivalent but not mutually local RSG (2/(2n + 1))

models is connectedwith the violation of C invariance which occurs in the
SGmodel (the 1-breatherhasnegativeintrinsic C parity). At the sametime SG T
invarianceis violated. The SG CT invariance is not violated. Does it meanthat
RSG (2/(2n + 1)) is not C and T invariant? Strictly speakingnot. One can

consider1-breathersin the reducedmodel as particleswith positive intrinsic C
parity. Then RSG (2/(2n + 1)) is C invariant. One can also redefinea~1(/3)as
ia7~~(/3)• Then, due to anti-unitarity of T, the theory appearsto be T invariant.
However, RSG (2/(2n + 1)) possessessome strangefeaturesfrom the point of
view of canonicalfield theory. The symmetryof the S-matrix is richer than that of
off-shell theory: on shellwe canconsiderthe 1-breatheras a particlewith negative

C-parity,but thenwe destroythe locality. Thesestrangefeaturesof the theoryare
connected,in our opinion, with the following circumstance:the operator~ is not
local in RSG (2/(2n + 1)); we cantake asinterpolatingfield for the 1-breatherthe
field ,9. The propertiesof and of the particleit interpolatesare different

(5~ is not seif-adjointandcannot be madeseif-adjoint without lossof locality).
So we deal with the interesting phenomenonwhich is worth consideringin
frameworksof canonicalaxiomaticfield theory.

Let us considerone of the equivalentRSG (2/(2n + 1)) theories;namely that
which has as energy—momentumtensor.The operatoro = P exp(i~/~q/2)P
is local in this theory. Can wepoint out other local fields?First of all we cantry to
definethe densitiesof higherconservationlaws by their form factors

~ (29)

(see eq. (10)). In contrastwith SG, where every odd spin is allowed, in RSG
(2/(2n + 1)) we also havethe restriction s * 0 (mod2n + 1) becausethe integrals
with spins(2n + 1)P are identically equal to zero. Everyoperator(say a-) has an
infinite numberof local descendants

l9tkl IkallI . a~1~- (k,, 1, * 0 (mod2, 2n + 1)).

Let usconsiderthe problemof the ultravioletbehaviourof the RSG(2/(2n + 1))
model. We haveto calculatethe centralcharge:

[Y~0(O,x1),Y~1(O,0)J =

24iT
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According to eq. (26) one has

(2n + 1)2
c=(1_c(~))—3 2n+3 (1—cr),

wherec~andc~aresoliton contributionsto c andc,~which havedisappearedin
the reducedmodel.Soliton contributionsareof orderO(e~)for n —~ cc, hence

(2n+1)2 1
c=1—3 +0 — . (30)

2n+3 n

It is natural to supposethat eq. (30), being correct to every order of the 1/n
expansion,is precise(c~and ~[(2n + h)2/(2n+ 3)]c~canceleachother). So we
supposethat

(2n + 1)2
c=1—6

2(2n + 1)

This valueof the centralchargecorrespondsto the minimal CFT which describes
the ultraviolet limit of RSG (2/(2n+ 1)).

At this point an intriguing analogywith refs. [14, 15] arises.In thesepapersthe

energy—momentumtensor

1 1 (p—q)+ i~—~= ~_ ~

for the descriptionof Mp/q modelsis introduced(q’ is the free masslessfield).

One need also to introduce screeningoperators[14, 15]. RGS (2/(2n + 1)) is a
massiveperturbationof M

2/(2~±3);the energy— momentumtensoris expressedin
the form (26) through the SGfield ~ which is free in the ultraviolet limit. Thus
restrictionof SGto the soliton-freesectorshouldbe equivalentto the introduction
of screeningoperators in the ultraviolet limit. It would be very interestingto
developthis point in detail.

Let us turn to the anomalousdimensionsof operatorsin the ultraviolet limit.
Thereare n primaryfields in M2/(2~+3)with dimensions

— (k—1)(2n+2—k)
2(2n+3)

Usually these fields are denoted as
4~1,k- The dimensionsof the operators

exp(i~/~p)and exp(i%i~/2) in the SG model are equal to 2/(2n + 3) and
1/2(2n + 3) respectively.The abovereasoningsshow that it is natural to suppose
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that the dimensionsof the operators9~= (M~/4sin~)P exp(i~/~q~)Pand a- =

P exp(i1/~/2)Pcanbe calculatedusingthe procedureof ref. [15]:

2 [ 2(2n+1)
2 2n—1

= 2n + 3 — ~ 2(2n+ 3)(2n + 3) = — 2n + 3’

i [ (2n+h)2 n

~ 2(2n + 3) ~ 2(2n + 3)2(2n+ 3) 2n + 3

These dimensionscorrespondto the fields ~ /1,2 respectively. Thus RSG
(2/(2n + 1)) is a perturbation of M

2/(2~+3) via the operator ~

4. The RSG (4) model

Let us consider in more detail the simplest reduced model RSG (4). The
spectrumof RSG (4) containsonly oneparticle(1-breather).The S-matrixis equal
to

sinh /3 + sinh2ii-i/3

sinh /3 — sinh2ii-i/3 -

My interest in RSG models arose from consideringthis S-matrix to which my
attention wasdirectedby V. Fateev.The pole /3 = 2n-i/3 correspondsto a virtual
2-breatherwhich is identifiedwith a 1-breather.Note that the residueat thispoint

is negative,i.e. the three1-breathervertexis imaginary.This is one moreamusing
featureof reducedmodels.

Let usrewrite for this particularcaseeqs.(14), (15) and(25):

sin
24(/3 + iri)sinh 1rrk sinh4rrk

= 2coth 4/3 exP(4f k sinhiTk co:h 4iTk dk)

tanh 4/3~/(/3),

~ sinh4i-rk sinh4ii-k
c=exp 21 dk

Jo k sinhirk cosh4irk

Eqs. (25) appear to be very effective for RSG(4):

FA(/3J .. -/3k) = ~, <, S~fl~/3, — ~ exp( — 4(k — 1 — 2A) ~/3

1)P5(e01. . .

(31)
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where

P5(x1. .. Xk) = (~)k_hidtl ... f dtk_I fT (t1 +x1) fl (t7 — t~) fltj’~
3’.

The polynomials PA(xl .. - xk) can be rewritten as the determinant of (k — 1) x
(k — 1)-matrices MA with the following matrix elements:

(MA)~J = u
31_21_A(xl - . - xk), i, j = 1,...,k — 1,

where a-1 is an elementary symmetric polynomial (a-1 0 if / < 0, l > k). It is easyto
show that

det M0 = ffla-k_IP,

det M1 = a-1cr0P,

detMl=a-ka-k_IP, (32)

where P = detM, M is a (k — 3) x (k — 3)-matrix with the following matrix ele-
ments:

~IJ=a-3I2f+l(xl...xk), i,j=1,...,k—3.

Eqs. (31) and (32) meanthat for 4 =

2ir/3 the following notable identification
holds:

Pexp(±i~q~)P=Pexp(±i’/~q/2)P. (33)

This identification is very important for the ultraviolet limit. This limit coincides
with the theoryM

2/5, in which the operators&,2 and ~ shouldbe identified
because~2 = z13. Eq. (33) carriesover this fact to the perturbedmodel.The M2/5
theory is the simplest CFT becauseit contains only one primary field. The
perturbedtheory RSG (2/(2n + 1)) also shouldpossessunique propertiesand is
worth specialinvestigation.

The form factors f(/31 .. - /3k) can be written as follows:

d”~ — sinh4/3,1

4sin~ ~ 2cosh4/3d sinh 4(/3~ — 2iri/3)sinh 4(/3~ — 2iri/3)

(f(/31.../3k)’ ki~0(mod2),
xPk(e01...e13k)exP(_ 2 L/3j) ~f(/31.../3k), k~1(mod2),
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where

d = c’~23’~42~ir’~2, P
1(x) 1/x, P2(x1x2) 1/(x~ +x2).

The form factorsof the operatorci = (4sin~/M~)T~ are equalto

Consider the euclidean Green function

K0Ia-(z,2)ci(0,0)I0) = ~ ~ fH~(/3~ .. - /3~)e~ ~ d/3~- . - d/3k, (34)

where p = (z2)”
2, and

Hk=(_1)kh(/3l.../3k)h(/3k.../3l), Hk>O

is a symmetric function of its arguments.We believe that the ultraviolet limit of
RSG (4) coincideswith M

2/5, which implies that

(0Ja-(z,2)a-(0,0)I0)~~p
4”5.

It would be very nice to obtain this resultdirectly from eq. (34). A straightforward
investigation of the series (34) can not be very fruitful becausethe kth term
behaves as (In pY’~when p —s 0, and one has to sum the series of increasing
logarithmsto decreasingpowers.However,the equation

Hk(/3l - . . /3~P~+~+A .. . /3k +A) H
1(/31 . . ./3l)Hkj(/3l+I . ../3k) + O(e~),

(35)

(see eq. (11)) allows us to apply a variant of the virial expansionas has been
claimed in sect. 2. Let us demonstrate the techniques on this particular example.
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Let us takethe logarithmof the series(34):

InK0Iu(~,z)a-(0, 0)~0)= — E f~k(/3I .. /3k)e_~05h0J d/31.. - d/3k,

k (1)k+v 1
Hk(/3l.../3k)— ~

q=1k=k1++k~ q ki.k2....kq.

x H~(/31- . - /3k)Hk2(/3k1+l - - /3kt+k2)Hkq(/3kt± +kq_I+ 1 ---/3k).

The function Hk(/3l - - - /3k) is a symmetric function of its arguments.Due to eq.
(35) it has the property

Hk(/3l.../3l,/3/+l+A,...,/3k+A)—O(e), l*0,1*k. (36)

This is why the integral

fHk(/3l. ../3k)e_P0~/3ld/3l...d/3k

for p —* 0 behaves as

2lnpfHk(0,/32.../3k)d/32...d/3k.

The integral is convergentdueto eq.(36). Thus

ln(0Iu(z,2)a-(0,0)I0)‘~ —4i.lInp,

where

~

It canbe shown that H > 0, V/, so we havea seriescomposedof positive terms,
and one can check the equation ~1= — 4 by computercalculations.

5. Conclusions

The RSG(2/(2n + 1)) modelsdescribedin this paperpresentanexampleof a
very interestingphenomenon,which can be regardedas a kind of confinement.
Actually, we extract from SG theory, which contains solitons (fermions), the
subsectorwhich does not contain solitons but only their bound states(bosons),
preservinglocality of the theory.
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Let us discussfurther prospectsof the methodsdevelopedin this paper.The
equations

M~ M~
T~= 4 sin~ COS ~ Li = ~-_ ~ ~sin ~/~p

arevalid for arbitrary ~. Let usconsiderthe tensor

= ~ + i22~5TE~~EEEa~
t~

The centralchargeof the tensor is equalto

y y 8ir
c= 1—

6ir-———= 1—6 + ——2
8~2 8ir y

where ~ = yir/(8ir — y). If ~/ir is rational(~/ir =p/(q —p)), then

(p —

c=1—6
pq

i.e. it coincideswith the centralchargeof the model Mp/q. At the sametime

- M~

= 4sin ~ exp(i~/~q).

In the ultraviolet model onecan introducescreeningoperatorsandrestrict the
free model to the model Mp/q. The dimension of exp(i-~/~q~)then becomes
(2p — q)/q, i.e. exp(i%/~)leadsto the primary field 4~.

It is naturalto supposethat for every rational ~=p/(q —p) one canconstruct
the reduction of the SG model which describes the perturbation of Mp~qvia the

operator fr

13. The reducedmodelsRSG (2/(2n + 3)) considered in this paper
shouldbethe simplestexampleof the phenomenon.In general,we shouldbe able
to constructthe modelsRSG(p/(q —p)) for arbitraryp, q.

What kind of limitationsshouldbe imposedon the spectrumof SG to get RSG
(p/(q —p))? The case p = 2, q = 2n + 3 seemsto be unique: only in that case
solitons can be completely omitted. Usually, only some limitations on soliton
degreesof freedomshouldbe imposed.BazhanovandReshetikhinclaimedthat it
is possibleto use the RSOS [16] restriction of the SG soliton S-matrix as the
physical S-matrixof somerelativistic model (private communication).It seemsthat
this limitation is just what we need. The RSG models are of special interest
becausethey describethe perturbationof “positive” modelsM~consideredin
ref. [1].
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From the point of view of statisticalmechanicsthe SGmodel is the scalinglimit

of Baxter’s 8-verticesmodel [17]. The critical 8-verticesmodel hascentral charge
equal to 1 (evidently, it coincideswith the ultraviolet limit of SG). So we havea
diagram

scaling p —,0

8-verticesmodel SG —s masslessfree field.

Fora rationalcoupling constantonecanrestrictthe 8-verticesmodel to obtain the
RSOS model [161. We can also restrict the c = 1, model to get Mp~q.Our
statementis that we shouldbe able to restrict also the SG model to obtain RSG
(p/(q —p)). Thus we shouldbe ableto obtainthe following restricteddiagram:

scaling p—~O
RSOS RSG(p/(q—p)) —s Mp/q.

Of coursethis diagramneedsfurther development.

I amgratefulto V. Bazhanov,L. Faddeev,V. Fateev,A. Kirillov, N. Reshetikhin,
L. TakhtajanandA. Zamolodchikovfor many stimulatingdiscussions.
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