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It is shown that for special values of the coupling constant a reduction is possible in the
sine-Gordon model which preserves the locality of certain operators. The reduced model
corresponds to perturbed M, ,,, . 1, models of conformal field theory. It is explained that for
any rational coupling constant, the reduction is possible which leads to the perturbed M,,,
model.

1. Introduction

Recently interest has arisen in massive two-dimensional field theories which give
nontrivial conformal field theories (CFT) in the ultraviolet limit. Zamolodchikov
has shown [1-3] that in certain cases massive perturbations of CFT [4] appear to
be completely integrable. Massive completely integrable field theories (MCIFT)
are much more complicated than CFT. However, great progress has been made in
the investigation of MCIFT. First, the theory of factorizable S-matrices allows us
to present exact S-matrices for these models [S]. Second, there is a construction
which allows us for a given S-matrix to describe exhaustively local operators in
MCIFT presenting all their matrix elements in the physical space of states [6-8]. A
good example of a combination of these methods with those of CFT is provided by
the 3-state Potts model. In ref. [3] it was shown that the corresponding scaling
model is completely integrable, being the perturbation of the Ms; CFT by the
operator with scaling dimensions (£, 2). The special character of the conservation
laws allowed us to confirm the validity of the hypothetic S-matrix of scaling theory
[9]. In ref. [10] the matrix elements of all the important operators in the theory
were obtained. With these it was possible to write down a convergent series for
correlation functions in the scaling model.

The present paper considers special reductions of the sine-Gordon model (SG)
which lead to nontrivial ultraviolet limits. Let us describe briefly the main results
of the paper; the details are given in sects. 2—4.

0550-3213 /90 /$03.50 © Elsevier Science Publishers B.V.
(North-Holland)
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The SG model is described by the lagrangian

2
=/ %(a#<p)2+ m—(cosﬂcp - 1) dx
Y

We use the renormalized coupling constant £ = 7y /(87 — ). In the SG model for
¢ < there are the following excitations: solitons which transfer the topological
charge and their bound states (breathers), the number of which being [7/£].

The S-matrix of the SG model was obtained in ref. [5]. The matrix elements of
local operators were calculated in refs. [6,8]. The operator ¢(x) is normalized by
requiring that the topological charge of a soliton is exactly 2mw//y. The
energy-momentum tensor 7,, is normalized in order that energy—momentum
obtained from 7, has proper eigenvalues (i.e. coincides with (1/i)d,). There is
also a natural method to normalize the operators cosy/y ¢, siny/y ¢ which will be
discussed in sect. 2. Provided the operators are correctly normalized, the following
equations are valid for the quantum model:

V2eM?
cos‘/‘(p, Oe= ‘/_Slngsm‘/?qo, (1)

T
“4” Zsin £

where M, is the mass of the lowest breather (M, = 2M sin(¢/2), M is the soliton
mass). The commutators of local fields have the following leading singularities at
the origin of coordinates:

[o(6), 00O =ie (), [Tl ), To(O)] = 3,=6"() + ...,

where x is a space variable. The central charge ¢ of the SG model should be equal
to 1. We believe also that in our normalization ¢, = 1. These assumptions are
discussed in sect. 2.

The principal result of the present paper is the following. For § =27 /Qn + 1) a
reduction is possible in the spectrum of the SG model which preserves the locality
of some operators. This reduction means contraction of the model to the soliton-
free sector. Denote the projection operator on the soliton-free sector by P. The
reduction of an arbitrary operator is POP. The operators PT,, P and PP are not
local but the operator

Y
I, =P|T +i2_5/2f£ €,,0,8, 0P

ny umy é: pup Yy tu

is local:

[ T (X095 %), Z,(0,0)] =0, x2<0.
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The operator .7, % is also local but .7, and .7 * are not mutually local:

[ (x0:%1), Z,%(0,0)] 20, xZ2<0.

More generally there are two algebras of local operators .# and .#* which are not
mutually local. So we are dealing with two equivalent field theories. We have an
amusing situation when the energy-momentum tensor is not self-adjoint and can
not be made self-adjoint without loss of locality. At the same time energy and
momentum are self-adjoint and energy is positive. The situation undermines the
usual views, in particular it demonstrates that the definition of positivity accepted
in CFT [11], which is nothing other than the assumption of self-adjointness of the
energy-momentum tensor, does not necessarily correspond to the principal ideas
of positivity of energy and unitarity of the S-matrix.

The above reasonings show that there is nothing strange in the fact that the
central charge of the reduced model is equal to

] Qn+1Y
2(2n+3)

for £=27/(2n + 1), and that it corresponds to the “nonpositive” [11] minimal
models of CFT, M, ,,,. ;- The model M, ., 3, contains the primary fields with
scaling dimensions

(I-1D(2rn+2-1)
T 22n+3) ’

A= I=1,2,....2n+2.

Evidently, 4,=A4,, , ;_,. All these dimensions are negative, which is unpleasant for
CFT itself (because of the increase of correlations) but quite satisfactory for the
ultraviolet limit of the massive theory. This fact only means that the correlator of
the primary field goes to zero according to a power law near the origin of
coordinates, but decreases exponentially at large distances due to the massive
spectrum of the model.

Using eq. (1) one can easily show that

M2
ML .
D = Jsin £ Pexp(l\/;(p)P.

The scaling dimensions of .7, are (=(2n —1)/Q2n +3), — 2n — 1)/(2n + 3)). So
from the point of view of ref. [1] we are dealing with the perturbation of M, 5, . 3
by the operator of the kind (1, 3). The calculations done in ref. [1] do not depend
on the “positivity” of the model; they are quite appropriate for any minimal
model. According to ref. [1] the perturbed model possesses higher conservation
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laws with arbitrary odd spins. Part of these conservation laws is equal to
zero in concrete cases. As will be clear later, in the reduced SG model for & =
27 /(2n + 1) only those conservation laws occur whose spins are odd and are not
multiples of 2n + 1.

2. The sine-Gordon model

As has already been noted, the spectrum of the SG model involves solitons
transferring topological charge with mass M, and their bound states (breathers).
There are [7r/£] breathers, their masses being M, = 2M sin(¢j/2). The soliton is a
two-component particle (soliton—antisoliton); the soliton—soliton S-matrix is

1 1= sinh BB /&
SLB =SB, S, L(B)= = SuB) g e

sinh w2 /¢

5 sinh (B —mi)/¢’

)

H(B) = 5u(B)

S(B)=STHZIHB),  SIHB)=0, e te,#eites,

€182 —&) —&y g€,

© . . l _
s _ . = sin kB sinh s (o — §)k
o(B) = exp lfo k sinh 3¢k cosh 37k

dk |,

where 8 =g, — B, (B,, B, are the rapidities of the solitons), £, ¢,, €], €4 are equal
to + 3 and characterize the isotopic states of “in” and “out” particles.

The soliton-m-breather, and m -breather—m,-breather S-matrices are scalar
ones:

™ jcos 3¢+ sinh( B — Lie(m + 1 - 2j))

S.(B) = /:I_[l i cos 3¢ — sinh( B — Lig(m +1-2j))

Srnng(B) = coth%(ﬁ - ig(m, +m2))tanh%(3 + Lig(m, +m2))coth %(B - Ligim, —m2|)

min(m, my)—1

Xtanh (B + 3ié|m, —m,|) l—[ tanh? 5( B+ Yié(|m, —m,| +2j))

j=1
Xcoth® 3( B = 3i&(jmy —m,| +2j)) .

There is an involved hierarchy of bound states. First, the soliton and antisoliton
create an m-breather when the rapidity shift is (7 — ém)i; evidently, the point
(m—ém)i lies on physical sheet 0 <Im B < only for m < /& Second, the
soliton and the m-breather create a soliton when the rapidity shift is $(7 + £ém)i.
Third, the m - and m,-breather create an m, + m, breather when the rapidity
shift is 3i(m, +m,)¢.
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It is clear that beside the poles which correspond to these physically clear
possibilities the soliton—-breather and breather—breather S-matrices have many
additional poles. It is well known that singularities of the S-matrix are connected
with the possibility to construct reduced graphics [12]. The additional poles of the
S-matrices correspond to the processes which involve “physical particles” as
intermediate ones. Consider for example a 1-breather—1-breather S-matrix

sinh B + sinh i§

Su(B) = sinh 8 — sinhi¢
For ¢ > /2 the 2-breather disappears but the corresponding pole B = i¢ does not
leave the physical sheet. The same can be said about the crossing pole g = (mr — £)i.
This phenomenon is explained as follows: for 7 > £ > 1 /2 the inequality M > 2M?
holds, which provides the possibility to construct the reduced graphics for 1-
breather—1-breather scattering which involves “physical solitons” as intermediate
particles. In a certain sense it can be said that the 2-breather exists for = > £ > 7 /2
as a virtual state; the precise meaning of this interpretation will be clarified later.

Let us pass to the local operators. In refs. [6,7] all the matrix elements (form
factors) of the operators 7,,, ¢, exp( +iy/y ¢ /2) were obtained. These form factors
satisfy the system of axioms [7, 8] which guarantee the locality of operators. The
form factor of an operator is the analytic continuation of the matrix element

(010(0,0)1B,--- B, e,

from the range B, > B,... > B, to all values of the arguments. We denote the
form factor by f(B,...B)e,...,- For the SG model the indices can be equal to
1 (soliton), — 3 (antisoliton), and m (m-breather). A relation can be derived which
expresses the matrix element taken between two arbitrary states in terms of form
factors f(B,...8:) [7,8l.

The form factor as a function of B, has simple poles corresponding to bound
states in the strip 0 < Im B, <, crossing poles in the strip 7 <Im 8, <27, and
annihilation poles at the line Im 8, = 7. Three main axioms are

(1) FBrovBis Biwt e Bererernron S (Bi= Bisi)
=f(Bl‘"Bi+l7Bi"'Bk)£|.4.£{+ls{.“ek' (2)
Sf”;',i is diagonal when the ith or (i + Dth particle is a breather.
(H) f(Bl---Bk-th"’27Ti)s,...sk,,sk:f(Bk7B1---Bk—1)sksl...sk,1, (3)
(111) res  f(BieBi)ey..o
=Byt

1 ’ o
= Zﬂ.l‘cfkgf(flf(ﬁl e Bk*Z)Ei..,g,@AZ[ggl] .. 6;::11 - S:fgllEl(Bk—vl _Bl)

XS By — By) STk (B —3/(-2)] . (4
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In the presence of bound states the set of axioms should be supplemented with
expressions for the residues at the poles which correspond to bound states. For the
SG model these expressions are given by

& res f(By---Be-1Bi)e,...ep -4
zamf(ﬁl"'ﬁk—z’Bk_l + %('m' —i§m))€]msk4m’ (5)
with
Bi=Bi tmi—iém, mz>1,
where
5\ 1/2
a, = ESO(wi—ifm);sin? :

(II) resf(ﬂl"‘Bk—l’Bk)sl...ekV2%m
=alb f(By.. By +ik(m—p), By +5(mi=&ip)),, 1, (6)

with
Bi=Bi_+3mi+3ié(m—2p), p=0,....m—1,
where
f(ﬁ1 e Bk—lBk)sl...sk_IO Ef(B] e ,Bk—l)s,...g,(,l »
ab,=2mwa), ,a,,_,,, p>0,
1 1/2

G\ 2t P

a,, m, Will be described later.

(111) resf(ﬁ]".'Bk-27:Bk—lﬁk)el“.sk_zmlmz
= ar[;”mzf(:Bl o Broy T 3i€(my—p), Bry

+%l§(m1 _P))sl‘uml*-mz*lhp (7)
with

Bi=Bi 1+ 3ié(my +my,—p), p=0,...,min(mm,) -1,
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where
P o=
am1m2 Zwamlmz*Pamz—Pvl’ ? p > 0’
1 1,2
Qs = res Snm B)

2mi p=litim, +my)
(Iv) resf(Bl"‘Bk*ZBk—I’Bk)F]...sk,hzmlmz

~ 1. .
= arliz]mzf(Bl . 'Bk—l + 3l§p’ Bk*l + i

1.
_Elg(ml +m2_‘Zp)):-,...q,z,m,‘p,mz—p’ (8)
with
Bi=Bi_1 +wi—zié(m; —m, —p), p=1,...,min(mm,) =8y
where
Ty = 2T —p p Oy -

The physical meaning of some of the poles is quite clear, for example the
soliton—soliton pole at 8, =B, _, + wi —i{m corresponds to the creation of an
m-breather, the m,-breather-m,-breather pole at g8, =8, _, +ié&(m,; —m,)/2 cor-
responds to the creation of an (m, + m,)-breather. Other poles correspond to
more complicated processes, for example, the m,-breather—m,-breather pole at
By =B,_, +i&(3(m, + m,) — p) corresponds to the decay of an m ,-breather into a
(m, — p)-breather and a p-breather, followed by the creation of an (m, + m, — p)-
breather by an (m, — p)- and an m -breather. The kinematical possibility for these
poles to appear is provided by the inequality (M%~1)2 + (M¥)2 > (M*-D)? 4
(M¥N2 where M®, M*=D and M%), M%*-D are the masses of kth and
(k — Dth particles in the left- and right-hand sides respectively.

It is worth noting that for particular values of the coupling constant, the r.h.s. of
eq. (7) loses its direct physical meaning. Consider for example the case ¢ > 7 /2
which has been treated in connection with singularities of the breather S-matrix.
Consider the form factor for which both the kth and (k — 1)th particles are
1-breathers. The pole at the point 8, =B,_, +ié corresponds as well as in the
S-matrix to more complicated processes than just the creation of a 2-breather,
which is absent for ¢ > 7 /2. However, we preserve eq. (7) in this case, interpreting
a 2-breather as a virtual particle which does not appear in asymptotic states.
Eq. (7) can be considered as a definition of a virtual 2-breather for ¢ > w/2. An
essential requirement is that all possible definitions of virtual particles must
coincide. For example, the same 2-breather can be obtained as bound state of
solitons at the point B, =8, _, + mi — 2i¢ (5), which for £ > 7 /2 lies out of the
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physical sheet. Such an understanding of virtual particles ensures locality. Let us
discuss the point in more detail.

The local commutativity theorem in the absence of bound states has been
proven in refs. [7,8]. This theorem states that the operators defined by the form
factors are local, provided the form factors satisfy the axioms eqs. (2)-(4). The
proof is rather straightforward. Consider the commutator [O(x, x,), O(0,0] (x,, is
space-like). For the products O(x)O(0) and O(0)O(x) one can write down decom-
positions into the sum over all the intermediate states. The contours of integration
in the integrals over the rapidities of intermediate particles for O(x)O(0) can be
transformed in such a manner that the integrals turn into those for O(0)Q(x). The
SG model possesses bound states. That is why one meets the poles of the
integrand by deforming the contours. So one has to show that all the pole
contributions cancel each other. That is not the case for terms which correspond to
the same intermediate state. It can be shown however that egs. (5)—(8) ensure the
cancellation of poles after the sum over all intermediate states is taken. The virtual
particles do not occur in physical states but they appear in pole contributions. The
requirement that all the possible definitions of these particles coincide provides
the cancellation of pole contributions. For example in the case 7> ¢ > 7 /2 the
pole contributions involving virtual 2-breathers obtained from two 2-breathers and
from two solitons cancel each other. For ¢ = 27 /3 however, a virtual 2-breather
can be identified with a 1-breather, and for certain operators locality holds in the
soliton-free sector. This situation will be considered in the next sections.

Let us consider physically important operators. The energy—momentum tensor
can be presented in the form

T, =¢

By freTe

£,,0,0,A4,

woow

where A is nonlocal operator. The form factors of 4 will be denoted by f*. The
form factors of 7, can be easily expressed in terms of f*. For example, the form
factors of T, are equal to

(TM, sinh ) (Byr-Ber s

where M, ,, =M. The form factors f* are normalized in order that [Ty,(x)dx,
coincides with the hamiltonian, which requirement is equivalent to the condition

Ce

1€

res ((Msl sinh B] +MEZ sinh B2) :IFB(BIBZ)) =

By=p,+mi

M, sinh B,. (9)
2mi !

Operator 4 generates all the densities of higher conservation laws in the theory.
In the SG model there is an infinite series of conservation laws with arbitrary odd
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spins s (I, I). The eigenvalues of these integrals are

LIBy - Bideyey= (MO €)By - Biey v

Il

LiBy- By o= (MO e )By . B, s (10)
where M =M, M =2Msin(sm¢/2), s is odd. The local densities of these
integrals are

9,9, A4, 90, A,
where f,,f, means “times” associated with I,I. The form factors of these
densities are equal to

(ZMg(js)eijﬁf)( ZM&:] sinh B,')f+(31 Sy ﬁk)sl...sk'

The operators 1,, I, coincide with P, + P,, P, — P,.

The operator ¢ is not local due to the existence of solitons transferring
topological charge. True local operators are the topological currents j, =¢,,9,¢
whose form factors can be easily expressed in terms of ¢ form factors. We will
denote form factors of ¢ by f~. Form factors f~ are normalized by the condition

res ,f7(3132)§,—%: 277/‘/;’

By=B+i

which means that the soliton has proper topological charge.

The operators 0 4 and O¢ coincide up to a coefficient with cosﬁ ¢ and
sin\/? ¢. How could one normalize the form factors of cosﬁ ¢ and sinﬁ ¢? The
recipe is the following. Let us denote the form factors of cosyy ¢, sinyy ¢ by
g", g respectively. They coincide up to normalization with

(ZMEJ- CB/)( ZME‘,- e_ﬁj)f+(Bl et Bk)t‘lu.gk ’
( ZMsj eB/)( ZMsj e_'Bj)fg(ﬁl s Bk)b‘] LER
For a certain normalization the following asymptotic expressions hold:

g5 By BiBrsi t A B+ A,

——>g#(31 e Bk)al...skg#(ﬂk+l"'Bl)ek+]...s,’ (11a)

Ao
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it QIBy...Bi)e,..., =0, with Q the topological charge and
g#(Bl s Bka Bk+1 +A’ AARS B[ + A.)El...sk2k+1.“£1 = O(e*‘ITA/2§) . (11b)

if Q|B] "‘Bk>£|...ek # 0.

Egs. (11a,b) are very important because they allow us to write down a virial
expansion for the scaling dimension of exp(iy/y ). An example of this expansion is
given in sect. 4. The explicit formulas for breather form factors will be given later;
the formulas for soliton form factors can be found in refs. [6,8]. Using these
explicit formulas one makes sure that the asymptotic expressions hold if

£ (BB = g (S M, ¢) (DM, e 0)1 (81 8.

B ﬁsinf , A
4 (Bl"'Bk):TEM—Izg(EngeB’)(Znge B,)f (BlBk)

These formulas clarify the origin of the quantum equation of motion (1).

The last pair of operators we will deal with is cos(\/}7 ®/2) and sin(y/y ¢ /2).
Their form factors will be denoted by A*, A~. For a proper normalization they
satisfy asymptotic expressions similar to eqs. (11a, b).

Let us present explicit formulas for breather form factors which are important
for what follows. To this end we first define some auxiliary objects.

The function ., ,, (B) is given by

l_I’”'O”’Zsmhz(ﬂJr 3ié(m, —m, —2j))
"I cosh 3 (B + 3ig(my +my = 2))

Xexp(4fmmwwmmmm )

Fmm{B)=c¢

k sinh 3 &k cosh 37k sinh 7k

oo m, cosh 37k sinh 1k — cosh(im — £m, )k cosh L&k sinh 2ém gk
Crnym, = €XP 2} .

k sinh 3£k cosh 37k sinh 7k

For m, > m,,

mlmz(B) mzml(B)'

This function satisfies the equations
mlmz(B)Smlmz(B) mlmz( ﬁ) ZL/,'nlmz(ﬁ_Z’ITl),

ik B) I m A B = i) =@, (B = 3i€m,) o, (B — i + 3ém,),
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where

172" cosh 3(B + 3ié(m — 2j))
2M17 g sinh 3(B + 3ié(m = 2j))

en(B) =

The functions F\(B;...B)m,...m, are defined by the integral

1 k1
F/\(Bl Bk)m, my (_) frdal"'f dak—l_

2mi oy I i=1 j=1

X [ Isinh(a, — aj)exp(/\( YB— Zai)), A=0,+1,

i<j

where I, is the contour enveloping the points g; + z§(m -2D,1=0,1,...,m,.
Evndently, this function is antisymmetric with respect to g8; g8; (i, j <k) if m;=m;,.
The argument B, seems to play a special role because the integration over I, is
absent. In fact this is not the case. Consider the integral over «;. The integrand

decreases when a; — o, thus this integral can be transformed into

daj—> - Z/ da;.

J
mj P#j le’

The integrals over I, ...I,,  can be omitted due to the antisymmetry with
respect to «;. a] lozﬂ,1 ...a,_,. Thus the integral over a; in eq. (12) can be
replaced by — f I,

So the mtegral (12) can be rewritten as follows:

k=1 ~
Fy(B, - [3k)m. my (—l‘) _[Idal---fdaj---f dakﬂﬁ"(“ —B)

2mi - L, i)

i<l

aninh(a[—a,)exp()\(Zﬁ,— Zai)). (13)

i#j

These reasonings show that ;... 8, participate in F(B;...B),, ., on equal
footing.
Using the functions ./, ., and F, we can define the form factors of the

operators 3,4 (f%), d,¢ (f3) (3, are light-cone derivatives), sin1y/y¢ (A7),
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cos vy e (h):

k
kl:[ I_I i (B = B L (Bye- By,

4sin
1“'ﬁk)m1...mk if m1+"' +mkEO(mOd2),

M,

N (14)
sin &Y'y
#f—#(ﬂl Bk)ml .ny, if my+ - +mk 1 (m0d2)

k
1:[ mm/(B B)FO(:BI Bk)ml..‘mk
h+(B]"'Bk)m|...mk if m1+ +mkEO(m0d2)’ 15
R (By - B)my..m, if my+ - +my=1(mod2), (15)
where
m—1 2si 172
d, = T1 sin¢lc;, W(i#fm) (16)
=1 ks

Egs. (14) need some comment. It is evident that f} should be connected with f*
by the relations:

FEBy- Bmyme= (Mo, € P)f By Bimy. o, - (17)

So definitions of f* and fZ* should satisfy the condition of self-consistency:

(Z M, e ™) fEBr - By = ZMy € )f 2By Bmy..my s (18)

which means that d,3_=09_d_. Eq. (18) can be proven using the method similar to
the one used in ref. [7]. Thus egs. (14) can be regarded as two equivalent
definitions of f*. The structure of f ¥ and eq. (18) ensure that by dividing f by
(EM,, exp(£B,)), one gets no singularities in addition to those of ff. The
structure of the singularities can be easily investigated and egs. (4), (7), and (8)
follow.
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The normalization of A is chosen in order to satisfy eq. (11). The normalization
of f* is chosen in such a way that

2mi tes  fL(Bi,B)mmy = O m,Mm €T,
Ba=B,+mwi

in agreement with eq. (9). To check the normalization of f~ one has to know the
2-soliton form factor which is [6, 13]

_ tanh 18,
- 2y coshm/2&(B,, + i)

f (BB 2

»sin’ 3(B,, + 7, )k sinh 2(m — &)k
X
cxp fo k sinh 1¢k sinh 7k cosh ;mk

This form factor satisfies the requirement

By=B)—mi

) 27
2mi  res ,f_(Bxaﬁz) = W )

which means that the topological charge of the soliton is equal to 27/ /y . On the
other hand, due to eq. (5)

res  f(B,B) ri=af (By)-
By=p +mi—if 22
This equation fixes the normalization of f~ in eq. (14).

Egs. (14) and (15) are suitable for virtual breathers discussed above as well as for
physical ones, the square root (sin m£&)"/? in eq. (16) for m > /¢ is understood as
i(sin(m — £m))'/%. This choice is connected with the interpretation of the square
root (res S, _ ,,,)’/ % in eq. (7); for m > 7 /¢ the residue is negative and we interpret
(res Sm_,,,)l/2 as i{jres Sm_,,,()l/z.

Let us turn to the constants ¢ and c,. Evidently, they can be expressed as
follows:

=27 % [ >0|f—(0,32.../3k)]2dﬂ2...dﬁk,

6. 85 Bk>Bi—1> - > B

c=487> Y [ >0]f+(0,32‘..[3k)]2dBZ...dBk.

£1...85 BkZBr—1> .- > B2

It was claimed in sect. 1 that

c=1, c,=1. (19)

Unfortunately, we do not know a method for the exact summation of the
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series. However, one can present ¢, ¢, for small £ as a power series in £. Soliton
form factors give no contribution to the expansion, being of order O(e~"/*%) for
& — 0. Breather form factors f*(B;...B)m,. . .m, give contributions of order
O(g™* 7 *7%) 5o one only needs to use a few breather form factors to calculate
¢,c, up to arbitrary power of £. Such calculations were performed up to &t
yielding

c=1+0(£), ¢,=1+0(¢).

These results provide us with good evidence in favour of eq. (19). Note that the
calculation equivalent to that of ¢, up to &3 has also been performed in ref. [13].

3. Reductions of the SG model for £ =27 /Q2n +1)

Consider the SG model for ¢ =2m/(2n +1). The spectrum of the model
contains a soliton and » breathers. The poles of the breather form factors are
connected with n physical breathers and n virtual breathers with numbers
n+1,...,2n. One can formally consider the S-matrices describing the scattering
of both physical and virtual breathers. These S-matrices possess the important
property

Slm(B) = S2n+l—l,m(B) 5

which means that the virtual I-breather (I >n) can be “identified” with the
physical 2n + 1 — I)-breather.

We want to show that such an identification can be made for breather
form factors. Consider eqs. (14) and (15). A direct calculation shows that for ¢ =
27 /(2n + 1) the following equation holds:

‘/;nlmz(ﬁ) _ /2n+1‘m1,m2(B)
o 2n+1 wi(m, +m,)\ 2n+1 wi2n+1—-—m, +m,)\ "’
sinh sinh == ==
2n+1 2n+1
(20)
Let us evaluate F\(B;...B)m,. ..m, First, rewrite the expression for

F{(B,-.-Bim,...m, in terms of the variables x; = e”, 1, = ¢*:

FA(BI"':Bk)ml...mkzexp(ZBj(/\_k))(ziﬂ_i) ‘ f dtl"‘[ dlk—ﬂomj(ti’xj)

Yo Vi

xI1 (tiz - tjz) I14,

i<j
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where
. B Caep 2
(Pm(e € )—6 (Pm(a B)’ W_exp(2n+l)a
and the contour Yo, envelops the points w™/ 2"’b p=0,...,m; The struc-

ture of the poles allows us to use the following trlck divide the 1ntegral over ¢
by I, " (=1 = x2""'(=1)") and multiply the integrand by

I1,. (7" = (=1)"»x2"*"). The value of the integral does not change after that.
Thus the integral in the r.h.s. can be replaced by

1
T T (627 (= 1) =277 (= )™

1 (¢! k—1
x(——) fdt]...f dtk_lquomj(tj,xj)

2mi Yoy Yo

x H Lo (000 T1(e7 = 7) T (21)

j=11=+j i<j

() =yt ) (12771 = (1) a2

2n—m

m—1
= [T G+wn?ix) T] (¢1=wm/?"ix).
j=1 '

j=1

Now the integrand in the integral over ¢; is regular at the point 7, =0 and has no
singularities except for the poles at the points bjwmf/ 2-P. That is why all the
contours y; can be replaced by the contour y which envelops the points bw™ /2P
and zero. Rewrite the function cpm(t x;) in the form

1
Qom—(t"x')zw .(t"x') n m; n .
A maA i tjz +1_(__1) /x]_z +1

(22)
On the contour y one has the inequality ¢;>x; which allows us to expand the
denominator in eq. (22),

1 o0
ti2n+l _ ("_l)mj'x]?n+1 =

(__l)qmjx](2n+])(q—l)tjf(2n+1)q. (23)
g=1
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Note that after substitution of egs. (22) and (23) into the integral (21), the terms
with g >k — 1 can be omitted because the integrand vanishes for ¢; — . Then one
can antisymmetrize the integrand with respect to ¢,...t,_, and obtain

k—1

1 1
M (27 1= D™ = (- D)™ ) (2’”’)
x [dty. [ At TTo(e, x) TT (7 =12y - enmi, (24)
t4 L4 i<j

Eq. (24) is equivalent to

1
F‘)«(Bl"'Bk)ml,_.mk= T 1 pp
Hi<j5inhT(B[“Bj+ m(mi'f'mj))
1 k—1
X (2—771) frdal...frdoz,h1 nd/mj(a,- —Bj)g sinh(a; —aj)
k—1
Xexp((2n+ Ny (k—2i)a,.+A(Z/3j— Zai)), (25)
i=1
where
m—1 2n—m
#(a)= T] coshi(a+3i¢(m—2j)) I1 sinhi(a—ig(m+2j)),
j=1 j=1

and I' = (7,7 + 27i) with 7 an arbitrary number.
The functions ¢, («) satisfy the important identity

lljm(a) = ‘l’2n+1—m(a) .

This identity together with eq. (25) show that the form factor of a C-even operator
(say f*), containing a virtual (2n + 1 — m)-breather is proportional to the form
factor of the corresponding C-odd operator (f7) containing an m-breather. More
precisely, consider the operators

5,2 ‘/;

B=A4+i2" ?go, B* =A—l.2*5/2'_g0,

(26)

.\/7790)’ exp(_i\/;qo)‘

exp(z 5
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Their form factors will be denoted by f, f, h, h respectively. Evidently,

r:l...mk if my;+ - +mk50(m0d2),
foioom, = Y
1 k 1‘2'5/2%f;1mmk ifml TN +mk—=—1(m0d2),

etc. Using eq. (25) one obtains

f(Bl s Bk)ml...mk_12n+1fmk zf(Bl' . 'Bk)ml...mk s (27)
f-(Bl ‘-'Bk)ml.A.mk,IZrH-l—mk = —f(Bl . '-:Bk)ml...mk~ (28)

The same equations hold for &, h.

In sect. 2 it was mentioned that for the proof of local commutativity one has to
use egs. (5)-(8) which guarantee the cancellation of pole contributions. Eqgs.
(5)-(8) link essentially solitons and breathers. However, for £ =27 /(2n + 1) it can
be shown that due to the possibility of identifying physical and virtual breathers,
locality of operators whose form factors satisfy egs. (27) or (28) takes place in the
soliton-free sector. This means that if we calculate the matrix element of the
commutator [O(x,, x,), 0(0,0)], xi < 0 taken between two soliton-free states and
only use soliton-free states as intermediates, it appears to be equal to zero. The
pole contributions cancel each other due to egs. (27) and (28). It is very important
to note that the operator whose form factors satisfy eq. (27) appears to be nonlocal
with respect to the operator whose form factors satisfy eq. (28). So we have two
sets of local but not mutually local operators as was claimed in sect. 1. These two
algebras of operators are equivalent. Let us denote by .# the algebra containing
operators whose form factors satisfy eq. (27) (the second algebra is equal evidently
to .#*). Let us denote by P the projection operator on soliton-free sector. The
operator % = PBP is not local because its two particle form factors have poles.

The local operator &, can be obtained from &,

Gy =6,,08,,83, B

uy up' w' Oy

This operator is equal to the energy-momentum tensor of the reduced model
(RSG (2/(2n + 1))). Note that

2

= T gPexp(iﬁgo)P.
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Obviously, the operator &, = [* .7,/ (x)dx is the well-defined energy-
momentum:

BBy BiYm..m, = (ZMmj(eﬂi+(~1)’<e‘ﬁj))lﬁl...ﬁk)ml_“mk.

The same can be said about the operator 7.

The existence of two equivalent but not mutually local RSG (2/(2n + 1))
models is connected with the violation of C invariance which occurs in the
SG model (the 1-breather has negative intrinsic C parity). At the same time SG T
invariance is violated. The SG CT invariance is not violated. Does it mean that
RSG (2/Q2n+ 1) is not C and T invariant? Strictly speaking not. One can
consider 1-breathers in the reduced model as particles with positive intrinsic C
parity. Then RSG (2/(2n + 1)) is C invariant. One can also redefine a, (B) as
ia% (B). Then, due to anti-unitarity of T, the theory appears to be T invariant.
However, RSG (2/(2n + 1)) possesses some strange features from the point of
view of canonical field theory. The symmetry of the S-matrix is richer than that of
off-shell theory: on shell we can consider the 1-breather as a particle with negative
C-parity, but then we destroy the locality. These strange features of the theory are
connected, in our opinion, with the following circumstance: the operator ¢ is not
local in RSG (2/(2n + 1)); we can take as interpolating field for the 1-breather the
field .7, ,. The properties of .7, , and of the particle it interpolates are different
(7,, is not self-adjoint and can not be made self-adjoint without loss of locality).
So we deal with the interesting phenomenon which is worth considering in
frameworks of canonical axiomatic ficld theory.

Let us consider one of the equivalent RSG (2/(2xn + 1)) theories; namely that
which has 7, as energy—momentum tensor. The operator o =P exp(iy/y ¢ /2)P
is local in this theory. Can we point out other local fields? First of all we can try to
define the densities of higher conservation laws by their form factors

(Z M es8)( Z MS) sinh B;)f(By-. Bm,...m, (29)

(see eq. (10)). In contrast with SG, where every odd spin is allowed, in RSG
(2/(2n + 1)) we also have the restriction s # 0 (mod 2n + 1) because the integrals
with spins (2n + 1)P are identically equal to zero. Every operator (say o) has an
infinite number of local descendants
Oy a0, O .00 (k;»4;# 0 (mod2,2n + 1)).
1 kp 1 [q

Let us consider the problem of the ultraviolet behaviour of the RSG (2/(2n + 1))

model. We have to calculate the central charge:

c
[‘7\00(0’)‘1)’ *701(070)] = m&”’(xl) +....



174 F.A. Smimov / Conformal field theory

According to eq. (26) one has

Qu+1)°
c=(1-c¢®)-3—"7(1-c¥),
2n+3 #

where ¢ and ¢§ are soliton contributions to ¢ and ¢, which have disappeared in
the reduced model. Soliton contributions are of order O{e ~") for n — o, hence

L fl)

=1-3 _
¢ 2n+3

(30)

o

n

It is natural to suppose that eq. (30), being correct to every order of the 1/n
expansion, is precise (¢ and £[(2n + 1)2/(2n + 3)]c$ cancel each other). So we
suppose that

e Q2n+1)°
- 22n+1)°

This value of the central charge corresponds to the minimal CFT which describes
the ultraviolet limit of RSG (2/(2n + 1)).

At this point an intriguing analogy with refs. [14, 15] arises. In these papers the
energy-momentum tensor

. (p—q)
2(0,0)(0.0) +im = “/—E—ew'ﬁuy'%@@

for the description of M, ,, models is introduced (¢ is the free massless field).
One need also to introduce screening operators [14,15]. RGS 2/(2n+ 1)) is a
massive perturbation of M, ,,, 3); the energy — momentum tensor is expressed in
the form (26) through the SG field ¢ which is free in the ultraviolet limit. Thus
restriction of SG to the soliton-free sector should be equivalent to the introduction
of screening operators in the ultraviolet limit. It would be very interesting to
develop this point in detail.

Let us turn to the anomalous dimensions of operators in the ultraviolet limit.
There are n primary fields in M, ,,, . ;, with dimensions

(k—=1)(2n+2-k)
2(2n +3)

Akz_

Usually these fields are denoted as ¢, ,. The dimensions of the operators
exp(iy/y ¢) and exp(iyy ¢/2) in the SG model are equal to 2/(2n +3) and
1/2(2n + 3) respectively. The above reasonings show that it is natural to suppose
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that the dimensions of the operators 7, =(M2/4sin £)P exp(iy/y ¢)P and o =

s

P exp(i\/? ©/2)P can be calculated using the procedure of ref. [15]:

4z

2 \/ 22n +1)° 2n—1
2

7w 2n+3 | 2@n+3)2n+3)  2n+3’
| 1 2n+1) n
7 2(2n +3) 22n +3)22n+3)  2n+3’

These dimensions correspond to the fields ¢, ;, ¢, , respectively. Thus RSG
(2/(2n + 1)) is a perturbation of M, ,,, . 3, via the operator ¢, .

4. The RSG (2) model

Let us consider in more detail the simplest reduced model RSG (%). The
spectrum of RSG (%) contains only one particle (1-breather). The S-matrix is equal
to

sinh 8 + sinh2wi/3
sinh B —sinh27i /3

S(B) =

My interest in RSG models arose from considering this S-matrix to which my
attention was directed by V. Fateev. The pole 8 = 27i/3 corresponds to a virtual
2-breather which is identified with a 1-breather. Note that the residue at this point
is negative, i.e. the three 1-breather vertex is imaginary. This is one more amusing
feature of reduced models.

Let us rewrite for this particular case eqs. (14), (15) and (25):

«sin? 2 (B + ri)sinh tk sinh Lk
#1(B) = 2coth 38 exp(4 [ == ) -
0

k sinh 7k cosh 37k

= tanh ;8.7(B),

( « sinh ok sinh Lk )
c=exp|2 .

o ksinh 7k cosh 37k

Eqs. (25) appear to be very effective for RSG (2):

F(B,...B,) = exp(—3(k—1-21) ¥ B;)P(ePr...ef),

1
I, _;sinh3(8, - B;)
(31)
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where

1 k—1 |
P(x,...x;)= (5;) fdtl...fdtk_1 n(tt+xj)_1:I(f,-z—t,»z)nt}”"‘z”.
Y Y i<j

The polynomials P,(x,...x,) can be rewritten as the determinant of (k — 1) X
(k — 1-matrices M, with the following matrix elements:

(M,\)ij=0'3i—2j—A(x1---xk)’ Lj=1,...,k—1,

where o is an elementary symmetric polynomial (o; = 0if [ <0, [ > k). It is easy to
show that

det My =o0,0,_,P,

det M, = 0,0,P,

det M_, =o0,_, P, (32)

where P=det M, M is a (k —3) X (k — 3)-matrix with the following matrix ele-
ments:

My=052pur(X1-0. %), dyj=1,.. k=3.
Egs. (31) and (32) mean that for £ = 27 /3 the following notable identification
holds:

Pexp(+iyy@)P=Pexp(+iyye/2)P. (33)

This identification is very important for the ultraviolet limit. This limit coincides
with the theory M, s, in which the operators ¢, , and ¢, 5 should be identified
because 4, = A;. Eq. (33) carries over this fact to the perturbed model. The M, 5
theory is the simplest CFT because it contains only one primary field. The
perturbed theory RSG (2/(2n + 1)) also should possess unique properties and is
worth special investigation.

The form factors f(B,...B,) can be written as follows:

d sinh 38,

4sin & E‘/(Bi =5) 2cosh 3B, sinh 3(B,;; — 2mi/3)sinh 3(B,; — 27i/3)

f(By---Bi)s k=0 (mod?2),

~ n—
X P (ePr.. . ePr)e (——— B')= 1
% )exp 2 r j Tf(Bl"'ﬁk)’ k=1 (mod2),
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where

d=c V23427 1x=172 0 Px)=1/x, Pyx;x,)=1/(x,+x,).

2

The form factors of the operator o = (4sin é/M{)T,, are equal to

h(By.. - B) = (X ) (X e)f(Bi...By)-
Consider the euclidean Green function

GV

0 , 2 0,0)0) = rEr— H(B,...B )e_”zc"s"ﬁfdﬁ ...dg,, (34)
(0o (z,2)a(0,0)0) k:O_H_ R k 1 P

where p = (22)"/?, and

H, = (_l)kh(ﬁl---Bk)h(ﬂk---ﬁl)’ H.>0

is a symmetric function of its arguments. We believe that the ultraviolet limit of
RSG (3) coincides with M, 5, which implies that

(0jo(z,2)0(0,0)]0) ;=5 p%°.

It would be very nice to obtain this result directly from eq. (34). A straightforward
investigation of the series (34) can not be very fruitful because the kth term
behaves as (In p)* when p — 0, and one has to sum the series of increasing
logarithms to decreasing powers. However, the equation

Hi(Byo By By T A B+ A) —— > H(By ... B H((Bryr .- Bi) + O(e™),

(35)

(see eq. (11)) allows us to apply a variant of the virial expansion as has been
claimed in sect. 2. Let us demonstrate the techniques on this particular example.
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Let us take the logarithm of the series (34):
In¢0jer(2,2)a(0,0)0) = = ¥ [H(B,... B)eE<mBidp, ... dB,,
k=1

. k (—1)*+e 1
Hk(ﬁl"'ﬂk)z E Z kl'kz' P
kyt.. k!

q=1k=k+ - +k, q

X Hk,(Bl A Bkl)sz(Bkl+l tee Bk,+k2)Hkq(:Bk,+ otk Bk) :

The function Hk(Bl... By) is a symmetric function of its arguments. Due to eq.
(35) it has the property

HABy-..Bs Broy +A,...,Bk+A)Aiw0(e-A), [#0,l#k. (36)

This is why the integral

/Hk(Bl L Bre PECONEdB, L dB,

for p — 0 behaves as
Zlnpfl-fk(O,Bz...Bk)d,Bz...dBk.

The integral is convergent due to eq. (36). Thus

In¢0|o(z, 3)o(0,0)[0) ~ —4AIn p,

where

A=1Y fdﬁz...dﬁkﬁk(o,ﬁz...ﬂk).
k=1

It can be shown that I-i,- >0, Vi, so we have a series composed of positive terms,
and one can check the equation A = — + by computer calculations.

5. Conclusions

The RSG (2/(2n + 1)) models described in this paper present an example of a
very interesting phenomenon, which can be regarded as a kind of confinement.
Actually, we extract from SG theory, which contains solitons (fermions), the
subsector which does not contain solitons but only their bound states (bosons),
preserving locality of the theory.
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Let us discuss further prospects of the methods developed in this paper. The
equations

M?
cos\/_qo, Qe = ‘/_‘/— §Sln\/_go

T
e 4sin £

are valid for arbitrary £. Let us consider the tensor

pp'Evv’ Cu %

. i 04
TM=TW+12_2/5\/;8 €, 0,0,0.

The central charge of the tensor 'f;w is equal to

8w
l+__z)

Y
=1—-6mr——=1-6
T8¢ 8 y

8¢

where & =y /(87w —y). If £/7 is rational (¢/7 =p/(q — p)), then

i.e. it coincides with the central charge of the model M, .. At the same time

MZ

fow = o (i 9).

In the ultraviolet model one can introduce screening operators and restrict the
free model to the model M, .. The dimension of exp(iy/y ¢) then becomes
(2p —q)/q, i.e. expliyy @) leads to the primary field ¢, ;.

It is natural to suppose that for every rational ¢ =p /(g — p) one can construct
the reduction of the SG model which describes the perturbation of M, via the
operator ¢, ;. The reduced models RSG (2/(2n + 3)) considered in this paper
should be the simplest example of the phenomenon. In general, we should be able
to construct the models RSG ( p /(g — p)) for arbitrary p, q.

What kind of limitations should be imposed on the spectrum of SG to get RSG
(p/(q —p)? The case p=2, g=2n+3 seems to be unique: only in that case
solitons can be completely omitted. Usually, only some limitations on soliton
degrees of freedom should be imposed. Bazhanov and Reshetikhin claimed that it
is’ possible to use the RSOS [16] restriction of the SG soliton S-matrix as the
physical S-matrix of some relativistic model (private communication). It seems that
this limitation is just what we need. The RSG models are of special interest
because they describe the perturbation of “positive” models M, considered in
ref. [1].
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From the point of view of statistical mechanics the SG model is the scaling limit
of Baxter’s 8-vertices model [17]. The critical 8-vertices model has central charge
equal to 1 (evidently, it coincides with the ultraviolet limit of SG). So we have a
diagram

R scaling p—0 .
8-vertices model —— SG —— massless free field .

For a rational coupling constant one can restrict the 8-vertices model to obtain the
RSOS model [16). We can also restrict the ¢ =1, model to get M, , .. Our
statement is that we should be able to restrict also the SG model to obtain RSG
(p/(q — p)). Thus we should be able to obtain the following restricted diagram:

scaling

RSOS ™ RSG(p/(q - p)) “25M, ..

Of course this diagram needs further development.

I am grateful to V. Bazhanov, L. Faddeev, V. Fateev, A. Kirillov, N. Reshetikhin,
L. Takhtajan and A. Zamolodchikov for many stimulating discussions.
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