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Abstract 

The Thirring and the Schwinger models both massless and massive are discussed as prototypes for 
theories with topological quantum numbers and confinement respectively. 
Bosonization of the fermion field is introduced from the beginning allowing a unified treatment of 
various models. An analysis of their charge sectors clarifies the relation between the periodicity of 
the potential in the bosonized version of those models and the existence of an additive quantum 
number. 
A brief outline of the essential features discussed which may survive in 4-dimensional space-time is 
made in the last section. 
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1. Introduction 

This paper will be devoted to a discussion of some aspects of two fascinating and in a way 
complementary recent developments in quantum field theory. 
The first one has to do with the fact that some systems have conservation laws totally 
unrelated to any Noether Symmetry exibited by their Lagrangean. These conservation 
laws might lead to new quantum numbers, whose topological origin has been extensively 
presented in [ I ] ,  and which can be associated with “extended particles” such as the soli- 
ton [2], the kink [3] and the ’t Hooft-Polyakov monopole [a ] .  
On the other hand it might happen that a quantum number one would read off from a 
symmetry of the Lagrangean will not exist in the physical state space (charge-screening) 
and even more, that the particles one would suppose are carriers of that quantum num- 

*) Based on lectures presented a t  the Latin American School of Physics, Universidad Simon Bolivar, 
Caracas, Venezuela, July 1976. 
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ber are absent from the physical spectrum of states (confinement). Such a possibility is 
realized in the Schwinger model [ 5 , 6 ]  and is expected to hold in some non-abelian gauge 
theories [7) where i t  could provide a most natural explanation for the non-observability 
of quarks. 
The major part of this article will review two-dimensional models. Two dimensional 
space-time despite all its peculiarities has proved many times to be a fruitfull theoretical 
laboratory where one can test a number of idem in soluble models and many times draw 
inspiration for inore realistic theories. Needless to say, great care should be exercised in 
order to separate those features’which are unique in two diruenaions froni thos which have 
a chance of surviving a dimensional boost. Surprisingly, in recent years, many aspects of 
two-dimensional models once regarded as dimensional pathologies have found close 
analogies in four dimensional space-time. 
In  section 2 we will start exploiting the possibility of parametrizing a two-dimensional 
fentiion field in terms of boson variables (bosonization). Bosonization has its historical 
roots in [8].  Explicit bosonizationformulas where used in [6] for the Schwinger model and 
in 191 for the Thirring model, and found a remarkable application in Coleman’s equi- 
valence proof [2] between the massive Thirring and since-Gordon theories. 
The sine-Gordon theory is a prototype for theories with topological quantum numbers 
[ 101 and the one which is most completely understood [ I S ,  221. 
In section 3 the Schwinger model [5, 61 and the massive Schwinger model [ I I ]  will be 
discussed, RS prototypes for field theoretical confinement. 
In section 4 we will attempt a unified discussion of the models presented in the preceding 
sections from the point of view of charge sectors. 
In section 5a brief outline of 4-dimensional analogs of the eesential features of the models 
previously presented will be made. 
Stimulating discussions with K. D. Rothe and B. Schroer are gratefully acknowledged. 
The author is also grateful to Dr. E. Laredo for hospitality a t  the Latin American School 
of Physics and to R. Jackiw for many helpful observations. 

2. The Thirring Model 

a) Fermions in Terms of Bosons 

As a preliniinary step in the “bosonization” of the Thirring model 1121 let us recall sonie 
properties of the scalar massless field in two dimension. I t  is well known [I31 that the 
quantization of this field requires a “Hilbert space” with indefinite metric. This follows at 
once froni the fact that the formal two point function of the theory has an infrared diver- 
gence (- dp, / lp , l ) ,  and by defining the correct two point function as the finite part of 
the divergent integral one loses its formal positivity property. One can therefore in- 
troduce a massless free field in two dimensions through the two point function 

and the requirement that all higher truncated functions vanish. The prime on the vacuum 
serves as reminder that by reconstructing the theory from the Wightman functions [I31 
one will be led to a space with indefinite metric. The mass pa is an arbitrary regulator 
mass. 
As in any free field theory one can introduce composite fields corresponding to Wick 
ordered polynomials or even more general functions of the free field. Of particular inter- 



Solitons and Confinement 306 

est to us will be the Wick ordered exponentials of the free field, 

:exp [iA4(z)): = exp [ih$-(z)) exp [ih$+(z)) (2.2) 

with 6-, 4+ the creation resp. anihilation parts of the free field. Those exponentials form 
the main building blocks of all the soluble two dimensional models and are the basis for 
the bosonization formulas. The peculiar feature which allows the use of such exponentials 
in interesting models is the fact that they can be inbedded in a positive metric Hilbert 
space [13 ,  141. To see that consider first a general Wightman function for exponentials 
of a massive free field, which live in a positive metric Hilbert space 

(01 :exp {iA14(q)]: ... :exp [iAn4(zn)): lo), = 

= exp (2 - Aili  d+(zj - q, m)). 
i<j 

Since for vanishing mass the two point function of the massive field behaves as 

d+(z - Y, m) = (01 4(z) NY) lo), 

+ O ( d )  (2.4) 
1 
4.n - - -- log [ -{(x - y)2 - i&(Z0 - yo)) 4 

where y is Euler's constant and the r.h.s. of (2.3) can be rewritten as 

= BzAr,O (O'(.:exp iA14(z): ... :expi;ln4(zn): 10'). (2.6) 

Defining new Wightman functions 

(01 eil(zl) ... el,(zn) 10) = Bzl , , ,  (0'1 :expiA14(zl): ... :exp iAn4(xn): 10') (2.7) 

which belong to a positive metric Hilbert space since they are limits of functions satis- 
fying positivity we can identify 

el(z) = :exp iA4(z): (2.8) 

provided we associate to the exponential a conserved charge A. In  the following this 
selection rule which allows the inbedding in a positive metric space will be always under- 
stood whenever exponentials of zero mass fields appear. 
From the well known fact that the zero niass field can be written as 

23 Zeitschrift "Fortschritte der Physik", Heft 6 
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where +(u) and +(v) are independent fields (the reader should not be confused by our 
notational simplification of calling all fields 4) the Wightman functions (2.7) factors 
into a product of a function of the u’s and function of the v’s, so we can introduce a u 
Hilbert space and a v Hilbert space. This allows one to enlarge the class of operators that 
can live in a positive metric space, since the Wightman functions defined by 

(01 ea,d,(%) ea,a,(5n) lo) 

= 6,r,,, d q , ,  (0’1 : ~ X P  i(ai+(ui) + ai+(vi)): . . . :~xP  i(au+(Un) + an4Cen)): 10’) (2.10) 

satisfy the positivity property. Again we identify 

ead(z) = :exp i(a+(u) + 6+(v)): (2.11) 

by assigning to the exponential a conserved charge a and a conserved charge 6. 
Finally let us introduce the Thirring field [9] in bosonic language: 

in the basis where 

(2.12) 

(2.13) 

The parameter p ist the regulator mass of (2.1) which in the following we set equal to 
one. 
In  order to reproduce the usual commutation relations [12] between the upper and lower 
components of y an additional Klein transformation has to be introduced. We need not 
worry about that for the moment and only remark here that such a transformation is 
possible Bince, due to the selection rule built in the exponentials we will have charge and 
pseudo charge conservation. 
Consider now the Dirac operator acting on y 

Following COLEMAN [Z] we introduce 

(2.15) 

which are obviously conserved and will be identified with the axial current and the 
current of the model, we can rewrite (2.14) as 

(2.16) 
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It is readily seen that the r.h.s. of (2.16) can also be written as 

which is the form given by KLAIBER [12] for the equation of motion. 
The only remaining step in proving that the field (2.12) is indeed a solution of the Thir- 
ring model is to show that the currents (2.15) do generate y6 and gauge transformations. 
To this end we recall that 

log i(u - u‘) 

log i(v - v’) 

1 (07 d(u) Nu’)  10’) == -& 

(0‘1 4(v)  d(v‘) 107 =z -& 
(2.18) 

1 

and therefore 

(2.19) 
1 
1 [d(Z), yz(z’)l = - {; E(U - u’) + 7 E(V - v‘) y*(z’) .  

6 
4 [d(z), W l ( 4 1  = - E(U - u’) + - 42) - v’) y,(z’) 

a 

{: 

From (2.19) and (2.16) we get the following equal time commutation relations 

B 

B .  

[io(z), Y)(Y)IE.T = (a  - y(Y) 6(zl - Yl) 
(2.20) 

bw(s), Y)(Y)IE.T = (b + Y6p(Y) 6(% - Yl)  

which show that jo, j60 are indeed the local generator of gauge and y6 transformations. 
It is convenient to normalize the currents in such a way that 

B - ( a  - 6) = -1. 4n (2.21) 

This normalization differs from the ones employed in [12] but is the conventional nor- 
malization for the generator of gauge transformation. The ys transformations are then 
unconventionally normalized. 
From the well known properties of exponentials of free fields one computes 

(01 n eurdzi) 10) = ~La( . ,~Cdc . .  flfl [i(uj - aj)y1uj‘4n [i(vi - vj)]**d9’4n (2.22) 

and with ( q d i )  = (&a, &a), ( r 6 ,  F a )  and (2.12) obtain an arbitrary Wightman func- 
tion for the Thirring model (The skeptical reader can also compare this result with 
KLAIBER’S [12] and convince himself that apart from a Klein tmnsformation we do 
indeed obtain the same Wightman functions). 
From the Wightman functions one can now read off the scale dimension and the Lorentz 
spin (there is no intrinsic spin in 2 dimensions!) of the field 

i i j>i 

33* 

(2.23) 
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SO that one recovers the whole two parametric manifold of Klaiber’s solutions. In  parti- 
cular for 6 = 0, a2 = 4n one has “bosonized” the free canonical spinor field. 
Looking now at short distance expansions one has with (2.12) 

which means that as expected the current (pseudo current) are the leading q number 
terms in the Wilson expansion of T y ~ y  and vy’y6y, and 

(2.25) 

which will play an important role in COLEMAN’S equivalence [2]. 
In  what follows we will be particularly intersted in the s = l /2  solutions of the Thirring 
model; with (2.21) and (2.23) this gives 

4n f J - - m = -  
8 ’  

a + 6 = -8. (2.26) 

It will also be useful to rewrite (2.12) in a way that does not rely on the u, v decomposition 
peculiar to a free massless field, so that for spin 1/2 one has [I51 

In  going from (2.12) to (2.27) we neglected 4(u = 00) - 4 ( ~  = -ao) which is not zero 
but is proportional to the pseudo-charge (cf. (2.15) and (2.20)). Expressions (2.12) and 
(2.27) differ therefore by a Klein transformation which for s = 112 is just the right trans- 
formation to produce anti-commutation between the y1 and y2 components a t  space-like 
separations in (2.27) whereas in (2.12) they would commute. 
The feature that has to be stressed in the “bosonization” of the Thirring model is not 
the amusing two dimensional pathology (cf. subsection 2c) of being able to write ferm- 
ions in terms of bosons but the rather remarkable fact that buried within the theory of 
a neutral massless free field one has charged states, whose dynamics is described by the 
Thirring model. More precisely, besides the usual vacuum sector of the free theory one 
has charged sectors whose charge is obtained from an identically conserved current 
(2.15). Charge conservation is not a consequence of any Noether Symmetry of the La- 
grangean but is due to the existence of finite energy solutions of the wave equation which 
do not vanish a t  spatial infinity and which manifest themselves in the quantized theory 
as inequivalent representations (sectors) of the free field algebra [a]. 
It is for the hidden richness which might exist in the inequivalent representations of a 
field theory that one should be looking for in a more realistic situation. 

b) Coleman’s Equivalence 

The massless Thirring model discussed in subsection 2a is a scale invariant theory with 
anomalous dimensions. It is therefore natural to regard it as the high-energy asymptote 
of a massive model [16], which would be despite its dimension a much more interesting 
model. 
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Unfortunately, up to recently investigations of the massive Thirring model were limited 
to perturbation theory in the coupling constant. In  the end of 1974 COLEMAN established 
[2] a remarkable correspondence between the massive Thirring and the Sine-Gordon 
theories. This means that in the same way as the massless Thirring model is related to 
the many inequivalent representation of the free scalar massless field the massive Thir- 
ring model will emerge from the many inequivalent sectors of the Sine-Gordon theory. 
To understand how this comes about let us regard the massless Thirring as a short 
distance fixed point [I71 of a broader class of theories which will have a energy rriomen- 
tum tensor given by 

T r *  = T*P f GTr* (2.28) 

where the T*pv is the fixed point energy momentum tensor which, due to the fact 
that the massless model has been entirely written is terms of a massless scalar field, 
is simply the energy-momentum tensor of a scalar massless field, 

(2.20) 

and dT@* a perturbation around the fixed point. 
In order that the theory described by T p V  has the massless Thirring model as a short 
distance fixed point the scale dimension of dTPv must be leas than that of T * p *  so that 
for short distances the perturbation becomes increasingly negligible : 

dim 6TpT < 2.  (2.30) 

If inequality (2.30) is violated one will be for short distances driven away from the 
fixed point and the theory described by TPv (if it exists) can in no sense be considered 
as a perturbation of the massless Thirring model (In statistical mechanics where there 
is a natural lattice cut-off such a theory would correspond to a critical theory which 
is driven to the fixed point a t  large distances). 
The simplest perturbation one can think off satisfying (2.70) is a maae perturbation 
vy. From (2.25) we see that the renormalized operator corresponding to such a mass 
perturbation is given by 

1 
N @ y )  = ; :cos p4: (2.31) 

Since the scale dimension of N(W) can be eaaily computed to give 

consistency with (2.30) requires 
p2 < 872. 

(2.33) 

(2.34) 

Once one has written the energy-momentum tensor of the massive Thirring model in 
terms of the field 4 one immediately recognizes that one is dealing with a sineGordon 
theory. In  the sense of a mass perturbation around the massless Thirring model one 
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arrives a t  a “bosonization” of the massive Thirring model with (2.31) and [2, 151 

m 

where I#J now is a aolution of 

(2.35) 

(2.36) 

(2.37) 

The steps involved in a maas perturbation are quite formal though, and it is desirable 
to have a critical look at the final resulta; (a number of rigorous results have been 
obtained in the meantime [IS] by J. FROKLICH). 
To begin with let us remark that in two dimensions any conserved current can be 
written in the forni (2.36) [13, 191. 
This a trivial result for a classical current, but in two dimension8 is also valid for a 
quantized theory with 9 a local field. In higher dimemione one can always write a 
conserved clasRica1 current aa j” = a , F p v .  Locality of the field FPv however can only be 
achieved if the theory contaim “photons” [20].  The fact that  there are no photons in 
two dimensions allows for the local integrability of 4 

--m (2.38) 

( d i p  dx,’ < 0 ) .  

Locality of the field I#J defined by (2.38) is obvious from the path independence of the 
r.h.s. of (2.38). +(z) meaaures the charge to the left of x.  If the current belongs to a 
theory which is scale invariant a t  small distances the Schwinger term in the equal 
time commutator of j o  with j1 ie finite and one can adjust B 80 that 9 satisfies canonical 
equal time commutation relatiom 

[9(z)* d W 1 E . T  = az, - z,’). (2.39) 

Consider now the equation of motion for 9 

09 = F(9). (2.40) 

Commuting (2.38) with a charged field and using (2.40) one finds the periodicity 
condition 

F 9 + -  = F ( O ) .  (2.41) 

The simplest solution to (2.41) is the sine-Gordon theory. For B sufficiently small one 
can introduce higher harmonics corresponding to perturbations other than the mass 
term that are asymptotically soft [20]. 
As in the case of the massless Thirring model the existence of charged sectors is related 
to the existence of solutions of the wave equation which do not vanish at spatial in- 

( 7 
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finity with 
2n 

Q =- ( 4 ( 4  - 4 ( - 4 ) .  B 
(2.42) 

The existence of such (finite energy) solutions of (2.40) and their interpretation as 
particles in a quantized theory was pointed out in [3, 221. Classically they are called 
solitons. 
Let us look now more carefully into the equation of motion (2.37). We should first ask 
ourselves what do we mean by :: in a interacting theory. The simplest answer and the 
one adopted in [2, 151 is to define it via Wick's theorem by subtracting the singularity 
of the free two point function, for instancg 

+(z) 4(z - E )  + 
4n 

Is this a consistent prescription? Will it lead to a well defined equation of motion and 
finite expressions for (2.31) and (2.35)? 
The minimal consistency requirement is that the theory described by (2.37) should be 
asymptotically free. If this is the case the leading singularities of :sinpd: can be 
corriputed from the massless free theory 

(2.44) 

and therefore writing a Lehmann-Killlen representation for the two point function 

m 

(01 4 ( 4  4431 0) = J e b ?  A+(% - y, $1 dp2 (2.45) 

we have from (2.44) and (2.37) 
e(p8)  - ( P a ) 0 * / 4 n ) - 3 .  (2.46) 

As expected this is only compatible with the normalization condition (2.39) which 
implies 

$@(P2) dP2 = 1 (2.47) 
Q) 

if the inequality (2.34) is satisfied. 
Consider now 

Bm 
(01 [--04(z), $(?/)IE.T 10) = i (01 ; B2 :COB B4(s): 10) 42, - y1) 

m 

i J (p2)0 ' /4~) -2  d P 2 +I - Y1) (2.48) 

which shows that if Pa 2 4n Wick ordering will not be enough define the mass operator 
(2.31). Since Pa = 4n corresponds to the free massive model and the coupling constant 
defined from Eq. (2.16) is 

i(2.49) 

we see that for repulsive coupling a more refined definition for the normal product is 
required. LEHMANN and STEHR as well as SCHROER and TRUONG [21] have investigated 
the free massive Thirring model using a normal product definition in which the true 
n point functions are subtracted. In  this way they are led to a form of the equation of 
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motion (2.37) which does not exibit explicitly the periodicity (2.41). An alternate pro- 
cedure which keeps the periodicity condition will by highly desirable and can be probably 
achieved along the following lines: to begin with let us identify the source of our 
troubles for 4n 5 B2 < 8n. Equation (2.31) for the correspondence between the mass 
operator and cosp+ has been obtained on the basis of the short distance expansion 
(2.25) valid for the massless theory. The reason that the usual leading a number singu- 
larity is missing from (2.26) is the ys invariance of the masslese theory, allowing then 
for a multiplicative renormalization of the mass operator. In  the massive theory how- 
ever we will have a c-number singularity which although softer than M y  might be 
strong enough to require a subtractive besides a multiplicative renormalization. For 
clarity let us start with the case of the free massive Thirring model. Direct coniputa- 
tion gives 

(2.50) 

where in this case N [ v y ]  is the finite operator defined by Wick ordering with respect 
to the fermions. From (2.50) we immediately see that the c number term although 
missing for m = 0 appears as a subtractive renormalization for m =# 0. In the general 
case we will have 

(2.51) 

with N[ipy] a finite operator normalized in such a way as to have zero vacuum expecta- 
tion value and from (2.35), (2.48) I ( & )  should be given by 

(2.52) 

with e(s) given by (2.45). The ansatz (2.51), (2.62) leads to: 

a)  for pa < 4n the correspondence (2.31) is maintained up to a harmless additive 
constant. 

b) for = 4n one must subtract a logaritmically divergent counter term from 
: cos 

c) for 4n 5 pa < 8n an infinite subtraction must be made. The singularity of f ( e )  
is always less than 2dy corresponding to the vanishing of the c number term in the 
asymptotic y6 invariant theory. 

All this leads us to propose as a correct definition of normal product valid in the whole 
range 0 5 pa < 8n 

4: in order to have a well defined operator in accordance with (2.50). 

(2.53) 

Definition (2.53) would leave unchanged the since-Gordon equation (2.27) as a result 
of the antisymmetry of the sine. It is a tempting conjecture, in so far unproven even 
far the free /? = 1/G case, that the only operator of the sine-Gordon theory which is 
not rendered finite by Wick ordering is the mass operator. 
For < 1 (weak coupling regime for the sine-Gordon theory strong attractive coupling 
for the Thirring model!) a number of very interesting results have been obtained using 
semi-classical methods [3, 221, e.g. JACKIW [@I. 
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c) Spin and Statistics in Two Dimensions [23] 

It can be readily recognized,that the essential feature of two dimensional world which 
allows one to “bosonize” fermions is the absence of intrinsic spin, and therefore no 
true Spin-Statistics Theorem. What one normally calls “spin” in two dimensions is 
the Lorentz spin i.e., the transformation properties of the wave-function or field operator 
under Lorentz transformations. As long as there exist one particle states one can 
(trivially) carry through Wigner’s [24] famous analysis for a two dimensional space- 
time to conclude that one particle states can always be chosen to transform as scalars 

(2.54) U(A) Ipopl) = lcosh Apo + s h h  Api, cash A P ~  + Sinh Ape). 

Clearly one is also free to introduce an equivalent description with 

Po - P1 IPOPl), = ( - nL ) lPoP1) 
implying a “spin s” transformation law 

(2.55) 

W) IP)8 = e-BAIPA)s. (2.66) 

The possibility of assigning different Lorentz spins to the same state corresponds in 4 
dimensions to the well known fact that a (free) particle of intrinsic spin s can be described 
equivalently by many relativistic wave equations transforming differently under the 
Lorentz group. 
If there are zero mass states in the theory one can have a larger symmetry group such 
as the conformal group and this reflects itself in the fact t,hat the different (‘spin” 
solution of the Thirring model correspond to different representations of the conformal 
group [9, 251. 
For a massive theory however, the “spin” one assigns to the states is entirely a matter 
of convention. This is well known. 
What is perhaps more surprising is that in a sense to be made precise below the sta- 
tistics in a twodimensional field theory is also conventional. This is typically two 
dimensional and has no analogy in higher dimensions. In a field theory what one 
ultimately calls statist,ics is the statistics obeyed by the asymptotic (in the old L.S.Z. 
sense of the word) free particle states. Suppose for definitness t,hose states were bosons 

(2.67) IP) = a+(p) lo), MP), U+(P’)I = 6(P1 - Pl’) Po 

Consider now 

(2.58) 

The b’s sat,isfy canonical anticommutation relations i.e. they are fermion operators. 
This simply means that there is a on0 to one mapping between ant.isymmetrica1 and 
syrnnietrical p-space wave functions 

fA(P, P’) = 4P1 - Pl’) f d ( %  P‘) (2.59) 

which allows one to interpret any bosonic state in terms of fermions and vice-versa. 
Although in hlgher dimensions similar mappings can be introduced they do not share 
with (2.58, 2.59) the property of being Lorentz invariant. 
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One could be formally tempted introduce in two dimensions a generalized continuous 
statistics (not parastatistics!) by replacing x in the exponent of the r.h.8. of (2.58) by 
an arbitrary number 8 0 5 8 < 2n. However if one demands in accordancc with general 
principles that the Fourier transform of the momentum space wave function describes 
probabilities of (approxiniate) position memurements the simultaneous requirement 

restricts our choice of s to be 0 or X .  

Our usertion that the assignment of Bose or Fenni Statistics to the particle states of a 
given two dimensional quantum field theory is entirely conventional seems to contradict 
the wcll known fact (valid also in a two dimensional world) that a pcriodic table of 
elements requires fermions. 
The apparent paradox is resolved by realizing that to find the energy levels of an atom 
with R given local potential one needs an at least approximate notion of localization. 
(Allowing for the highly non-local interactions induced by the mapping (2.69) one can 
have a Bose system exhibiting the smie energy levels a8 a Fermi system with local 
interactions.) 
In a field theoretical context the notion of localization comes from the fact that a field 
y(z) is supposed to creatc “eomcthing” in the vicinity of z. The problem in two dinien- 
sions is that there are many fields, local with respect to themselves hut not with respect 
to each other that carry different notions of localization, and different statistics. 
I& us illustrate this point in the massive Thirring model. The conventional description 
is in tcrms of a fermion field y which will via an L.S.Z. asymptotic condition lead to a 
particle interpretation in tcrms of fermions. On the other hand using 4 as given by 
equation (2.38) on can introduce a Bow field 

y’(z) = N(e-i(b/)) @ ( ~ I Y ’ ~ ( ~ ) J  (2.61) 

which will lead to a description of the Thirring model in terms of bosons. In order to 
avoid the technical problem of defining the correct normal product in (2.61) one could 
use an operator afiliated with a finite region 

y,’ = e-i(8/210(fly(/) (2.62) 

j- I(%) a% = 1 

which will comniute with its translate for sufficiently large space like separations and 
used as the interpolating operator in a Haag-Ruelle collision theory will lead to Bose- 
statistics for the myrnptotic frec particles of the model. 
One could try to argue that in the Thirring model the Fermi description is prefered 
because in this case we have formally an underlying canonical structure for the fermion 
fields. 
Beeidcs being mathematically unprecise since a true canonical structure exists only 
for free fields the physical meaning of a such a guiding principle is quite obscure. 
As a result we see that in a two dimensional field theory one has the freedom of assigning 
any statistics to the asymptotic free particles depending on what field we choosc to 
reprosent the localization properties of the theory. 

3. The Schwinger Model 

Tho Schwinger model 15, 61, quantum-electrodynamics of massless fermions in two 
dimensional space-time, is a standard soluble example of a theory where there are no 
particles carrying the quantum-numbers one would associate with a continuous sym- 
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mctry group of the Lagrangean, having been thus proposed [26] as a prototype model 
for Quark Confinement. 
It can be formulated in terms of the equations of motion 

where 

and j+) is the gauge invariant current 

p ( z )  = lini [ ~ ( z  + E )  y’y(z) - (01 ~ ( z  + E )  y”rp(z) 10) (1 - iea*A,(z))]. (3.3) 
r 4  
r’<O 

Ax in the case of the Thirring model we can look for solutions of (3.1) and (3.3) in the 
form exponcntials of free fields 

with O , ,  O2 arbitrary c number phases and p the tnass of the free field Z. 
Applying the Dirac equation to (3.4) and using 

y’y6 = &P’y, 

(JT)l‘t Aqz)  = -- (er’ a.z(z)) e 

1 
j’(Z) = -- &r’aJ(z) 

we are led to the identification 

with (3.4) and (3.3) we readily find 

fi 
and therefore from (3.2) we obtain 

(3.7) 

p = e/G. 
This means that L is a free field of mass e/G. Being a massive field the selection rules 
we had to introduce to properly define exponentials of massless fields in section 3 do 
not come into play now. This is related to the spontaneous breakdown of gauge and y6 
invariance [6]. 
A t  first sight i t  seems surprising that our ansatz (3.4) which ought to represent a fermion 
field commutes with itself at space-like separations. We should remember however 
that y ( x )  is not a gauge invariant operator and therefore ita commutation relations 
depend on the q-number gauge employed. 
It is possible to obtain (3.4) by means of a gauge transformation [6] starting from the 
more conventionally looking Schwinger solutions [5 ] .  
The “observable” content of two dimensional quantum electrodynamics should be 
ent>irely given by the algebra of gauge invariant operators. Besides the electric field 
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and the current one can introduce the properly defined gauge invariant bilocals [6] 

corresponding to the formal bilocals y(z)  (exp ie Ap(z)  dz,) y*(y), which in our gauge 
can be written as L‘ 

1! 
(3.8) 

U 

~ ( z ,  y) = ~ ( z  - y) :exp i$ ( y z 5 ~ ( s )  - j epv ~ ( z )  dz, - y:~(y)) : 
I 

with the normalization matrix N ( z )  given by 

(3.9) 

With this normalization one ensures on one hand that the bilocals transform as if they 
were bilinear in “spin 1/2” fields and on the other that the gauge invariant current is 
simply given by 

j’(z) = - lim {Tr (yoy”T(s + E ,  z)) - (01 Tr (y0y”T(z + E ,  z) 10)). (3.10) 
C 4 0  

One can formally rewrite T(z ,  y) for equal times as 

with 
T ( z ,  Y) = W z  - Y) :yc(z) yc”(Y): (3.11) 

with yc(x) differing from p(z) by a q-number gauge transformation. In  this new gauge 
we have 

A ,  = O  

a, 

A ,  = f E(z’)  ax’ (3.13) 
2 

i.e. the Coulomb gauge. 
As in (2.27), (3.12) represents an anticommuting “field”. Contrary to (2.27) the expres- 
sion for the Coulomb gauge fermion operator cannot be given a precise meaning. The 
reason for that is that the equation of motion for Z (3.7) violates the periodicity con- 
dition (2.41), and therefore no charged fields can be introduced in the theory. 
Physically [6, 261 one can understand this feature in the following way: T ( z ,  y) creates 
a charge dipole with an electric field in between (in accordance with Gauss law). yc(x)  
would correspond to a situation where one of the charges is removed to infinity. In  two 
dimensional space time the growth of the Coulomb potential with increasing separations 
implies an infinite cost in energy to separate the pairs. As a result the physical state 
space does not contain any exoitations corresponding to the original fermions. 
The only physical excitation of the theory are the 2 mesons which can be viewed as a 
fermion-antifermion bound state. 
Quantum electrodynamics in two dimensions contains solely the vacuum sector. The 
symmetries one reads off from the Lagrangean namely gauge and y6 invariance do not 
correspond to any quantum numbers in the physical state space. Gauge transformations 
of the first kind are generated by the current (3.6) which leads to an identically zero 
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charge. On the other hand there is no conserved gauge invariant current generating y6 
transformations as a result of the two dimensional analog of the axial-vector anomaly 
[27] that is, with j6” = &PTjl one finds 

C 
a,,j5”(s) = - 2n E~,F@V(Z)  (3.14) 

and the corresponding conserved non-gauge invariant pseudocurrent vanishes identically 

One has therefore a spontaneous breakdown of both symmetries without any Goldstone 
bosons [28], which here however is intrinsic dispensing the use of any Higgs field [29]. 
The phases introduced in the r.h.s. of (3.4) characterize the different vacua corresponding 
to this spontaneous breakdown. Although the disappearance, of quantum numbers 
is a common feature of any theory with a spontaneous symmetry breakdown, the 
peculiarity of two dimensional quantum-electrodynamics is the simultaneous dis- 
appea.rance of the particles that would carry those quantum numbers. This happens 
because gauge invariance of the second kind strongly restricts the class of allowed 
“observables” and physical states of the theory : the original fermions of Schwinger’s 
solution [5] are simply gauged away. 
To be more specific, in a non-gauge theory with a continuous spontaneous symmetry 
breakdown the charge operator Q cannot be defined [30]. One can however still recognize 
in the incoming and outgoing states the (no longer degenerate) niultiplet structure of 
the theory. This is no longer the case in a gauge theory with spontaneous symmetry 
breakdown, as the Schwinger model clearly illustrates. 
Although absent from the physical space, the original fermions make their reappearance 
of one considers the short distance behaviour of the Schwinger model. The leading 
singularities of Green’s function of gauge invariant operators such as the current and 
the scalar and pseudoscalar densities 

- lim Tr (yOT(x + E ,  s) }  = I””’ :cos (1/G Z(z) + 
e-0 2n 

:sin (@ ~ ( z )  
-pey 

--i lim Tr ( yoy6T(s  + E ,  2)) = - 
e+O 2n 

can be obtained by letting the mass of the Z field tend to zero. This bring us back to 
the situation discussed in section 2 and therefore the short distance asymptote of two 
dimensional q.e.d. is nothing but the Thirring model with j3 = @, that is a free theory 
of charged massless fermions. 
The fact that under short distance probing the theory behaves as if it contained particles 
which do not manifest, themselves as physical states has been recognized by CASHER, 
KOGUT and SUSSKIND [26] as being precisely what one desires of a theory of quark 
confinement. 
After this brief recapitulation of the massless Schwinger model we can follow COLEMAN, 
JACKIW and SUSSKIND [II], and in the same spirit as was done for the massive Thirring 
model introduce a fermion mass. In  bosonic language, using the fact that the massless 
Schwinger model is isomorphic to the theory of a free Z field with mass p = e / f i  and 
expression (3.16) for the mass operator we are imediately led to a theory described by 
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the energy momentum tensor . 

and therefore to the massive sine-Gordon theory : 

(3.18) 

(3.19) 

As in the massless Schwinger model the absence of charge sectors can be seen from the 
fact that the explicit mass term in (3.19) violates the periodicity condition (2.41). On a 
classical level this results from the non-existence in general of classical finite energy 
solutions of (3.19) which have a different asymptotic behaviour for x1 3 fw. For 
O2 - O1 = x and 6m sufficiently large there are however classical kinktl [3] which do 
not in the quantized version lead to an additive charge quantum number (cf. section 4). 
As before we can introduce gauge invariant bilocals as in (3.8) 

and with (3.10) we get the gauge invariant current 

(3.21) 

in complete analogy to (3.6). We should however a t  once refrain from trying to carry 
over to the massive Schwinger model the remaining correspondences (3.4) and (3.5). 
They are clearly incompatible with Maxwell‘s equation if .Z satisfies (3.19). The reason 
is that the particular gauge were the solutions of the massless Schwinger model were 
obtained does not survive a mass perturbation. If one uses the freedom given by gauge 
transformations of the 2nd kind one can formally go over to the Coulomb gauge were 
(3.11)’ (3.12) and (3.13) hold and obtain then a formal bosonization of the coupled 
massive Dirac and Maxwell equations. This has at most a heuristic value since as in 
the massless case the Coulomb gauge operators do not exist. 
A better insight into the behaviour of gauge variant operators which at  the same time 
throws an additional light into both the problem of confinement and the structure 
of the Dirac equation of motion (which we did not discuss in connection with massive 
Thirring model), can be obtained by regarding quantum-electrodynamics both massless 
and massive as a limit of a vector-meson theory [6, 31, 321 (Thirring-Wess model). 
This means we explicitly break gauge invariance of the 2nd kind by a bare mass term p o  
for the vector meson and then study the limit of po -+ 0. Maxwell’s equation are then 
replaced by 

a,W* + poaBp = -ejp (3.22) 

with j p  defined by the gauge invariant limit (3.10). 
For the fermion field, which as long as pu0 =/= 0 will be a well defined operator we make 
the ansatz, suggested by the analogous expression in the Thirring-Wess [26, 321 model 
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and for the vector meson field Bp again by analogy we take 

(3.24) 

a and B are constants to be determined in terms of ,uo and e .  I n  the Thirring-Wess 
model a simultaneous solution of the coupled Dirac and Proca equations is obtained 
if [6l, _ _  

(a + ( P o 2 + ; ) ) z = 0 ,  n$=O. (3.25) 

From (3.23)’ (3.20) we find that the mass operator is 

- lini Tr (yOT(z + E ,  2)) = Pey - :COB (,%#J + 2aZ) : (3.26) 
e-0 2n 

(Implicit in our ansatz and for the remainder of this section we take 8, - 
The massive (in the sence of a fermion mass) Thirring-Wess model should therefore 
correspond to fields 2 and 4 shtisfying 

= 0). 

(3.27a) a8mpeY 
(0 + P 2 ) Z + -  :Sin (/?$ + kz): = 0 

n 

ea 
pa = Po2 + - x 

04 + ’T :sin ~4 + 2 a ~ ) :  = 0.  (3.27 b) 

The gauge invariant current is given with (3.23) and (3.20) 

We shall now determine a and p using the Proca equation (3.22). With (3.24) and 
(3.28) one can rewrite (3.22) as 

Comparing (3.27) with (3.29) we find out 

as a condition for satisfying Proca’s equation. Note that (3.30) is independent of the 
fermion mass and coincides for zero fermion mass with the values given in [6]. It re- 
ma.ins now to  show that Dirac’s equation for y given by (3.23) is compatible with the 
identification of Bp given by (3.24) as a vector meson field coupled to the fermion 
field . 
Writing [32] 

y(s)  = linl : e i A c ( s ) :  = lim Z(E) e iAs ( s )  (3.31) 
o+O t-0 
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where a smearing of radius E around x has been introduced, and using 

1 
&iAs(Z) = J eilAa(t)aA (x) e - i l A a [ z )  d;leiAdx) 

0 

one readily gets applying Dirac’s operator to (3.31) 

iy” a,y(z) + e : yrBp(z) ~ ( x ) :  

(3.32) 

1 

- iyo J h,(yl) dy, J ei”eWmpey :sin (p+(y) + %Z(y): e-ii-4€(21 dAy(x) = o (3.33) 

with BP given by (3.24) and h,(y,) O(y, - xl). The last term on the 1.h.s. of (3.33) 
can be rewritten [15, 281, using the fact that A ,  acts as a shift operator on 4, as an 
equal time commutator. Last term of (3.33) is 

0 

(3.34) 

in perfect agreement with what one expects from the Haniiltonian form of the equation 
of motion. Using now the short distance singularities in the product of the mass and y~ 
operators one finally arrives a t  

iy” a,y(x) + e :B,(z) yhp(5): + dmy(z) = 0 (3.35) 

which completes our discussion of the massive Thirring-Wess model. 
Notice at this point that the reason we get an explicit mass term in (3.35) is due to the 
fact that the scale dimension of our mass operator with /3 and a given by (3.30) is one. 
A similar calculation for p < fG in the Thirring model would lead to a vanishing 
equal time comniutator in (3.34) and no explicit mass term in the Dirac equation of 
motion. This does not mean that the massive Thirring model for < fz is really massless 
but simply reflects the fact that in quantum field theory one should not expect that 
the form of the renornialized equations of motion uniquely defines the theory. It is 
clear that in general : y,j”y: does contain hidden mass term that is : y,j’y: = N(y,jby) 
+ cy with N(y,jpy) so normalized that (01 N(y, j”y)  11) = 0. 
After this small detour into the Thirring model let us come back to the problem a 
hand that is recovering the massive Schwinger model as an limit when po --t 0 of the 
massive Thirring-Wess model. 
First notice that as long as po + 0 one has a local solution of ones field equations in a 
positive definite Hilbert space. The fermions are not confined since the periodicity of 
the equation (3.27 b) for the + field allows for infinite line integrals in our ansatz (3.23) 
and therefore charge sectors. When po --f 0, p -+ 0 and (3.23) becomes ill defined. It is 
suggestive that the divergent part has the form of a gauge term and therefore, should 
not participate in gauge invariant quantities. Indeed considering 

U 

T ( x ,  y) = N ( z  - y) :exp i (A(x)  + e J Bp(z) dz, - A(y)) (3.36) 

we recover in the limit po --f 0 our old finite bilocal (3.20). The 4 field which in this 
limit becomes a massless free field completely decouples from gauge invariant operators, 
such as the bilocals the current and the F p v .  This decoupling explains how charge sectors 

X 
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disappear in the limit. The charged states of the Thirring-Wess model become orthogonal 
to all the physical states. The $I field is pure gauge and any fermion build with it is 
necessarily aphysical. The physical fermions became confined. 
Although it is clear that the physical origin of confinement is the growing Coulomb 
potential it is also important to stress that in a field theoretical context particles have 
a clear meaning as such only as asymptotic incoming and outgoing states. Field theo- 
retical confinement is much more dramatic than its classical counterpart: in the later 
by pumping an  (incredibly large) amount of energy into a bound pair one could have 
the components separated by a macroscopic distance and identified as charged fermions ; 
what the Schwinger model teaches us is that in a field theoretical description of confine- 
ment the confined objects are simply not there. One can however always investigate 
the charge distribution of a dipole 

(3.36) 
1 

(4 i0(4 I 4  = - (4 W(z) Id> v; 
with 

(3.37) 

and a smearing around x1 and y1 being understood. In  the massless Schwinger model .Z 
is a free field and one immediately sees that the total charge of the electric poles a t  
the end of string oscilates periodically in time with a frequency e/fi, with an oscilating 
current flowing along the string. This can be understood as coming from vacuum 
polarization effects [26] with the electric energy of the dipole ea)zl - yll being used 
up to create virtual pairs. The massless nature of the virtual fermions accounts for the 
fact that the charge distribution is unstable no matter how small Ixl - yl(. In the 
massive Schwinger model on the other hand one expects that for a finite fermion mass 
dm there should be a critical length ealxl - yll - 26m below which there is charge 
stability. In  such a case one can understand that a quantum mechanical description in 
terms of “particles” interacting via a growing potential can work for low lying bound 
states as a first approximation to the field theoretical problem. 

4. Remarks on Charge Sectors 

A mathematically precise framework for the construction of the charge sectors of an 
observable algebra has been set up by DOPLICHER, HAAQ and ROBERTS [33] and was 
applied in [8, 18, 341 to two dimensional models. In this section we will present an 
heuristic approach to the construction of charge raising operators for the various 
models of sections 2 and 3. In  the course of this section the connection between existence 
or non-existence of charged states and thd periodic or non-periodic nature of the field 
equations for the underlying scalar fields, will be clarified. 
As in equation (3.37) consider a (smeared) dipole state 

J.  

~ d )  = exp (ia J h(z1, +I &1) +(z1,0) UYJ 1 0 )  (44 
where h(xly1 I 21) is a smoothed out O(z1 - zl) O(y1 - 9) and tp will stand generally for 
either C#J or .Z of the preceding sections. In order to have the exponential as a bona 
fide unitary operator an additional time smearing is required whenever the scale 
dimension of the source of the q field is larger or equal to one. In the Thirring model 
this means /? 2 fz and follows from the fact that in this case (2.46) requires that $, 
be smeared in space and time to be a well defined operator. 

24 Zeltschrlft ,,Fortschritte der Physlk, Heft 6 
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The dipole state (4.1) represents a pair of negative and positive charges, localized 
around x1 and yl a t  time zero, with respect to the charge density operator 

1 
p ( Z )  = - alv(z). (4.2) 

U 

One fornially obtains a charged state by letting y1 --f oo or x1 4 --do. In  this limit 
the unitary operator ceases to operate in the original Hilbert space (vacuum sector) and 
plays the role of an intertwining operator between inequivalent representation of the 
observable algebra (charge sectors). 
The Hamiltonian of the field being given by 

H = - dx‘ :@’ + (Vv)’ + F(v ) :  (4.3) 2 ‘s 
one can compute the energy difference between the dipole state and the vacuum 

(dl H [d)  - (01 H 10) = Izl - y’[ (01 :F(q - M ) :  - :P(v): 10) + E(x )  + E ( y )  (4.4) 

where 6 ( x )  and E(y) are contributions coming from the neighborhood of x1 and y1 
representing localization energies, and use has been made of the fact that @ acts as a shift 
operator on q. 
Equation (4.4) shows the fundamental difference between the various models discussed 
in the preceding sections. For the massless Thining niodel F = 0 and one will obtain 
a finite energy state by letting the two charges in the dipole to become infinitely 
separated for any value of a. One has therefore a continuous infinity of inequivalent 
representations corresponding to the continuous spin solutions of KLAIBEE [12, 81. 
If F is periodic with period M one has again a finite energy state for an infinite separation 
of the pair in the dipole state. Successive application of the exponential in the r.h.s. 
of eq. (4.1) to the vacuum will give rise in the limit jz, - y,1 --f 00 to inequivalent 
representations labelled by an integer number. This corresponds to the situation found 
in the massive Thirring and Thirring-Wess models with q~ standing for 4. In  the Schwin- 
ger model on the other hand, the non-periodic nature F iniplies in (4.4) that no finite 
energy charged state exists. The formal limit [zl - yll --f 00 in this case leads us to 
the formal Coulomb gauge formulation of the Schwinger model, whose pathological 
features [6] arise from the fact that it is based on infinite energy states. 
If in (4.1) one uses instead of h(zy [ z )  an arbitrary function vanishing for z + -oo and 
equal to 1 for z -+ +oo an variational ansatz in (4.4) one makes easy contact with the 
semi-classical approaches of [3, 221. 
One should be warned a t  this point of the fact that, although for semi-classical compu- 
tations one can always use coherent states of the form (4.1), the existence of charged 
states as limits of dipole states of the form (4.1) requires a periodic F. This is of in- 
terest in connection with the “kink” of GOLDSTONE and JACKW [3] where non trivial 
sectors exist for a non-periodic F satisfying a symmetry condition 

F(v) = F(-v) 

(4 = vo * 0. which is spontaneously broken 

Although one can always adjust M in such a way that in (4.4) 
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so that the expectation value of the energy remains finite as 1x1 - y1I -+ co, it is readily 
seen that in the "kink" case since 

:P(p - (w): + :P(cp): 

(dl ( H  - (01 11 IO))2 Id) --f co. 

1x1 - y11 -+ co. 

for any a the energy fluctuations in the state Id) will diverge in the limit 

This means that contrary to the soliton case the creation operator for a kink cannot 
be written as 

In  order to construct a kink operator one should be guided by the symmetry of the 
potential F(p). Such an operat?or must act as the identity on fields located at  left spatial 
infinity and as a transformation 4 ( x )  + -4(s) for x1 -+ 00. 

Introducing for time t = 0 the canonical decomposition of p, + in terms of creation and 
anihilation operators one goes over to a complex field x ' 

generates the transformation x + -x  in the interval (XI, yl) and applied to the vacuum 
produces, the dipole analogue for the kink problem. Although p, @ are not strictly 
local with respect to x they are quasi-local so that in the limit y1 -+ 03, U(xl, 00) effec- 
tively acts on p's very much to the right as a phase-space rotation of angle n, cp + -p. 
A natural candidate for the kink operator is therefore [35] 

W 

Ykink(z )  exp in s dzlx*(z', zo) x (Z ' ,  f l ) .  (4.7) 
z1 

A comparison between (4.6) and (4.7) immediately shows that whereas the coherent 
state is responsible for charge sectors with an additive quantum number, the successive 
application of the soliton operator (4.6) on the vacuum leading to inequivalent sectors, 
(4.7) creates a sector which is most conveniently labelled by a multiplicative quantum 
number (- 1) since the successive application of two kink operators leads one to a state 

12 kink) - exp i 2 n  s dz'x*(z') ~ ( z ' )  10) 
W 

which is equivalent to the vacuum sector. 

5. A Glance at Higher Dimensions 

The charge sectors of the since-Gordon theory are, as it was argued in section 2, a direct 
reflection of the existence of finite energy classical solutions with a different behavior 
a t  z1 = f co  corresponding to a charge associated to the identically conserved current 

24* 
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given by 

(5.2) 
P Q = fys) as1 = - ($(oo) - +)). S 2n 

The simplest generalization of this feature to 4 dimensional space-time is given by the 
’t Hooft-Polyakov monopole [a]. 
In  higher space-time dimensions very little has been done beyond the classical or semi- 
classical [2 ,22,  361 approximation. We wil l  briefly describe the classical features of the 
‘t Hooft-Polyakov monopole which parallel the sine-Gordon theory. 
One starts with an SU(2)  gauge theory coupled to an iso-triplet of HIGM [29] fields 
whose vacuum solution is 

with E a constant unit vector in isospin spcae. Finiteness of the energy requires that any 
solution should behave as the vacuum a t  Bpatial infinity 

-b (5) = $02, A, = 0 (5.3) 

(5.4) 

where D, is the covariant derivative. From 

one can build a gauge invariant “electromagnetic” field 

which leads to an identically conserved magnetic current 

kr = E @ ~ ’ o ~ , F A ~ ,  a,kP = 0. (5.7) 
The simplest non trivial boundary condition of the field configuration satisfying (5.4) 
is given by - 

(5.8) 
c$-+$~;, r eAia-+ -qobT rb 

T 

with i the spatial component and a the iso-spin index. A static solution satisfying (5.8) 
was proved to exist by ’T HOOET and POLYAROV [a]. The magnetic charge corresponding 
to (5.7) can be evaluated by Gauss law to be 

47c B * dS = -. k’dax = s s  S-00 e (5.9) 

The analogy between (6.2) and (5.9) is perfect. In the quantized version one therefore 
expects this theory to exhibit magnetic sectors corresponding to multiples of the funda- 
mental magnetic charge (5.9) [I, 401. 
This model was recently enriched by HASENFRATZ and ’T HOOFT and JAOXIW and REBBI 
[37] who introduced besides the Higgs field an additional iso-spinor scalar field. The 
bound states of the magnetic monopole and the charged iso-spinor have half integer 
angular momentum [38] and should therefore correspond to fermions arising from a 
purely bosonic theory. One is therefore arriving a t  a 4-dimensional bosonization. 
Gauge theories also provide one with a rather plausible mechanism for confinement in 
C-dimensional space-time [7]. fThe main problem is to understand how a 4-dimensional 
field theory might be effectively reduced to a 2 dimensional one. 
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A simple example for such a reduction was provided by ’T HOOFT and Koam and SUSS- 
KIND [7]. Considering electrostatics in a die1,ectric medium one has 

Taking 

and 

as a phenomenological description of infrared slavery the minimum of energy is obtained 
as a result of two competing tendencies. On the one hand the electrostatic energy (of a 
dipole) likes to spread as much as possible over the whole space. On the other hand the 
medium wants to be in its ground state 4 = 0 over as big a portion of space as possible. 
The net result is that the electric flux lines will be confined to a thin tube with the 
“Coulomb” potential between the pair growing linearly as in the two-dimensional case. 
A similar confinement of flux lines arises naturally if one considers magnetic monopoles 
in a relativistic version of a superconductor due to the flux quantization condition of the 
latter [3Y]. 
The investigation of gauge-theories in a lattice by WILSON and KOGUT and SUSSKIND [7] 
also shows that there is a natural mechanism of flux quantization arising there. 
Once an effective reduction of the 4dimensional problem has been achieved one expects 
that the Schwinger model provides one with a t  least a qualitatively sound description 
for confinement. 
Whether any of those new ideas will prove relevant for our understanding of high-energy 
physics remains as yet an open problem. They do teach us in any case that a nonlinear 
field theory has a much richer structure than one could suspect by doing standart per- 
turbation theory. 
After almost half a century of existence the‘main question about quantum field theory 
seems still to be: what does it really describe? and not yet: does it provide a good des- 
cription of nature? 
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