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Apart from some brief and inconclusive remarks concerning the problem of spin and 
statistics of quantum kinks in space-time dimension D > 2, we give a detailed discussion 
~1 the D = 2 situation. Our main result is that two-dimensional quantum kinks are statisti- 
cal "schizons"; they exist in the same tlilbert space either as bosons or as fermions. In 
those cases where one can introduce local kink-sector generating operators as in the sine- 
Gordon model, the Bose and Fermi fields are strictly local fields, which are relatively non- 
local with respect to each ~ther. 

1. Introduction 

The tradit ional  f ramework of  quan tum field theory is based on local Lagrangians 

containing fields which carry internal quan tum numbers .  Local conservat ion laws in 

this f ramework arise via Noether ' s  theorem.  Field commuta t i on  relation ((anti)-com- 

muta t ion ,  para f ie ld-commutat ion ,  para f ie ld-commuta t ion)  are conver ted  via LSZ 

asymptot ics  into the corresponding particle statistics. Particle statistics therefore  in 

this t radit ional  set t ing is rigorously derivable to the extent  of  the validity of  LSZ 

asymptot ics ,  i.e. for short ranged interactions.  

Recent  theoret ical  ideas have transcended this tradit ional  f ramework in two op- 

posing directions.  Whereas the phenomenon  of  charge screening [ 1 ] (or its more dra- 

matic version, the idea of  particle conf inement )  leads to vanishing charges o f  the 

would-be Noether  symmet ry  currents and therefore to the absence o f  the apparent  

symmet ry  on the level of  physical states, the study of  quan tum kinks [2] yields 

charge sectors [3] ** which have their origin in the topological  aspects of  the Lagran- 

* On leave of absence from Institut fiir Theoretische Physik, Freie Universit?it Berlin. Part of 
this research was done while this author stayed in Brasil as a visitor within the CNPq-KFA 
J iilich agreement. 

** A unified study of confinement and kinks for a class of two-dimensional field theories can be 
found in ref. [4]. 
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gian systems. The fundamental problem of  these "hidden"  topological symmetries is 
the construction of  interpolating fields (i.e. fields which generate the variot,s topolog- 
ical charge sectors) ['or the new particles * carrying topological charge. Here, in 
principle, two different situations may arise: it may be possible to find a local inter- 
polating field (i.e. (anti)-commuting with itself for space-like separations), or there 
may be only quasilocal interpolating fields. 

An example of  the first situation is the sine-(;ordon [5] model, whereas the kink 
of  the A 42 Higgs model seems to belong to the second situation (sect. 3). Note that 
the extended nature of  classical kink solutions does m3t sited any direct light on this 
quantum field theoretical problem; its direct consequence is a non-local relative com- 
mutation structure between the basic Lagrangian field and the kink field. From the 
experience with QED, for which a local electron operator in a physical (positive de- 
finite, i.e. Coulomb-gauge) l lilbert space does not exist, one would expect that there 
are no local interpolating operators for "t Hooft-Polyakov [6,7] monopoles or dyons. 
A still more difficult question is the spin and statistics problem of particles belonging 
to the non-trivial charge sectors [8 -10 ] .  ltere the only clear-cut result we have to 
offer is in D = 2 for kink models with a mass gap as in the sine-Gordon and the A2 a 
model. In sects. 2 and 3 we will show that such particles are "schizons" from the 
point of  view of  statistics and spin. The main difficulty ira the D > 2 monopole mod- 
els (sect. 4) is the complicated connection between interpolating fields and particles, 
i.e. the breakdown of  the LSZ asymptotics,  due to the appearance of "infraparticles" 

2. General remarks on spin and statistics in two dimensions 

It is a well-known fact that there is no intrinsic physical meaning of  spin in two- 
dimensional relativistic theories. What one normally calls "spin" in this case is the 
Imrentz spin, i.e. the transformation properties of  the wave function or field opera- 
tors tinder Lorentz transformations. As long as there exist one-particle states one 
can (trivially) carry through Wigner's [ 11 ] famous analysis for two-dimensional space 
time to conclude that one-particle states can always be chosen to transform as scalars: 

U(A)lp°,pl) = I co shxp  ° +sinhxpl ,coshxp I+sinhXp°) = l A p ) .  (1) 

Clearly one is free to introduce another equivalent description 

Ip°,P~)~ (pO.~ p~)S 
• = \  m - IP°' p l ) '  (2) 

* We follow the traditional terminology of using the word soliton only for systems with an in- 
finite number of non-trivial conservation laws and using the work kink for the topological 
charge sectors and their affiliated particles. 
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leading to a "spin" s transformation law 

U(A) Ip) s = eSXlAp) . (3) 

This freedom of assignment of  two-dimensional Lorentz spin corresponds in D = 4 to 
the well-known fact that with one Wigner representalion there are many relativistic 
wave equations transtbrming differently under the korentz group. 

In the zero mass case, as for the massless Thirring fields, the Lorentz spin enters 
the representation theory (i.e. the Casimir operator) of the conformal group [12,13]. 
For a massive theory, however, the "spin" assignment is entirely a matter of conven- 
tion. This is well known. What is perhaps at first sight more surprising is that, as ex- 
plained below, in two dimensions the statistics is also a matter of convention. As long 
as a field theory describes ordinary particles one means by statistics the asymptotic 
(in the I.SZ sense) free-particle statistics. Suppose for definiteness that those particles 
were bosons: 

Ip )=a+(p) lO) ,  

[a(p),a+(p')] =p°6(p  p') , 

[a{p), a(p')] : 0 : [a+(p), a+(p')] . 

Consider now 

(4) 

b+(p) = a+(p) exp ~ iTr J n(p')  dp ' ] ' ,  (Sa) 
p 

n(p) = ~o a+(p)a(P) • (5b) 

The b's satisfy canonical anticommutation relations, i.e. they are fermion operators. 
This simply means that there is a one-to-one mapping between antisymmetric and 
symmetric p-space wave functions 

JA (P, P') = e(p - P') Is (P,  P') , (6) 

which allows one to interpret any bosonic state in terms of fermions and vice versa. 
Although in higher dimensions similar mappings can be introduced, they do not share 
with eqs. (5) the property of  being Lorentz invariant. Note that formula (5aL which 
makes sense only for operators in an infinite volume, has its.lattice theory counter- 
parts in the Pauli-Jordan transformation which transforms "paulions" (i.e. objects 
which only commute at different lattice points) into lattice fermions [14]. 

One could be formally tempted to introduce m two dimensions a generalized sta- 
tistics (not parastatistics!) by inserting into the exponent of  the right-hand side of 
eq. (5a) an arbitrary real number 0 ~< s '< 2. llowever, if one demands in accordance 
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with general principles that the Fourier transform of the momentum space wave func- 
tion describes probabilities of (approximate) position measurements, the simultaneous 
requirement 

I f"(x, x ' ) l  2= I f ( x ' . x ) l  2, I f (p ,p ' ) l  2 = If(p',  p)l 2 (7) 

restricts our choice ors  to be 0 or 1. Our assertion that the assignment of Bose or 
Fermi statistics to the particle states of a given two-dimensional quantum field theory 
is entirely conventional seems to contradict the well-known fact (valid even in a two- 
dimensional world) that a periodic table of elements requires fermions. 

l 'he apparent paradox is resolved by re',dizing that to find the energy levels of an 
atom with a given local potential one needs an at least approximate notion of localiza- 
tion. Allowing for the highly non-local interactions induced by the mapping (6) one 
can have a Bose system exhibiting the same energy levels as a Fermi system with local 
interactions. 

In the next section we will investigate this problem of statistics (and "spin") for 
two-dimensional kinks. In the case of the sine-Gordon kink, where the existence of a 
local sector creating ileisenberg fields is known [51, we will show that they can be 

l chosen (in the same Hilbert space) either as local s = ~- anticomnauting or as local 

s = 0 commuting fields. A typical case of a kink for which a non-local (quasi-local) 
kink-generating field has been found is the two-dimensional A 4 theory. Here the 

choice of a "quasi-local Fermi field" instead of a quasi-local Bose field will be shown 
to be possible. They are interpolating fields for the same one-particle states whose 
corresponding multiparticle states will obey either Fermi or Bose statistics. 

3. Two examples of two-dimensional kinks 

What is the consequence of the general two-dimensional spin and statistics situa- 
tion of the last section for quantum kinks "? Here one should distinguish two classes 
of theories, namely those for which one only has quasi-local operators leading from 
the vacuum to the one-kink sectors or models for which strictly local sector-generating 
operators exist. As a possible example for the first class we discuss the A 4 theory in 
two dimensions **. Here a formal expression for such an operator would be 

i f  = exp(in f f ( x )  " (n2(x, t)+ A2(x, t)) : dx)  , (8) 

* See the first footnote in the introduction. 
** Our treatment of the A 4 quantum kink deviates from that of Fr;dhlich [ 15 ]. We do not under- 

stand this construction based on a doubling of field components and a subsequent restriction 
of the bigger algebra. 
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with 

0 
7r(x, t )=-at-A(x,  t ) ,  

and f (x)  any function which is 0 on the left-hand side o f R  I space and 1 on the right 
hand side. Such a transformation describes a space-dependent phase-space rotation, 
which is the identity on the left-hand side and the transformation 

(An) ~ ( ~ A )  (9, 

on tile right-hand side. However, tile density in eq. (8) has an incurable ultraviolet 
problem, which forces one to work with the quasi-local fields: 

q(x) = (m z + A)I/aA(x), p(x) = (m 2 + A)-  t/47r(x) , (10) 

i.e. 

~bf = exp {in f f ( x ) : ( p2 ( x )  + q2(x)):dx} . 

This operator has asymptotic commutation relations 

(11) 

lira [ffS' U(a) ~kfU+(a)] = 0 .  (12) 
a ~ 

The application of  the Haag-Ruelle [18] theory leads to kink states with Bose statis- 
tics. On the other hand, an operator of  the form 

Bf.g = (u/.Ag, Ate = f A (x )g (x )dx ,  (13) 

with g G D, a smooth localized test function yields an asymptotic anticommutation 
relation 

lim {By, g, U(a)Bf, gU+(a)} = 0.  (14) 
a ~ o o  

The argument for eq. (14) is the following: the region of  effective variation of the 
test function f i s  shifted by U(a) to the far right-hand side. Hence the U(a) ~/[U+(a) 
(approximately) commutes with the Ag from the first factor. The U(a)AgU*(a) 
from the second factor, however, anticommutes with the qJf from the first term. 

Quasi-classical arguments suggest [2] that the lowest energy state in the non- 
vacuum sector is a one-particle state at rest. Since the field A has a mass gap (i.e. no 
infrared problems) this quasi-classical argument is credible in the A 4 quantum field 
theory. There is no reason, on the basis of  conservation laws, to suspect that the 
commuting field if.t" has a different behaviour, with respect to this new state Ip), 
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from the By.g, i . e .  we expect 

< O ) ~ r l P > ¢ O ,  (15) 

(01Bt;g Ip) ~: 0 .  1161 

As we argued in sect. 2, the simultaneous existence of  an interpolating quasi-local 
Bose field and a quasi local Fermi field for the same particle is completely consistent 
in two dimensions. 

The more interesting case is the sine-Gordon case, where the existence of  a cova- 
riant local interpolating field for the sine-Gordon kinks is known [5]. It can be 
chosen to be the anticommuting massive Thirrmg spinor. We now show that a local 
commuting charged Bose field (with Lorentz spin s = 0) can be explicitly constructed 
by controllable space-time limiting procedures. The starting point is the exponential 
of  the axial current potential [16]: 

1 
Bx(x) = N[e2i"/=x~°(~) I , /us - x/'~ 3,v~ . (171 

Consider now the short-distance Wilson expansion of  ~ with B x. In order to keep the 
computat ions explicit and simple, let us restrict our consideration to the massive free 
Dirac model. In this case [161 

* eLx(x) * Bx(x ) = • • , (18) 

where the double stars refer to free fcrmion ordering: 

Lx(x):-sm-~rX-Ff'e"~°2n" LJ coshO (ei(p'q)X a~pbq +e i(p~q)X aqbp)dOp dOq 

r e .2xb" . . ~ 0 ] 
+ J--sinh-~-(e 'rrXe '(p q)Xa+paq+e inXe-i(p-q)Xbqbp)d pdOqj , 119) 

where 0 = }(Op Oq). ( 'onsider first the short distance expansion of  ff j(x) with 
Bx(01: 

l sin 7r~ tit , r 
I _  Jq f f l (x )Bx(0)=  ~ 2rr - , ( p ' ) e  iFx e-Op./2 dO_. 

- I . . . . . . . . .  - :  . . . . . . . .  4 ~ -  

x f[ +'+ c-2~'~ c-2~'° 2,) 
J_~._P_°__q_~t_Ts_t]_O-__-__a+paq sinh -0 ei~r dOp dOqBx(O)* 

+ non-singular terms . (20) 

Tile two-fermion contraction terms call be decomposed into a leading and a non- 
leading contribution.  ] 'he integrand is rapidity space for a given ]Xl has the strongest 
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0 v increase for positive ),: 

e-(X+ tl2)Op 
cosh 0 - 2e-hOpe -Op/2 +R(Op) , (21) 

with integrable R(Op) for -~.  ( 1. 
The contribution from the integrable R can be combined with the regular terms. 

Using tile representation 

( : + x + i E t v l 2 K v ( m V f x 2 - _ t 2 - I  f e-i(tcoshO-xsinhO)rn VOdO ('~'~, 
" X T 7 7 1  ) - ~ ' - -  

w e  obtain for short distances (X > 0) 

( i  + x + i ~  Kx(mx/t - t 2) i(x) Bx(0 ) = const . . . .  ,x/2 
x + ie! 

× • f (b+(q)  e0q(x- 1/2) + einXa(q) e0q(x-t /2))  dOq B x * + reg. terms . (23) 

The spin and dimension of  the finite operator multiplying the singular factor are 

~ , 2  s = {  -~. ,  d = ~ +  I~,1. 

In an anlogous manner we obtain for the second component  a singular term for X < 0  

~2(x)Bx(0)  = const - -- KIM(mN/% ~ - t 2) x+~! 
• 1/2) . . . .  * x*f(b~(q)e°q(X+ll2)+e"~Xa(q)e°q~x+ ) t iOq t~x .+reg .  t e rms .  (24) 

t ~ for the second compo- Clearly by choosing ~. = ~ for the first component and X = - 
nent we obtain two (kink-) charge-carrying scalar operators 

01 (0) = ** f (b  ~ (q )  e --i'q4 + a(q) e i'~la) dO qB,/2 * , (25a) 

• f + * 
02(0 ) = • (b (q) e i'rl4 + a(q)e - in/a  ) dOqB 1/2 * • (25b) 

Clearly these operators have spin zero and they commute for space-like distances, 
since they are obtained by a limiting procedure from B. l12(x) which anticommute 
with the ~b's for space-like distances [16]. 

4. Problems in higher dimensions 

In a space-time of dimension larger than two, kinks in renormalizable quantum 
field theories have to be discussed in the context  of gauge theories [3]. Although one 
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expects the usual connection between spin and statistics, there are a number of  points 
1o be clarified. 

Firstly, the usual proofs of  spin statistics (cf. Wightman-Streater [191), as well as 
the structural investigation of  the statistics of  sectors [201, rely on the assumption of  
locality (or quasi-locality) of the interpolating fields, in a gauge theory,  as long as 
one works in a physical Hilbert space (no ghosts) locality can only be taken for 
granted for observable gauge-invariant operators. 

The intrinsically non-local nature of  charge-carrying fields is clearly illustrated by 
the fact that a q-number gauge transformation of  the second kind, which ought to 
leave the physical content of  the theory invariant, can completely change the commu- 
tation relations of  the fields. 

In fact, starting with an ant icommuting charged field 

{if(x) ~(Y)}ET = {~b(x) ff+(.V)} m,  = 0,  x 4=y,  (26) 

mid introducing a transformation analogous to the one employed in sect. 3, viewed 
as a gauge transformation 

"~(x) : exp { iTr f f ° ( x  ') O(x 1 .. x '1) d3x'} • i f (x ) ,  (277 

one finds 

[~(x), ~'(Y)ler = [q,'(x), ~+(Y) l e r  = o, x ~ ) , .  (28) 

One would believe that this ambiguity of  field statistics is not in this case (con- 
trary to what happens in two dimensions) reflecting itself in a corresponding ambi- 
guity of  particle statistics. Here one is immediately led to another problem: the fact 
that for gauge theories in four dimensions the usual mass-shell description of particles 
fails and both an infrared clouding as well as Coulomb distortion must be taken into 
account [7]. 

A clear understanding of these points seems to us essential in order to associate a 
certain statistics to dyons of  the kind recently obtained by Hasenfratz and 't  Hooft 
[8], Jackiw and Rebbi [9], and Goldhaber [10]. 
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