
Volume 86B, number 2 PHYSICS LETTERS 24 September 1979 

FACTORIZABLE Z(N) MODELS 

R. KOBERLE 
Instituto de Fi~ica e Qui~nica de S'~o Carlos, Universidade de S~o Paulo, 13560 S~o Carlos, SP, Brazil 

and 

J.A. SWIECA 
Dept. de Fi~ica, Universidade Federal de S'~o Carlos, 13560 S~o Carlos, SP, Brazil 
and Dept. de Fi'sica, Pontifibia Universidade Catdlica, Rio de Janeiro, R J, Brazil 

Received 9 May 1979 

The factorizable S-matrix with Z(N) symmetry is constructed. It is speculated that the field theory belonging to this S- 
matrix is related to the scaling limit of Z(N) generalizations of the Ising model. 

The two-dimensional Ising model has for a long 
time been the prototype of a system exhibiting a 
phase transition. After the complete solution for the 
correlation functions was obtained by McCoy et al. 
[1 ], it was shown that the field theory obtained by 
taking the scaling limit [2] of the Ising model has a 
factorizable [3] S-matrix. The knowledge of this S- 
matrix, which happens to be S = -1  [4], allows a re- 
construction of the correlation functions [5]. 

A natural question arising in this context is how to 
obtain factorizable S-matrices belonging to theories 
with Z(N) symmetry. These theories would be natural 
candidates describing the scaling limit of Z(N) general- 
izations [6,7] of the Ising model. The values which 
the basic variables o i of these models assume are the 
N roots of unity. The oi's are coupled via global Z ( N )  
invariant short ranged interactions. 

On the lattice the following identity holds: 

+ = o N - 1  
o i . . ( 1 )  

In the scaling limit this equation becomes 

o+(x) = ~z [o N -  l (x)] ,  (2) 

where 9,/stands for a suitable normal product prescrip- 
tion. Eq. (2) means that antiparticles are bound states 
o f N  - 1 particles. In the chiral Gross-Neveu model 
such a property uniquely determined its exact S-ma- 

trix [8]. The same will be shown to occur here. As in 
the Ising model we expect the o-field to describe par- 
ticles with mass 

m = lim [ ( T -  Tc)V/a], (3) 
a ~ 0  

T ~  T c 

where a is the lattice spacing and v is the critical expo- 
nent of  the correlation length. Since antiparticles are 
bound states of particles, the reflection amplitude 
must vanish for a factorizable S-matrix. Hence, in 
standard notation [3] we have the following S-matrix 
elements: 

(P2P1 ISIPIP2) = u(O 12), (4a) 

(ff2P1 ISIPIff  2) = t(O 12), (4b) 

where Pi = m(ch 0 i , sh Oi) and 012 = 01 - 02" Unitar- 
ity and crossing imply 

u(O)u(-O)  = 1, t (O)t(-O) = 1, (5a, b) 

u(O) = t O .  - o) .  ( 5 c )  

If a pole, corresponding to a two-particle bound 
state, at/912 = 2~ri/N is introduced in u(O) the follow- 
ing n-particle bound state spectrum is generated [9] : 

m n = m sin(Irn/N)/sin(~r/N), (6) 
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where now m N_ 1 = m. The solution of  eq. (5) is given 
by [10] 

u(O) = sh ½(0 + 27ri/N)/sh ½(0 - 27ri/N). (7) 

The fact that antiparticles are bound states of  N 
- 1 particles requires the following consistency check: 
if in the N-particle scattering amplitude we project)V 
- 1 particles onto the pol e of  mass m, we should repro- 
duce the par t ic le-ant ipar t ic le  amplitude. This means 
that the following identi ty m u ~ h o l d :  

H u(o + nrri/N) = t(O) = u(iTr - 0), (8a) 
n 

where 

n = +1, +3 .... .  +- (N-  2), for N odd, (8b) 
= 0, -+2, +4 .. . . .  + ( N -  2), for N even. 

This is indeed true for u(O) given by  eq. (7), show- 
ing that  eq. (7) gives the S-matrix of  a Z(N)-invariant 
factorizable field theory.  

A few remarks of  general nature are now in order. 
Although ,our method  of  constructing the S-matrix 
has been devised for N I> 3, it is gratifying to note that 
f o r N  = 2 eq. (7) yields S = - 1 ,  as it  should for the 
Ising model  [4].  On the other hand, we expect  a suit- 
able N ~ oo limit to describe the continuum limit of  
the X Y  model. Indeed, for N ~ ~ eq. (7) gives S = 1, 
in agreement with the fact the continuous 0 (2)  o-mod- 
el is formally equivalent to a free massless theory.  This 
equivalence, however, neglects the existence of  vor- 
tices [11 ] which for T > T c play an essential role in 
building up short range correlations. Quantitatively 
the existence of  spin waves and vortices is reflected by  
the appearance o f  two mass scales in the N - *  ~ limit 
of  eq. (6). The lower mass m, which will be associated 
with spin waves, should vanish as 1 IN, whereas the 
higher m a s s M  ~ Nm should be identified with the in- 
verse correlation length. At the same time we expect 
that the relevant operators o f  the continuous X Y  mod- 
el should be composite operators corresponding to M, 
Although these qualitative remarks suggest that we are 
dealing with the continuous limit of  Z(N) models, a 
more detailed investigation requires the reconstruction 
of  the correlation functions from the S-matrix along 

lines similar to the ones used in the Ising model  [5].  
Furthermore,  the striking similarity [8] of  the above 
models with the chiral Gross-Neveu model suggests a 
deeper link between them * x 

We plan to elaborate on those points in subsequent 
publications. 

We thank Bert Schroerfor  very stimulating conver- 
sations. 

4:1 The missing link can perhaps be constructed realizing that 
the product of order times disorder variables, which is a 
Fermi field in the Ising model, will obey generalized statis- 
tics in the Z(N) models. Fields with generalized statistics 
have, on the other hand, played a central role in our discus- 
sion of the chiral Gross-Neveu model. 
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