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ALGEBRAIC BETHE ANSATZ FOR THE IZERGIN-KOREPIN R MATRIX 

V. O. Tarasov 

A generalization of the algebraic Bethe ansatz to the case of the 
Izergin-Korepin R matrix is proposed. For this R matrix the 
simplest L operators are calculated. 

Introduction 

In the quantum inverse scattering method the algebraic Bethe ansatz and its vector 
and matrix generalizations [I-6] play an important part. Hitherto it has been the main, 
although not the only, way of constructing simultaneous eigenvectors for a complete set 
of commuting integrals of the motion. A necessary condition for applicability of the 
algebraic Bethe ansatz is that the monodromy matrix of the corresponding quantum model 
should have a highest vector (vacuum or generating state). It is evident that this 
condition must also be sufficient, but at the present time the proof of the corresponding 
assertion is far from complete. In fact, there exist solutions of the Yang-Baxter equation 
for which monodromy matrices with highest vector have been constructed, but a suitable 
generalization of the algebraic Bethe ansatz is unknown. This applies particularly to 
solutions of odd dimension. 

In the present paper we propose a generalization of the algebraic Bethe ansatz for 
the Izergin-Korepin R matrix -- the simplest unstudied odd-dimensional solution of the 
Yang-Baxter equation -- and we discuss some related questions. The first section of the 
paper is an introduction. In the second we indicate a way of generalizing the algebraic 
Bethe ansatz to the case of the Izergin-Korepin R matrix. The simplest monodromy matrices 
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(L operators) for this R matrix are described in the third section. The fourth section 
is devoted to the proof of the proposed generalization of the algebraic Bethe ansatz. 

i. R. Matrices and Monodromy Matrices 

We recall some basic relations of the quantum inverse scattering method. For us the 
basic object will be the R matrix R(X), the solution of the Yang-Baxter equation 

(l| ) (B(~) | (I| ) = (R(~) | (I| (X) ) (R(~-~) | ( 1.1 ) 

where I is the unit matrix in the linear space V, and R(X) is a matrix in the space V| 
and it satisfies 

R (X) I~=o=I| ( 1 . 2 )  

From Eqs. (I.I) and (1.2) there follow the unitarity relation 

R(~)R(-~) =1| (1.3)  

A quantum integrable system is characterized by monodromy matrix T(X) satisfying the 
equation 

R (X-g) T (~) | (V) =T (V) | T(L)R(X-g). ( i. 4 ) 

At the same time, the relation (1.1) guarantees consistency of Eq. (1.4); T(X) is a 
matrix in the space V with matrix elements that are operators on the state space of the 
quantum system (the quantum space). The space u is called the auxiliary space of T(X). 
An example of a monodromy matrix is the matrix PR(X) (P is the matrix of transposition in 
V| this following directly from (1.1); here, the quantum space will also be the 
space V. 

The trace of the monodromy matrix in the space V, tr T(X), is the generating function 
of the family of commuting operators in terms of which the Hamiltonian of the quantum 
system is expressed. 

We note the possibility of multiplying monodromy matrices as matrices in the space V. 
If TI(X) and Ti(X) are solutions of the relation (1.4) with the same R matrix and quantum 
spaces ~i,~2, respectively, then T~(X)T2(X) is also a solution of (1.4) with the same R 
matrix and quantum space &i| The simplest monodromies have become known as L operators. 
We shall call the monodromy matrix PR(k) the fundamental L operator. The vector I0> in 
the quantum space of the monodromy matrix T(X) that is annihilated by the operators Tij(k) 
for i > j and is an eigenvector for the operators Tii(~) is called a highest vector of the 
monodromy matrix T(X). 

A detailed exposition of the quantum inverse scattering method can be found in the 
reviews [1,2,7,8]. 

. 

where 

The Izergin-Korepin R Matrix 

This solution of the Yang-Baxter equation was found in [9]. 

(c (;q I 
' ~ (~) b (h) 

f (~) 

1 
c t ~ !  

b (~) e @) 
g (~) 

d (X) 

(x) d (x) 

a (~) g @) 
(~) b (~) 

g (~) b (X) i f (~') e (~) c (X) 

It has the form 

a(L) =s h  (L--3q) +sh  3~l--sh 5q+sh  ~l, b(~,)=sh (~--3~1) +sh 3TI, 

c(~) = s h ( ~ - 5 r l ) + s h  rl, d ( L ) = s h ( L - r l ) + s h  ~1, 

e (~,) =- - sh  2r I (e-~+~+e-~), ~(~) =- -sh  2~1 (e~-3~+e3~), 

] (~,) = - - i e  -~+2~ sh ~1 sh 2~]-e -~ sh &l, f(~,) = i e  ~-~ sh ~l sh 2~l-e ~ sh 4% 

(2.1) 

( 2 . 2 )  
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g(~) =e~" sh 2~1 ( l -e -~) ,  

and the omitted matrix elements are zero, 

Let 

/~ (~) 

r (~) = [ A  (~) 

$(%) = e  -~  sh 2~] (i--e~), 

B1 (~) B~ (~)~ 
A~ (~) B~ ( ~ ) |  

Ca ()~) As (~)7 
( 2 . 3 )  

be the monodromy matrix corresponding to it with highest vector I0>: 

C,(~) 10>=0, A~(%) [0>=m(~) 10>, i= t ,  2, 3. ( 2 . 4 )  

It follows from (I.i) and the structure of the ~ matrix that the complex-valued functions 
ai(i) must satisfy the relation 

a~ (~) ~ (E+2~--in) =d~ (E) a~ (E+2~- i~) .  ( 2 .5  ) 

We denote 

c (z) d (~) d (~) c ( i )  
' ~ ( l )=a (X)d(X) -~ ( i )~ ( l ) '  Y( i ) - -  ~(X---~' z(X) = ~(l--T' 

~o ( ~ ) , , ) ( - z ) = ~ .  

where 

We consider the vector-valued functions [~n(~i ..... ~n)> defined by the recursion 
relation 

I r  Z . )>=B,  (Z,)I r  (~, . . . . .  ~ . ) > -  

~=, Y ( ~ - ~ )  ~=~ I I •  (z.-x~) ! r 1 7 6  ( ~ ,  �9 � 9  ~ .  �9 �9 �9 ~ - )  > 
k=2 

and the initial conditions 

(~-7~)  

2 .6 )  

2 .7 )  

2 . 8 )  

( 2 . 9 )  

.... ~n)> is an eigenvector of the operator tr T(%) = Ai(%) + A:(X) + As(1) 

( 2 . i 0 )  

[@0>=[0>, [ O~()0 >=B,(%) [0>. 

If the numbers ~i . . . .  , ~n satisfy the system of equations 

a~ (m) = ~=~ z ( ~ - m )  co ( ~ - m ) ,  

h ~ j  

then l~n(~i, 
with eigenvalue 

iI fI ~=~ ~=~ ~=~ d ( ~ - ~ )  " 

As was to be expected, the order of the numbers ~i, "-', ~n is unimportant, since 

1r . . . .  , m - .  m+,, m, m + ~ , - . . ,  ~ . ) > = ~ ( m - m + , ) I @ ~ ( ~ -  . . -  , ~-) >. (2.  il) 

If the monodromv matrix T(X) is the product of N fundamental L operators, then 
~(%)=cN(%),a2(~)=bN(%),=~(%)=d~(%), and formulas (2.9) and (2.10) reproduce the results of 
[I0] for the eigenvalues of the trace of a monodromy matrix as obtained by the method of 
the analytic Bethe ansatz. 

All the proofs are given in Sec. 4. 

3. L Operators for the Izergin-Korepin R Matrix 

The elementary L operator for given R matrix can be expressed in the form 

[Ane~'-6 A~2 -6 A,~e -~, BI~ + B13e -~', B~ + B2~e -~" \ 
L (~) ~ |Cne ~" + Cl~, A21e ~ -6 A22 + A~ae 4", B~2 + B~3e -~ ) ,  

\C~le ~ -6 C~, Cale~ + Ca2, A~i e~" q- A~ + Anne -z 
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where Aij , Bij, Ci~ are constant vectors. To obtain for them explicit formulas, we con- 
J + 

sider two algebras ~, ~2, generated by the generators tl, Pi, i = i, 2, and the relations 

P~t~• t~+tC=2 sh 4T1 (p~--I) , t~-t~+=2 sh 4~lp~, (3 .1 )  

p~t2•177 [t2 +, t2-] =sh q sh 2~p2, (3 .2 )  

respectively. The elements of the different algebras commute with one another. Such 
relations have already arisen often in the framework of the quantum inverse scattering 
method, beginning with [11,12]. 

Let C2 be a Casimir operator of the algebra ~: 

C~= i/~ ( t+t2_ + t -t ++ch ~ ch 2~]p2) =tSt.~++ i/2 ch (2~p~+ ~). 

We introduce the notation 

2 sh 4~ (p~+p2--t) i 1 
~+=t~+' ~+ = sh 2~ (p~-t) t~ +, ~ , -=t , -  2 sh 4~ (p~+p2--i) ' $~-=t~-.sh 2~p---~" 

Equation (1.4) for L(X) leads to the following expressions for the operators 
Ah(X), Bh(X), Ok(X) : 

A~ (X) =2  sh (~+2B--4~lp~--2~lp~) -- 2 sh (4~p~+2~lp2-2~) (ch ~1 ch 2~lp2-C~ ch 2~1) + 
sh 2~ (p~-l) sh 2~ (p~+l) 

~-e~(~-')~+%~-~e-~(~-o~+, A~(~) = - 2 i ( c h  ~+2 ch ~ ch 2~p.~-C2), 

sh (4Dp~+2Dp~--2N) (oh ~ ch 2Np~-C2 ch 2~) + 
A~ (~) = - 2  sh (X+2~l--4Np~--2~lp~) --2 sh 2~ l (p2-1) sh 2~1 (p2+t) 

~t-e-~n(~-')~z+%~2-~e 2n(~,-')~,+, B, (~) =~,-  (e~n~-n+e -~) ~2++~z - (e-~v~+n+e-Z), 

e-g 
B2 (;~) =~,-2 sh 4~1 (p ,+pz- t )  e -'n~'-zn~+'n - ( ~ - ~ + + ~ - )  Ze -~n~,-2n~+~n,2 ch ~1 ' 

Bs( )~ ) =i( ~ - (  e-~'~p~+'% e-~') ~f,+~z- ( e2~'~-'~+e-~.) ) e-~,~,-z,~+~,~, 

C, (~,) =--i(  ~2- (e~+e-~+~) ~t ++ ( e ~+e~v~-~ ) ~2 + ), 
r 

C2 (X) =e'~'+~v~-''2 sh 4 n (p,+p2-1) ~,+- e ''v,+2'~-2' (7~-7~,++~+) ~, 
2 ch~l 

C~ ()~) = -  e'~'+z~v~-3~ (~-  (e~+e~V~-~) ~++ (e~+e-2'~§ ~+). ( 3 .3 ) 

To obtain an L operator with highest vector, we consider the Verma modulus ~ of the 
algebra ~| with highest vector I0>: 

t,+lO>=t~+[O>=p, lO>=O, 2~p~10>=AI0>. (3.4) 

In what follows, we shall assume that q is not a rational multiple of i~. In the generic 
situation the representation of the operators (3.6) in the space ~ is irreducible. There 
are also three series of special values of the parameter A: 

A=2~Im+--~ (mod~) ,  m----t,2 . . . . .  ( 3 .5a )  

A = 2 ~ m - ~  (modin),  re=l ,  2 . . . . .  (3 .5b)  

A=2Nm(mod i=), m=t ,  2 . . . . .  ( 3 .5c )  

In  t h e  cases  (3 .5a )  and (3 .5b)  t he  r e p r e s e n t a t i o n  of the  o p e r a t o r s  (3 .3 )  becomes 
reducible in the space ~. An irreducible representation is obtained if ~ is factorized 
with respect to their maximal invariant eigenspace, which is the linear hull of vectors of 
the type (t[)k(t~)s the relation k + s > m holding in the case (3.5a) and s > m + i 
in the case (3.5b). In the case (3.5a) the quantum space of the obtained L operator has 
dimension �89 + i); for m = 2, A = 4q + i~/2 we reproduce the fundamental L operator: 
PR(%)=i/~L(%--3~+i~/2). In the case (3.5b) the quantum space is the tensor product of the 
Verma modulus of the algebra ~, and the 2m-dimensional space of an irreducible representa- 
tion of the algebra ~. For m = i, A = N one can propose simpler formulas for the 
irreducible L operator with highest weight I0>: 

L(iL)=(t+e-~)E(;L), .~,(~)=e~-2.~+,--e~,*-% ~(~ )=- - i ( e~+ l ) ,  ~()~)=--eX+Z~-~+e-~n~ +~, 
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~ ( ~ ) = t - ,  ~2(~) =(t-)Ze-Z~+~i/2 ch N, ~ ( ~ )  =it-e-~'~+~% ~(~) =e~it +, 

C~(~)=e 2--~e~n~-~n(t+) a, C~(~)=e~e~-~t +, 

and t • and p s a t i s f y  the  commutation r e l a t i o n s  (3 .1)  and (3 .4 )  fo r  t he  a l g e b r a ~ .  

In the  case (3 .5c)  s i n g u l a r i t i e s  appear in  formulas  (3 .3 ) �9  However, t h e r e  e x i s t s  a 
s i m i l a r i t y  t r a n s f o r m a t i o n  in t he  quantum space t h a t  i s  s c a l a r  in the  a u x i l i a r y  space,  
L(~; A)=U(A)L(%; A)U-~(A), such t h a t  s  A) no longer  has s i n g u l a r i t i e s  and i s  i r r e d u c i b l e  
for A = 2Dm, m ~ I. 

4. Algebrai c Bethe Ansatz for the Izergin-Korepin 

R Matrix 

We turn to the proof of the assertions formulated in the second section. Let T(%) be 
a monodromy matrix of the form (2.3) satisfying the relation (1.4) with the R matrix 
(2.1). We consider the algebra ~ of polynomials of the matrix elements of T(X). Let 

~----~0~ (4. I) 

be its decomposition into a sum of spaces of polynomials of fixed degree. An element 
of the term ~ has the form 

di~,...,in;~f,.~ ~''~ ".,. 

where ~ is a permutation of the numbers i, n, and f~) is a rational function of its 
arguments. 

We denote by ~ the subspace of polynomials of the elements AI(%), BI(%), B~(X); for 
an R matrix of the form (2.1) it is a subalgebra. 

We say that the monomial T~j,(%~)....-T~,~(%~) has the standard ordering. It follows from 
the relation (1.4), expressed in the form 

R(%-~)T(~) | -~(%-~) =T(~) | (4 .3 )  

and the  Yang-Baxter  equa t ion  f o r  R(A) t h a t  any element  of  the  a lgeb ra  ~ can be reduced 
in a unique manner to a form with standard ordering. Thus, the monomials of degree n with 
standard ordering form a basis of the space ~. 

We shall say that a monomial is normally ordered if in it all elements of the type 
Bi(%) are on the left, and all elements of the type Ci(l) on the right of all elements of 
the type Ai(%), the elements of one given type having standard ordering. It is readily 
verified that in the space ~ there is the same number of monomials with standard Ordering 
and normal ordering. Reducing the normally ordered monomials to ones with standard 
ordering and using.Eq. (1.2), we can prove that they are linearly independent. Thus, we 
establish that the normally ordered monomials of degree n also form a basis of the space 
~ , and any element ~E~ can be uniquely reduced to a normally ordered form, which will 
be denoted by !@i. 

We also introduce one further characteristic of a monomial -- the order (ord). The 
order of a monomial is equal to the sum of the orders of the factors, which we define as 
follows: 

ordAi(%)=0, ordB~(~)=ordB~(%)=i, (4.4) 

ordB~(~)=2, ordC~(~)=ordC~(~)=-l,  o r d ~ ( ~ ) = - 2 .  

I t  fo l lows  from the  form of the  R ma t r ix  (2 .1)  t h a t  po lynomia ls  of f i x e d  order  form a 
subspace G~ in t he  a lgeb ra  ~ and 

~ =  ~oa.. (4.5) 

LEMMA i. There exists a unique element @n~ with the following properties: 

Property i: r 
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Property 2: 

Property 3: 

Property 4: 
unity. 

LEMMA 2. The element Cn satisfies the recursion relations 

o~(~, . . . . .  ~.) =~,  (~)~._, (~, . . .  ,~.)-B~(~,) ~ 

~ )  ~ , - ~  (~, . . . . .  Z ,  �9 �9 �9 ~ , ) A ,  ( ~ ) ,  

with the initial conditions O0=I, O~(~)=B~(~). 

LEMMA 3. We consider an element O~=~ with the following properties: 

Property i: O ~ ~ .  

Property 2: 

i @ ~ ( s  does not contain B2(Xn). 

!@~(%~,...,%~)i contains the monomial Bz(kz).....Bz(%n) with coefficient 

Property 3: 
b) if m >= n, then ~mn can be represented in the form 

(I),, ,(~, . . . .  , ~ , , ) = ~ g ( ; ~ o , , . . . , x % _ ~  m . 

m--v,  ~a--I 

. . . .  ~ )  I I  ' l ]  ~0(~oo-~,~)r . . . . .  L,,...,L~,_o, . . . .  ~,)A,(~.,)... . .A,(~o ~ 

( 4 , 5 )  

(4.7) 

i r  d o e s  n o t  c o n t a i n  B~(Xm).  T h e n :  a )  i f  m < n ,  t h e n  Cmn = 0;  

w h e r e  o={o~fi{l,...,m}).~_z, o ,<a~<. . .<o  . . . .  a n d  g(k~, . . . ,~ - , l~_ ,+~, . . . ,~ , )  
function of its arguments of the second group. 

(4.9) 

(4.~o) 

(4 .~ )  

(4o12) 

(4.~3) 

is a symmetric 

LFM~ 4. 
n 

fl A,(~) r . . . . .  ~ , )= z(X~-~)r 

n n j - - i  

~ J  

l - - I  j - - I  

.(~,-.)~(~,-.)o(~-~:) )]-[ ,~ (x,-a.) ]--[ ~ (~ -x . )x  

11,11.1 
t l  

h:l=j,l 

Proof of Lemmas i-4. It will be convenient to prove all the lemmas together by 
i n d u c t i o n  on  n ,  a n d  i n  d o i n g  t h i s  we s h a l l  u s e  t h e  c o m m u t a t i o n  r e l a t i o n s  

B,(~)B,(~)=o(~-~) (B~(~)B~(~) U(~-~) ~(~-~ 
e0.-~) 

A,(Iz)B,(~,)=z(~--I.t)B,(~)A~(~) - -  B~(I~)A,(~,), 
b(%--~t) 

g(x-r0 I0,-~) c (~.--p~) B~ (X) A, (~) B, (~)B, (~) Bz (~)A, (~) A,(I~)B~(~,) d(s d(~,-~t) d(~,-p,) ' 
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i ~(z-~) 
B,(~)B~(~) = - - B ~ ( ~ ) B , ( L )  + - -  B~(~)Bz()~), ( 4 . 1 4 )  

z(z,-~) c(;~-~) 
t e(Z,-~) 

Bz (~,) B, (ix) = - - B ,  (l~) B~ (L) + - -  B~ (ix) B, ()~). ( 4 . 1 5  ) 
z(~,-~) c(;~-~) 

We shall not describe in detail how the coefficients of the monomials that we need are 
to be calculated from these relations, since there is complete analogy with the standard 
calculations in, for example, the XXZ model [2,7,8]. 

The induction basis (n = 0, i) can be verified directly. We establish the induction 
transition. We begin with assertion a) of Lemma 3. We use induction on m. The assertion 
is obvious if m < n/2, and this provides the induction basis. We represent ~mn as follows: 

i(I)m. (~ , , . . . , )~m)  i = B t  (L~)'T',(%~ . . . .  ,)~m)+Bz(L~)Wz()~: . . . . .  %~) +W~ ()~ . . . . .  %,.)A~ ()~). ( 4 . 1 6 )  

Here, ~, ~, ~ satisfy the condition of Lemma 3. By the induction hypothesis ~z = ~ = 0. 
If m < n -- i, then T2 = 0 and the assertion is proved. If m = n -- i, 

a-I-rz ()~ . . . . .  ~,,,) = g ( ~ , . . . ,  ~,, ,)(I), ,_~(La,. . . ,  ~,m). ( 4 . 1 7 )  

We substitute (4.17) in (4.16) and consider the relation (4.8) for i = i. The comparison 
of the coefficients of the monomial B~(%~)B~(%=)B~(%~).....B~(%~_~)A~(%~)A~(%~+~) on the two sides 
of the equation is done by means of (4.15) and Property 4 of Lemma i, which gives the 
required assertion: g(~2 ..... A m) = 0, 

We turn to Lemma 2. We expand ~n in the same way as (4.16): 

! (I),~ (t., . . . .  , i . .)  i =B~(L , )  q~  ()~z . . . . .  ~ . )  +B2(Z , )  Wz(%~ . . . . .  %.)+W~(~z . . . .  , %, , )A~(~) .  ( 4 . 1 8 )  

By Lemma 3 ,  ~ = 0 ,  

�9 ~(~ . . . .  , Z . ) = g ~ ( ~ , . . .  ,~ . )  ~,~_~ ( ~ , . . . ,  Z.),  

~=~ (4 .19)  n 

�9 ,2,,... H ,L... 
~ = 2  h : 2  

Using Properties 2 and 4 of Lemma 1 and the commutation relations (4.11) and (4.12), we 
find that 

n 

- -  z ( ~ - ~ )  g, (x , , . . . ,  ~,). 

The equality is extracted from the condition of canceling of terms of the type B~(~z)B,(l~). 
....B,(~,)A~(~) for normal ordering of the left-hand side of Eq. (4.6); on the right-hand 
side of (4.6) such terms are absent. Property 4 of Lemma 1 also gives g!(A2 ..... A n) = i, 
and we have thereby verified the relation (4.7). 

Lemma 4 can be proved similarly. We write down the decomposition 

and represent ~0, ~l, ~2 in the form (4.9). The key polynomials, whose coefficients make 
it possible, on the one hand, to determine the unknown functions and which, on the other, 
can be calculated fairly simply from the commutation relations (4.11)-(4.15), are 
B~(k~).....B~(L,)At(t~), B~(~)Bi()~2).....B~()~,)A~(~) a n d  B~(~)B~()~).....B~()~,.)A~(~)A~(%~). 

We now prove the existence of the element ~n. In fact, almost all the properties 
of ~n required in Lemma 1 follow directly from the recursion relation (4.7). An exception 
is Eq. (4.6) for i = I. To verify it, we expand (4.7) by one step: 

e~~ (~, . . . .  , ~ . )  = B ,  (~ , )B,  (~.~)'v._~ (Z~ . . . . .  ~ . ) - -  

"I'-I" 
B2 (Z,) Y (Z--)~2) 1.].  z (Zk-)~2) (I),~-z (Z~ . . . .  , )~,~) A, (Z2) -- 

n , i - - t  n.  

j~3 = h : 3  
k=/=# 
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n . / - - i t  

" J ~  Y ( ~ : ; q )  ~=~ 

H z  (g~--~,;) (I),,_~ (,%,,..., ~,j ..... X,,) A, (g;) +B2 (g,)B2 (iL,) E X  
h ~ 2  j ~ 3  
h : : # j  

n J--i l . _ i  n 

n n n 
n 

H z (X~--~,~) 0,,_, (~,~,..., ~,~,..., ~z . . . . .  L,) A~ (~,j) A, (;Lz), 
k = 3  

A=A:j, l 

substitute (4.20) in (4.6), and, using the relations (4.10)-(4.15), reduce the left-hand 
side of the equation to normally ordered form. As a result we find that for the 
fulfillment of Property 2 it is sufficient if the elements of the R matrix satisfy the 
identities (AI.4) and (AI.5) given in the Appendix. For the R matrix (2.1), (2.2) the 
identities can be verified directly. 

It remains to verify assertion b) of Lemma 3. In iO,,ni we separate all monomials 
that do not contain factors of the type B2(~) in a separate term IF1: i~m~!=~1+kV 2. From 
the commutation relations (4.11)-(4.15) have the following representation for ~z: 

. . . .  , ~vm) = s g (~,o,, . . ., ~,Om_ n I ~'1 . . . .  

m - - n  ~ a - - 1  

, X~ . . . . . .  ~%~_~ . . . .  , ~m) I~  ~ o~ (~% - -  ~ )  BI ( ~ ) . . . .  

�9 ~ . . . .  �9 B z ()~m_~) . . . . .  B:~ (Zm) A z (~o~) . . . . .  A~(~%~_~), ( 4 . 2 1  ) 

which i s  ana logous  to  ( 4 . 9 ) .  We c o n s i d e r  t h e  d i f f e r e n c e  

' V o ( ~ , , . . . , ~ ) = ~ m , ( ~ , , . . . , ~ , ~ ) - - ~  g (~o , . . . ,~o_ , I~ , , . . .  

m -- n o a -- t 

h : : :#:~i ,  . . . ,  O a _ l  

(I), (X,,... ,~. . . . . . . .  ~%_,,,..., L~)A, (Xo3... . .A, (X,,,_,,), (4 .22)  

where the function g(X,,...,x.-~lx.-~+, .... ,x.) can be found from (4.21). Now ~0 satisfies 
all the conditions of Lemma 3. In addition, !q~0! does not contain monomials without 
factors of the type B2(X). We decompose ~0 in the usual manner: 

!To(X, . . . . .  L~) i=B,  (%,) tFo,(X2 . . . .  , X~)+B~(X,)q~o~(X~,..., )~m) +Wo~(X~ . . . . .  ~m)Al ()~,). (4.23) 

By the induction hypothesis, ~0i  can be expressed in the form (4.9). Allowance for the 
additional restriction on !q~0! now tells us that ~0~ = P0a = 0. Substituting (4.23) in 
(4.8) for i = I, reducing the left-hand side of the equation to normally ordered form, 
and comparing the coefficients of the monomial B~(l~)B~(%2)B~(%~)-...-B,(X~_t)A~(%~)....-AI(~), we 
find that ~02 = 0, completing thereby the proof of Lemmas 1-4. 

LEMMA 5. 
n 

= H  Z('a--)~'0 aD,,(X, . . . .  X,,)Aa(~,)- A~(~)cI),,(x, . . . .  ,~.~) ~_"; o~(~-;~0 
n j - - I  n 

B, (~t) b (~--Zj) . ; ~ )  qb,_, (X, . . . .  
h=c~J 

(4.20) 
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~=~ ~ ( ~ - ~ )  ~=, 

I I  "(x~-~) ~ . - ,  (~ , .  �9 �9 ~ . . . . .  ~.)A, (~) +B~ (~) • 

k ~ J  

n ~--t  ~-- t  ~--1 

~, (x~-xO ~o-~ (x, . . . . .  L , . . .  , ~  ..... 
] ~ 2  l ~ t  h ~ i  k = |  

z(~-Z,O r ~(~-~, ) .  ~(~,~-~,~) + 

n 

~(1~-~,) ) H z(~.~-k~)z(~.~-k~) A,(~)A~(~,)+ 
y (x,~ b-~G-~) ~=, ~ (~-~) 

n 

h~j ,  l 

A,(~.,)A~(~.~) ] + . . . ,  

B,  (~) E 

~--t  

n 

A,(~)~.(~,  . . . . .  ~-)----II b ( ~ - ~ )  @.(k, . . . .  k.)A~(~)-- 
~=, d (~--,XO 

j - - t  n 

(4.24) 

fiz(•j--•,)z(•,--•) @~-2(%~,.. ,~z, .,~j . . . .  ~)A2(~,)A2(~)+... (4 .25)  
~=, o (X~-~) ~ ( ~ - ~ )  . . . . .  

where the ellipses denote normally ordered terms containing factors of the type Ci(1). 

Proof. We consider the necessary commutation relations (A2.1)-(A2.!4). It is evident 
from them that iA~! contains only monomials containing not more than two factors of 
the type B3(1), and the factor B3(I n) is certainly absent. Using the symmetry properties 
of Ai(~)~n(l I ..... A n ) inherited from ~n(ll, .... An) , and the commutation relations of 
the element B3(1), we can find that the factors B3(I i) are altogether absent and just 
the one factor B3(p) is possible. We finally arrive at the decomposition 

A,(~)r . . . .  ,X~)A~(~)+ 

B, (~) W,,(~, . . . . .  X.) +B~ (~) W:,(Z, . . . .  , Z.) +B~ (~) W3, (~, . . . . .  ~.), ( 4 . 2 6 )  

where *a i  s a t i s f y  t he  c o n d i t i o n s  of Lemma 3. A f t e r  t h i s  t he  v a l i d i t y  of  (4 .24)  and (4 .25)  
can be established in the same way as we proved Lemmas 2 and 4. 

Let T(1) be a monodromy matrix with highest vector I0>. We prove the formulas of the 
algebraic Bethe ansatz (2.5)-(2.11). Indeed, the relations (2.7), (2.8), and (4.7) 
signify that I@=(il ..... l~)>=~(h~ ..... ~)I0>, and formula (2.11) follows from (4.6). To 
obtain formulas (2.9) and (2.10), we use Lemmas 4 and 5. Adding the relations (4.]0), 
(4.24), and (4.25) and applying the sum to the highest vector, we calculate the vector 
trT(l)[@~(~i,...,M,~)>. The requirement of cancellation of the undesirable terms containing 
Bl(I), Bi(1), B3(1) leads us to the system (2.9) and to the identities (AI.I) and (AI.6) 
for the elements of the R matrix. For the Izergin-Korepin R matrix these identities can 
be directly verified. 

The connection (2.5) follows from the commutation relation (A2.7) for I = ~ + 2~ -- i~, 
applied to the highest vector. We note that this connection does not hinder our construc- 
tions, since it is nonlocal. 
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Conclusions 

I believe that the most promising generalization of the proposed scheme of the 
algebraic Bethe ansatz is its application to Z~-graded models with three-dimensional 
auxiliary space, in particular, to the supersymmetric sine-Gordon model [13] and the 
osp (�89 nonlinear SchrSdinger equation [14]. The elements B~(1) and B2(X) in 
these models will be fermion and boson creation operators, respectively. On the transition 
to models with grading the necessary identities (AI.I)-(AI.6) for the matrix elements of 
the R matrix are somewhat modified. Their precise form can be obtained by carrying out 
all calculations analogous to the case considered in the paper. 

Appendix I 

In Secs. 2 and 4 we have used the following identities satisfied by the elements of 
( 2 . 2 ) :  

~(;~-~) e (~ -~ , )  

(~-~) b (~-~) '  

a (~-~) d O~-~) - g  (~,-~) g (z-~)  

] (~,--I~) g (~,-p,) --d (~,--i ~) g (~,-p~) 

o) ()~-~) r (1~-~,) = t ,  

the Izergin-Korepin R matrix (2.1), 

y (~-~),  

z (~-p0 ~o (p~ - M  e (~-~) z (v- ~) ~) (~-,0 e (~-v) 
-~ + ----. . + .  
Y(v-F~) b(~-~)y('~-~) Y(V-gi b(~-v)y(~-~) 

Y~Y~ Y~Y~ Y~Y~ YI~Y~ 

--~ "-d~y~ y~b~a d~y~ 

dl,~yi2 daiyl2 d4!Y4z Yt2 xYaigl2 ~ Yalb~. zl2 z \  b&ibi2y&t Y~zb~i 

(t) 2 i  ( g&le&2 e4iet2 / 

(AI.1) 

(AI.2) 

(AI.3) 

(AI.4) 

(~1.~) 

( A 1 . 6 )  

(we have here used the notation kij ~ k(l i -- lj), ~ = cd/(ad - gg)). Equation (AI.2) 
was used in the derivation of the commutation relation (4.11). 

These identities are obviously direct consequences of the Yang-Baxter equations and 
the matrix structure (2.1) of the R matrix. This can be completely verified only for 
the identities (AI.I)-(AI.4). The first three of them follow from the unitarity relation 
(1.3). The fourth can be verified by reducing the monomial B~(I~)Bx(12)B~(I ~) to normally 
ordered form in two different ways and comparing the coefficients of, for example, the 
monomial B~(I~)B2(12)A~(13). A proof of the identities (AI.5) and (AI.6) must exist in 
the same manner. 

Appendix 2 

We write down the commutation relations needed to prove Lemma 5: 

(~-;~) ~(~-~) 
A~(I~ ) Bl (~) Bt (~,) A~ (1~) B~ (p~) A~ (ik) + 

r b(~-~) 

l ~ ( ~ - ~ )  z (~ -7 , )  
- -  B~ (P0 A ~ (M + B~ (~) C~ (p0 - B~ (P0 C, (M, 

y (I.t-- ~) y (bt-- ~,) b (~--~,) (o (B--~,) y ( :k-B)  

~ (P~--3'---~) ( Bn(F~)B~ (~') -B'  (~')B~(B) g(~--~')i~ ) Az(B)BaO~)=z(~,-p,)z(~t-3OBa(~)A~(B ) + b(~_;)- Bz(p.)A,.(30 , 

As (~t) B~ (~)= Bt (~)Aa (l~) 
b (~t-- ~,) 

c (~-M 
A~ (~)B2 (~,) = - -  

d ( ~ - M  

C~ (~) B~ (Z) =B~ (;~) C~ (~) 

l f ( ~ - ) 0  
B2 (~,) A a (~t) B3 (~) B~ (~) Ba (ia) A a (~,), 

y(~-~) d(~-~,) 

(A~ (~t)A2(~,) -A~ ()~)A~(~) ), b(V.--~) 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 
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d(;%-~)C, (~)Bz (~) = b  (~-~],)B2 (~)Ct (~t) +e()~-p~)B3(E)A~ (p~) -](~.-~)B3 (I~)A, (~) --g(~-I~)A2(I~)B, (~), 

d(bt-~,)C3(it)B,()~)=a(bt-%)B~(~.)C3(~)+g(~-~)B2(2~)• 

C*(~)-/(I.t-~,)B~(Iz)Ca(~) +~(~-~,) (A,(~)A3(~)-Az(i%)A2(~)), 

b(~-I~)C3(p~)B2(E) =d(k-9)B2()~)Cz(9) +g(~.-tt)B3(~,)A2(bt) + [(~-~t)A3()~)B,(~)-e(E-tr 

b (~-~) C2 (I.t)B~ (~) =d (~-p~)S~ (%)C~ ([~) + g (~,-~)A~ (~)C~ (~) +/(~-~)Ca (k)A~ (p.) - e (2~-It) C3 (~)A~ (~), 

d(~,--I~)C3(p.)A~(~)=b(~,-~)A~(~)Cz(I~) +e(~-~)B~(~.)Cz(pt)-~()~-I~)A2(~)C,(~)-f(i%-Ii)B~(9)C2(~,), 

g(~-~) B I(~--~*) C~(~)B~(I~)=B~(~)C~(~t)+ -(~(2~)C~(~t)-C~(~)B~(~))+~(A3(2~)A~(~)-A~(~t)At(;%)) ' 
d(~-~t) d@,-~) 

B~(~)B3(~t)=B~(~)B~(~)+ ~(It-k) Bz(~)A~(~,) e(~-~').Bz(~)A~(~t), 
b(~-7.) b(~-X) 

i ~(~t-~) 
Bz(~)Ba(~) - -  Ba(l~)Sz(~)4 - - B z ( p , ) B ~ ( ~ , ) ,  

z (~t- ~) c ( ~ - ~ )  

t e ( ~ - ~ )  
Bs (~,) B~ (la)= - -  B~ (p~) B~ (%) + B~ (1~) B~ ( l ) .  

z (p - ~,) c (~ - ~,) 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

(A2.12) 

(A2.13) 

(A2.14) 
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