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SU(N) evolution of a frustrated spin ladder
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Recent studies indicate that the weakly coupléds<J, spin-1/2 Heisenberg antiferromagnet with next-
nearest-neighbor frustratiod,. , supports massive spinons fadg =J, /2. The straightforward SU{) gener-
alization of the low-energy ladder Hamiltonian yields two independentNgUrhirring models withN—1
multiplets of massive “spinon” excitations. We study the evolution of the complete set of low energy dynami-
cal structure factors using form factors. Those corresponding to the sn&tatigerefd magnetizations are
qualitatively different(the samgin the N=2 andN>2 cases. The absence of single-particle peaks preserves
the notion of spinons stabilized by frustration. In contrast to the ladder, we note thétthelimit of the four
chain model is not a trivial free theory.
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. INTRODUCTION coupled systerft® In general, they are neither bosons nor
fermions, but have momentum dependent scattering. There
Frustrated quantum antiferromagnets are a source of cofave been many speculations about the existence of such
siderable theoretical and experimental attention—see, for exexcitations in two-dimensional frustrated antiferromagnets,
ample, Ref. 1. Their characteristics include enhanced classind their possible’tte in high-T.. The developments of Ref.
cal ground state degeneracies and the suppression of longé deserve further investigation.
range Nel order. In addition to their intrinsic interest, their  In this paper we return to an SNj generalization of the
prominence is fueled by the highs superconducting cu- ladder introduced in Ref. 8. Our motivation is twofold: first,
prates, where hole doping frustrates, and ultimately destroythe largeN approach is known to miss qualitative features in
the long-range Nel order of the parent compounds—see, forthis casé and we wish to track its evolution in detail. Large-
example, Ref. 2. This motivates the quest for simple model&\ results will be important in two dimensions, and we hope
of frustrated quantum magnets, and a detailed understandirig gain expertise in all the solvable cases. Second, we calcu-
of their properties. late the dynamical structure factors of the staggered magne-
Important examples include nearest-neighbor antiferrotizations. These involve correlation functions inferacting
magnets on frustrated lattices, such as the triandusgro-  Wess-Zumino-Novikov-Witten(WZNW) fields, and their
chlore, and Kagonfelattices, and further neighbor models evaluation beyond the ladder is a highly challenging and
on regular lattices. The second variety embraces frustrateapen problent®8
chains and ladder§; 8 the planar pyrochlor&;'! and the The layout of this paper is as follows: in Sec. Il we reac-
square lattice antiferromagnet with next-nearest-neighbor inquaint the reader with the spin-1/2 model, and it's mapping
teractions. Indeed, the latter model was suggested by Andeon to two different “parity” sector€:*® We introduce the
son in his influential work® on LaCuQ,, as a means to SU(N) variant of the low energy action and comment on this
realize his “resonating-valence-bond” or “quantum spin- choice of generalization. We emphasize that this treatment is
liguid” state. With isotropic nearest-neighbor exchangg, not the same as replacing lattice spins by BY(
this is often referred to as thl-J, model—for an introduc- generators® we expand on this in Appendix A where we
tion to spin liquids see Chap. 6 of the book by Fradkin. comment on the connection between filling and EJ(
Other examples include multispin exchange models, anéspin” representations. In Sec. Il we calculate the dynami-
those of dimers? Although enormous progress continues to
be made, frustrated quantum magnetism remains theoreti- J
cally challenging. In general, one must resort t8 of 1N
expansions, numerical simulations, or other approximation
schemes—see, for example, Ref. 15. I,
Building on the work of Ref. 8, Nersesyan and Tsvelik
have made considerable advances in the so-called confeder-
ate flag modet® This is an anisotropic version of the much
studiedJ;-J, model, in which the nearest-neighbor exchange
has a strongly preferred chain direction—see, Fig. 1. The
limit J,=<J, <J may be viewed as a collection of weakly
coupled, but nevertheless interacting chains, and field theory
methods may be employed. In general, the massless spinONSFIG. 1. 2D Heisenberg antiferromagnet with next-nearest-
of the spin-1/2 chailf are confined by the interchain inter- neighbor frustrationJ, <J, <J. The strongly relevant interchain
actions. However, along the ling,, =J, /2, massive spinons interaction between staggered magnetizations vanishesdfor
emerge in pairs, as the elementary spin excitations of the-J, /2 and renders deconfined spinons.
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cal susceptibilities corresponding to the uniform and stag- - 1
gered magnetizations. We conclude in Sec. IV with results )
for the four chain model. In Appendix B we discuss in detail,
the excitations, scattering, and form factors of the ISY( ST . .
Thirring model. We hope this may be of some assistance to < o)
the unfamiliar reader.

FIG. 2. The ladder Hamiltonian is the sum of two independent
Il. MODEL SU(N) Thirring models:H="H, +H_ . In the sector of positive
) . ) ) ) “parity” the even (odd chains carry lef{right) moving fields. The
In this section we reacqua!nt the rgader with the spln-l/ ?sector of negative parity is obtained by reversing the arrows. Exci-
confederate fla% {QOdeL and its mapping on to two differen{asions of the ladder carry this index and may be produced in
“parity” sectors;”~> we shall specialize to the ladder in due poih sectors.

course. Consider a Heisenberg antiferromagnet on a two-

dimensional square lattidef spacingay) with next-nearest- _ _

. . ] . : N=(J, +23)ag, N=(J,—2Jy)ag. 7
neighbor exchange interaction@, <J, <J as depicted in 1= 423080, Ao=(J1=23x)3 0
Fig. 1: In particular, ford,=J,/2, the strongly relevant interchain

coupling X\, between the staggered magnetizations
vanishe$:!® Setting J,=J,/2, and neglecting velocity
renormalizing terms, the Hamiltonian splits into two inde-
pendent pieces, or “parity” sectofs-®

L
szl zn: [Js,n'ﬁ,n+l+‘]i$,n's+l,n

+Ix(SnSt1nr1 TS 1S+l (1)

It is well established that the low-energy dynamics of a
single spin-1/2isotropig Heisenberg chain,

H=H, +H_, 8

where

HIP=Y j5 . ’ 2 - _
' ; S Sines @ H+:Ei Nhv (Igi- i+ o1 Joi+ 1)t N 1321 - Joi 41,4 9)

are described by the €2); WZNW model?>?*for a review _ , _ _

see Refs. 22 and 23. This WZNW model has conserved cu@Nd - is obtained fronfH, by the (parity) transformation
rentsJ=££taB£B and ‘]_:,R'ZtaBRﬁ! which generate the J—J. In th_e sector pf p(_)sitive_ parity, the evéodd) chains
§L(2)1 Kac-Moody current algebret,, (R,) are left(right carry left(right) moving fields; in the sector of negative par-

/ , . ity the situation is reverse(see Fig. 2. Equivalently, 7,
moving fermions withe=1,2, andt,; are fundamental gen- : :
erators of S2). TheHamiltonian densityH = [ dxH, may and_ are interchanged under a shift Ay transverse to the

be written in the following(Sugawaraform: chains. Specializing to the ladder,
HIP=Ntv (233423 )+ 3) Mo =Nhv (331 3y I) + N 13- Jy), (10

Herev is the Spin Ve|0cityN is a normalization constant, where we label the chains by roman numerals to avoid sub-

and the ellipsis stands for less relevant operators. We replag&@duent confusion with space-time indices. Hamiltonian Eq.
the perturbing lattice spin operators by their continuous(10 may be brought into a more familiar form by introduc-

slowly varying, uniform, and staggered components: ing a spinor, the left component of which resides on one
chain and the right resides on the other,
Sn/a0—S(X)=M;(x) + (= 1)"Ni(x), 4
wherex=na, measures the distance along chaiNeglect- W= ( R'>. (12)
ing oscillatory and derivative terms, Hamiltonigd) be- Ly

comesH = [dxH, where . . I
[axH In terms of this spinor, Hamiltoniafl0) becomes

L
szlHi1D+‘JLaO(Mi'Mi+l+Ni'Ni+1) Ho=MNiv (3. -3, +3,-J)+N3,-3,) (12
+23,80(M;-M 41— N;-Ni ). (5) and similarly forH_ . (Equivalently one may perform the

chiral interchangel,< J,; on the original HamiltoniansWe
In terms of the currentdyl;=J;+J;, the Hamiltonian den- see that. is nothing but an SU(2) Thirring model. That is
sity (5) may be written #l6 to say,the frustrated ladder may be reformulated as the sum
of two decoupledsU(2) Thirring models labeled by their
- - _ _ parity®1®We emphasize that each of these decoupled models
H:izl Hi "+ N3+ 3)i- I+ D)is1+ANi-Nip s +--+, (6)  captures the behavior of the coupled ladder, as highlighted in
Eqg. (11), and not just a single chain. In particular, the el-
where ementary excitations of the ladder are those of the SU(2)
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Thirring model, namely, massive spinons. These correspond A. Smooth components
to domain walls separating regions of different spontaneous tha smooth component of the sum of the chain spin den-

dimerization: _ sities may be expressed in terms of the two Thirring models
In this paper we straightforwardly replace the SU(2) cur-5¢ foliows:

rents by SUN) currents, as suggested in Ref. 8. In each
parity sector, the Hamiltonian becomes that of the IS)J(
Thirring model withN— 1 multiplets of massive spinorisee
Appendix B). This is the simplest generalization which re-
tains spinon excitations and parity sectors. We note that the

alternative strategy of replacing lattice spins by .SJl)J(qen.— WhereJ0+=J_|+J,, (Jo—=J|+J_u) is the temporal compo-
erators 'Ieads to problems at' the outSeAs we discuss in nent of the Thirring current in the model of positiyeega-
Appendix A, the representation of the generators translateﬁ/e) parity. Simply put, the structure fact@(w,q~0,0) of

into the filling of the corresponding electronic model. For they, o \isyrated ladder may be obtained from the correlators of
critical SU(N) Heisenberg model, with spins in the lowest Jo in the SUN) Thirring model:

fundamental representation, the corresponding Hubbar
model has one electron per steThe corresponding “spin”
density(4) has harmonics at multiples ok2=2m/Na, due

S+ Sulsmooti= di+ i+ y+3y=Jo+ +Jo - ,

to all the fundamental primaries of the (8); WZNW S(w,QNO,O)OC|m7§4+ [ wdxfo dt g(@riotivax
model. In this case, the simple finetuning conditiah, o
=J,/2, does not remove all relevant perturbatidhdhe ><<[JSYP(t,x),JSP(O,O)D, (14)

absence of such terms is crucial for spinons in the confeder-
ate flag model, and such a generalization would be inappro-
priate. Attempts to reinstate the condition of half-filling with where the summation is over parity sectors. The elementary
Hubbard chains or the alternatilfg®N magnet (g=N2  excitations of the SU{) Thirring model consist oN—1
quantum Potts modehlso lead to difficulties; foN>2 they multiplets of massive particles, corresponding to the funda-
are massive and dimeriZd#”2528and have little in com- Mental representations of SNY. The length of the Young
mon with the UV limit of decoupled spin-1/2 chains. Since tableau is termed the “rank” of the particf8,and their
our interest in these generalized models stems from thB'asses are given by E(B1). It is convenient to move to a
spinon physics of the confederate flag model, we confind@sis of such particles and to parametrize their energy and
ourselves to the simple minded extension of the low-energgomentum in terms of rapidity:
action. We study the SUN) evolution of the original opera-
tors, and retain the terms smooth and staggered magnetiza- .
tions for these fields. Ei=mjcoshd;, P;j=m;sinh6, . (15

In the following section, we shall compute the dynamical
structure factors of the generalized model. These are a dire

probe of the elementary excitations Sne may now insert a complete set of states between the

current operators in Eq14),

I1l. DYNAMICAL STRUCTURE FACTOR

. . . dé,, ..., dé,

In this section we compute the dynamical structure factor 1= E 5
(as may be seen by neutrorfer momentum transfers close n=0 ¢ (2m)“n!
to the “soft modes” at 0 andr. This is nothing but a Fourier

arve . . X[0y, . 0 o (0, ... 0, (16
transform of the spin-spin correlation functions, [n v n 1 (01 ol (19
(= o o+t ivgx where thee; are the internalor isotopig indices carried by
S(w,q,q, ) Imi ﬁwdxfo dte a the members of each multiplet. Using

X{[S(t,x) = S3(t,x), 570,00+ SE(0,0] ). .
(13 Doy, 0 OX) [0y )

] ] — A (E/ —E)t—(P —P))xe;, ..., €
The plus(minusg sign corresponds tq, =0 (q, =), and§$ =€ Z b o

ensures convergence of the temporal integral. The longitudi- , ,
nal momentum transfers in the vicinity af=0 (q=m) X(61, .05 00,0[ 6y, . .. ’91>5n
probe the smootlistaggereglcomponents of the spin opera- (17)
tors. The task is to relate the spin operators entering £3).

to the operators of the Thirring models, and to evaluate their

matrix elements. one obtains
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. e et

” de,, ...,do S(wquO’O
Sw,g~0,0x—27Im> > | ———1
n=0 ¢ (27)"n!

XlFJg(Gl, A ,Hn)e

IRRERE €n

8l vg—2 mjsinhej) 8l vg+ > m;sinhe,
] i
X - )
w—>, mcoshf;+i8 w+ >, mcoshd,+is z
i ]
FIG. 3. Exact dynamical structure fact® w,q~0,0) for N
(18) =2 (solid), N=3 (dasheg, andN=c (dotted with fixed q and
whereF ja(6y, . .. ,0,). . is a multiparticle form factor ~ arbitrary normalization. The/s?—4m? threshold behavior for the
3 Lo a

N=2 physical case is replaced by a/&—4m? divergence for all

of the temporal Thirring current, N>2.

FJS(al, P 10“)6 enE<O|J8(O,O)|0n, P 701>E

S (19) ing belowthe gap; the elementary Thirring excitations corre-

) o spond to fundamental SO representations, and do not
The dominant contributions to E¢L8) come from the states couple to the current directly, which spans the adjoint.
with the lowest mass. In the case at hand these are two par- The result(22) interpolates between two known limits.
ticle states of therank-1) fundamentall, and its(rankN  For N=2, it coincides with Eq(34) of Ref. 8, and in the
—1) conjugatel]. The box notation serves as a mnemoniclimit N=, where Eq.(21) tends to unity, we recover the
for the lowest fundamental multiplet of SNJ spinons; in  result for free massive fermiof$.In particular, the §=0)
the subsequent analysis we do not distinguish betweeM its threshold behavior of Eq(21) is quite instructive: forN
members. In particular, the current operator couples to the-2 it vanishes like sintg2), as may be seen from Eq.
adjoint representation occurring in the SU(tensor product (B32), whereas it is finite and nonvanishing fany N>2.
OeO; for N=2, O is 0. As we discuss in Appendix B, As a result, the structure factor Eq22) vanishes as
this form factor is Js?—4m? in the physical case oN=2, but diverges as
1/\/s?— 4m? for anyN>2—see Fig. 3. Solely on the basis of
f00 g ) (200 theN=2 andN=c limits,®® one might have expected the
adj L 7127 threshold to get steeper and narrower with increasingut
to remain qualitatively correct fol<<e. The actual evolu-
tion, and the departure even fli= 3, is a sobering example
- © 2 exg(x/N)sinh(x/N)sirB(x/21) of how SUN) treatments may miss simple features over the
f aaj (012 =X f dx : entlr_e range of\. .
0 X sinkPx Likewise, the smooth component of the difference of the
(21 chain spin densities may be expressed in terms of the two

and f=im— 6; see Egs.(B24) and (B27). We have sup- Thirring models as follows:
pressed the isotopic and component information in 2d)

. [ 0110
Fy,(01,62)0,5cmsin >

where

and concentrated solely on the rapidity dependence. Inserting S—Silsmoot= i+ A= In— =1+ —J1
this into Eq.(18) and performing the integrations one ob- ’ ’
tains

whereJ; , =J,—J, (J;_=J,—J;) is the spatial component
2y2q2 _ of the Thirring current in the model of positivienegative
S(w,q~0,0)o<S\/?HE(,]D[ZH(S)]F, (220 parity. Simply put, the structure fact®(w,q~0,7) of the
§7ys“—4m frustrated ladder may be obtained from the correlators, of
wheres?= w?—v2q?, 6(s)=arcosh&/2m) and in the SUN) Thirring model. The corresponding form factor
is given by Eq.(B25),
16m?, N=2,

Aam2<s?<{ 9m?, N=3, (23
16m?cog(m/N), N>3.

This result is plotted in Fig. 3 and is exact, provided E&p) )
is fulfilled. For larger energy transfers there are small correcYVe obtain
tions due to higher mass states; the upper thresholds corre-

01+ 92 =
F3,(61,62)g,5mcosh T)fEde(elz). (24)

spond to four rank-1 solitons, three rankdr rank-2 soli- a2 -
tons, and a rank-2 bound state and its conjugate, respectively. S(w.a~0.17) @ fO0r20(s)112. 2
In particular, there are no single-particle bound states appear- (@.q~0.m) s3\/s?—am? | aay [ 260 2l (29
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Once again, this result interpolates between the kndlvn and their two-point functions are now readily computed:
=2 andN= results®® and the SUK) approach leads to

ualitatively incorrect results over the entire range Nf .
12 y g <£l£s>:mAf deeA(iemeChﬁJrlmehﬁ (32)

B. Staggered components

A2
Z —

We denote the staggered component of the spin on chain = A(Q ZKA(m\/Z—Z)= (33
l, S(t,x)|stagg_by N,(t,x). In the UV limit (corresponding to
decoupled chains anth=0) N(t,x) is a spinless SN); '
primary field with (full) scaling dimensiom\=1—1/N. For <£2R5>=mAf dg e Tmeho+ixmshd (34)
the ladder we propose the following formula for the long-
distance asymptotics of the real space correlation functions:

=m* 2K0(m\/z—7), (35

where z=r—ix and r=it. The results for(R{R,) and

(RILs) follow by interchangingz andz. In particular, Eq.
ocmZA[Ki(mr)iKg(mr)]—}—--», (26) (33) first appeared in the study of weakly coupled one-
_ dimensional Mott insulator¥ Replacing the correlators in

whererE\/z_z= =12 (v=1) andK (x) is Macdonald’s Egs.(27) and(28) with these more general expressions, the

function also known as the modified Bessel function of theresult(26) follows immediately.

third kind 3! The dots stand for more rapidly decaying terms.  Further, the Macdonald function has the asymptotic ex-

In order to get a feel for this result we begin by studying apansion given by Eq9.7.2 of Ref. 38:

few limits. In the limit N—o~, A—1, each parity sector

reduces to noninteracting massive fermions. More specifi- p

cally, N; may be replaced by the fermion bilinear —Kai(mn=1/o o

Ll tusRi g+ R tapli s and one obtains

([N (%) =Ny (,%)]-[N;(0,00 =Ny, (0,01)
OC<N|(t!X) : NI(O!0)>i<N|(t!X) : NII(O!0)>

-1 (p=1)(n—9)

Ni- Ny (LT LW RIRT), 2 ~

(N-Np (LI LYRIR) ) (27) X| 1+ g+ 21 (8m)? +---, (36

NNy LI RO(RL) 28 . : -

(N Nipoe(L Ry (Rii ) 28) wherep=4A2. The leading term in Eq(36) is independent
with the usual massive Dirac fermion correlators: of A, and at separations>1/m, the interchain and intrac-

hain correlationgamusingly coincide:
z
oy
(L /J)—Zm\/;Kl(mr), (29 m2A-1

e72mr. (37)

<Na(tax) . Nb(010)>~
(LTRY=2mKy(mr), (30

see, for example, Chap. 13 of Ref. 32. In E(7) and(28)
we see quite clearly that the correlators of staggered magn
tizations areproductsof correlators from the sectors dif-
ferentparity®1% by definition the left and right moving fields Fo
on a given chain belong to different sectors. In coupling to
the staggered magnetizations, the solitons are still created in

Coupling the chains together not only generates exponen-
tially decaying interchain correlations, but also modifies the
97r22 behavior within the chains.

Substituting Eq(26) into definition(13) and effecting the
urier transforms we obtain the following structure factors:

A A
pairs, but belong to different sectdt$® In a given sector S(w.q~ 7.0 [s+\s*—4m*]?4+(2m)? 39
(i.e., Thirring model we thus require the matrix elements of ' ' sv/S2— 4m? '
single-soliton creation operators. The matrix %:%rgents of
such operators have only recently become avalil The 5 5194 oA
free fermions appearing in Eq7) and (28) for N— are S(w,q~,m) [s+Vs™—4m7™—(2m) (39
replaced by chiral field& ¢,Rs, which are nonlocal single- ’ ' SVs2—4m? '

soliton creation operators and carry the Lorentz spin\/2,

of a Thirring soliton3®%” we take the plugminug sign for ~ wheres?=w?—(q— )2 In deriving these expressions the
left (right) movers. These chiral fields are the components ofeader may find the integral representati@88) and (34)
an (interacting SN), primary field, and the Lorentz spin is More_convenient. At threshold(w,q~,0) diverges as
nothing but the UV conformal dimension. The single-soliton1/vVs®—4m= for all N, and we plot this behavior in Fig. 4;
form factors of such operators are goventepto normaliza- the larges behavior iss~?N. Similarly, at thresholdS(w,q

tion) solely by their Lorentz transformation properties: ~m,) tends to a constant fail N. In contrast to the mag-
netization correlators, we obtain qualitatively similar results

(0| Lq| @) =mA2e292 (0| Ry #)=m*"2e" 292 (31)  over the entire range of.
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S(w,q ~ m,0) At low temperatures T<M;,) the free energy of the per-
turbed sgN), WZNW model is given by
N—-1
de -
FIlL=-T, M,f —chaln[1+e—6(k”<ﬂ>”],
=1 2

where in this casek=2. The excitation energies!’
(j=1,...N=1,n=1.2,...,)satisfy

2

s?/m

(i) _.(0)
s 6 7 8 3 TIn(1+en WM —TAECH In(1+e em MIT)

FIG. 4. Exact dynamical structure fact®&w,q~ 7,0) for N =8, kM, ch(27A/N),
=2 (solid), N=3 (dashefl andN=x (dotted. The threshold be- ' )
havior is 14/sZ—m? for all N, and we have normalized accordingly. Where * denotes convolution, the kerne,q(\) and
The SUN) approach leads to qualitatively similar results over the Ajj(\) are given in Ref. 41 and =N@6/27. We extract the
entire range oN. Bethe equation€==]_,mché, and

IV. CONCLUSIONS exp(imL shg,) = H So( 05— 6y)
b+a

In this paper we have studied the 3U(evolution of a
frustrated spin laddér*® The dynamical structure factors
corresponding to the smootBtaggerefl magnetizations are X[1 ex(Oa=N )] E(0a—pp),
shown to be qualitatively differerthe samgin the N=2 “ P
andN>2 cases. A robust feature which survives, however, isvhere
the absence of coherent single-particle excitations at low en-
ergies. This is in stark contrast to the unfrustrated ladder, and
reinforces the notion of spinons stabilized by frustrafidf. © dw . 1
The success or failure of the lardlimit is not only model So( ) =exp —f jef'ﬁw IR — T
and approach specific, but also depends on the physical o (1+e )

guantity probed. We are thus unable to extract a wider guid- 2
ing principle other than one of caution. In the case at hand, Sh7T< 1- N) ®
the Lorentz invariant contribution to the uniform susceptibil- x| 1+

ity has a smooth and unalarming dependenceéNoivet for shmo

N=2, it vanishes rapidly enough to remove the thre:sholdand
singularity that persists for all othé\.

In closing we note that th&l=o limit of the two chain s NX/2_:
. . . x—ian/N e i
model is a free theory, but this is not so in general. In par- eX)=——, EX)=—r—.
ticular, each parity sector of the four chain model may be x+imn/N eN24j
viewed as two(nonchira) suN), WZNW models coupled  The rapidities\,, and x4 are distributed according to the
by currents: AN~1 heirarchy, the details of which do not concern us here.
. . o Similar equations occur for the SN§ invariant Thirring
H,o=sUN);+suN);+AJ J, . model k=1) but, without theu rapidities and with a dif-

ferentSy(6). In the limit N—c one obtains
With transverse periodic boundary conditions the currents

J.=3+Jy, I+ =J,+Jy generate siN), Kac-Moody al- ext(imL sho.) = =0
gebras, and it is convenient to writ&3%40 g a) bl;la S (a).

_ — — where S;(0) =exd —i(m/2)sgrd]. This is to be contrasted
Ho=Znt+[SUN)2 TN I ]. with the SUWN) invariant Thirring model whereS;(6) =
—1. The absence of a simphk— oo limit will be crucial for
multiparticle form factors, and renders excitations with non-

affected by the interactiofdue to the boundary conditions tr|V|§1I StatI.StICS. In. future publlcgtlons we hope to study thgse
pertinent issues in more detail. Recent progress on spinon

ind for N-— they reduce to tW,o Gaussian mod'els. Thepropagation in the four chain model may be found in the
su(N), model, on the other hand, is rendered massive by thg,ork of Smirnov and Tsvelik®

interaction, and is in fact integrable. The mass spectrum co-
incides with that of thgtwo chain SU(N) Thirring model
(B1), but the scattering is notably different. TBanatrix can

be extracted from a straightforward generalization of the We are extremely grateful to Fabian Essler and Feodor
thermodynamic Bethe ansatz equations derived in Ref. 41Smirnov. We are indebted to Philippe Lecheminant for valu-

The 7y parafermion® describe gapless nonmagnetic excita-
tions with central charge=2(N—1)/(N+2). They are un-
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corresponding to the Young tableau of Fig. 5; see Sec. 8.4 of
] Ref. 43. Further, squaring E¢A1) and enforcing constraint
(A3), one obtain¥

. h(N°>~h) h(1—h
- (2N )Jr (2 )_ (A5)

— This coincides with the quadratic Casimir of the N)(

FIG. 5. Antisymmetric su{) Young tableau of height. Young tableau depicted in Fig.8:see Eq(2.19 of Ref. 45,
e.g., for the fundamentall of su(2) h=1N=2) one ob-
able comments. We also acknowledge support from the U.Sains Si=3/4, as appropriate for spin 1/2. .
DOE under Contract No. DE-AC02-98 CH 10886. Thus, Eq.(Al) supplemented by the constrai#3) leads
to spin operator§,, described by the Young tableau of Fig. 5.

APPENDIX A:  SPIN OPERATORS

. . . APPENDIX B: SU(N) THIRRING MODEL
In this appendix we comment on the connection between

SU(N) spin representations and filling. At each lattice site In this appendix we discuss the excitations, scattering ma-

(labeled byn) one may introduce the fermionic spin opera- trices, and form factors of the SN} Thirring (chiral Gross-

tors Nevey model. More details may be found in appendix A of
Smirnov° and the literaturd’46:36:47:48

N
a_ T ;a
S“_aﬁzzl Cn.atapCnp: (A1) 1. Excitations
wherec andc’ obey the canonical fermionic anticommuta- _ 1he excitations of the SW) invariant Thirring (chiral
tion relations Gross-Nevel model areN—1 multiplets of fundamental
particles, corresponding to tié—1 fundamental represen-
{CrT] «Cm gt =Snmdap, {C.C}=0, {c"cl=0 tations of SUN). Their masses are given by
' (A2) .
sinmra/N
and the generators® span the algebra shj: [t?t°] Ma=mm; a=12,...N—1, (B1)

=if3t° It is readily verified that spins on different sites
commute, whereas those on the same site satisfy th¢)su( and following Smirnov, we shall refer to the labelas the
algebra:[S?,S0]=168, mf2® St. In the fundamental repre- “rank” of the particle.

sentation, the generators are chosen to satisftt)(

=C &%, t3?=C, 1, with C=1/2 andC,=(N?—1)/2N; see 2 S matrices

Appendix A.3 of Ref. 42. ) o ]

One may specify the si) representation on which spin _ 1he S-matrix describing the scattering of tvixank-1
operatorsS, act by the relevant Young tableau—see, for ex-fundamental partlcle§ |n.the SN7QZ|9nvar|ant Thirring(chiral
ample, Ref. 43. In particular, this fixes the value of the quaCross-Neveumodel is given by"
dratic Casimirﬁ, and thus by Eq(Al), constrains fermion

occupation numbers. As we shall demonstrate, the constraint 822( G)Eelez< 0,0,|SEE(6)]6,6,) €16 (B2)
N t wheref=60,—6,, ec[1, ... N], and theSmatrix operator
azl Cn,aCno=h, ¥V n. (A3)  acts on the two body Hilbert spagé® [,
corresponds to the verticél.e., antisymmetric Young tab- 217i
leau of heighth, as depicted in Fig. 5. The constrai#3) 0Z— WPH
fixesh electrons per site, and the permissable states to be of SPE(6)=8y(0) oy (B3)
the form g— T
N
ot At T
=Cp 0.Cna°C 0), A4 . . .
Ve ag.ean ™ CnasCag ”'“h| ) A4) 7 and Py, are the identity and permutation operator, respec-
wherea; e[1, ... N]. By virtue of the fermion anticommu- tively, with matrix elements
tation relationgA2), this may be viewed as a tensor of rank .,
h, antisymmetric under the interchange of any pair of labels e 0204|7161 05) ., = 5162, (B4)
€1 €

«; by the standard conventions for Young tabf&ahis cor-
responds to a vertical diagram bfboxes. Moreover, it also ;o
follows from the anticommutation relatior®2) that there e (0201|P1d 0105) ., c, = 5252 (B5)
are N(N—1)---(N—h+1)/h! independent states of form

(A4); this coincides with the dimension of the representationand
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1 0 0
Sol(0)= RERNAT (86)
r{a-§ - el

See Eq(119 of Ref. 37 or Appendix A(p. 182 of Ref. 29,
e.g., forN=2 this reduces to Eq6) of Ref. 29. Using the
decompositionsZ=P(")+ P and P,=PH—-pP),
one may also writéB3) in the form

s9e)=2 S0P

2i
60+ —
_ _p)
2i P ’

N

=Sy(0)| P+ (B7)

whereP (") andP () act on the symmetric and antisymmet-
ric representations occurring in the tensor producd [J;

e.g., 3%3=6+3 in SU(3). Bound states correspond to
poles of theS matrix, with masses

My = /M2 + m2-+ 2m, m,cosh 6;). (B8)

Sincel'(z) is free of zeros, and exhibits simple poleszat
=0,—1,—2,... 20 it follows that Eq. (B7) has a single
simple pole at#=27i/N occurring within the physical strip,

0<#<ri. This yields the bound state mass of the second

fundamental particleM,=msin(2a/N)/sin(w/N), as given
by Eq.(B1).

The S matrix describing the scattering of(eank-1 fun-
damental particle off its conjugateankiN—1) may be ob-
tained from Eq(B7) by the crossing transformation:

SO0(9)=Cp 8P (im—0) Co, (BY)

where(C is the conjugation operator dil. Utilizing P(©)
=Cp P1oCo /N, andZ=P @M+ PO one obtains

sE(0=3 s7(0)PO

O+ i

- _ (ad)) (0)

31(0)(73 o= P ) (B10)
where

F1 0 111 1 0
op_ 2 2w \2° N 2m]
1(0)_r1 EANESETAL (B11)

2 24 \2 N 2m

and P@% and P(® act on the adjoint and singlet represen-

tations occurring in the tensor product®J; e.g. 33
=8+1 in SU(3). Inparticular, forN=2, Egs.(B7) and
(B10) coincide(up to sign as expected from the identifica-
tion of O and in SU(2). Moreover, Eq.(B7) is also in
agreement with Eq1.6a of Ref. 49. TheS matrix (B10) has

PHYSICAL REVIEW B68, 094405 (2003

a pole atf= i —27i/N occurring within the physical strip,
0<#<ri. This is a cross channel pole.

For the purpose of calculating form factors in the follow-
ing Sec. , it proves useful to have tBamatrices in an inte-
gral form. Taking the logarithm of Eq$B6) and (B11) and
employing

—tz_ 4t

=dt e e
InT'(z)= fo T[(Z— e '+ ﬁ

], (B12)

one obtains

o ) X6
Sa(e):exp{ fo dx f4(x) smh(;)], (B13)
where

B 2expx/N)sini x(1—1/N)]

fo(x) X sinhx : (B14)
2expx/N)sinh(x/N
f1(x)= i Xsinhxh( ). (B15)

In particular, the su(2) Thirring matrix coincides with the
sine-GordonS matrix with %= 87,%°

ide
0

3. Form factors

N=2

5.06) exp‘ exp— mkl2)

k coshmrk/2 sink .

(B16)

In the previous paragraphs, we have discussed the el-
ementary excitations of the SNJ Thirring model. They are
massive particles labeled by their rapiditiés, and carrying
quantum numbers or isotopic indices,. In order to com-
pute correlation functions and dynamical susceptibilities, we
will need the matrix elements of various physical operators,
O, between the vacuum and tlil®wes) multiparticle ex-
cited states. Such matrix elements are terrfzeth factors
and their computation is an important enterprise; see, for
example, Ref. 29. As is discussed in Chap. 1 of Smirnov’s
book?® the two-particle form factors

(B17)

satisfy a matrix(Riemann-Hilbert problem, also known as
Watson'’s equations,

FO( 01 ’ 02)51,625<0| O(0,0)| 6201>

€5,€1

F( 01 ’ 02+ 277' )61,52: F( 01 ’ 02)61,65821':2( 012)
12
(B19)
This equation may be diagonalized to yield the simpler scalar
problents)

F(01,92+27Ti)=F(01,02)S(012), (Blg)

where S(60) are theS matrix eigenvalues. In particular, the
Thirring current operatorJ,, (with N2—1 components

094405-8
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couples to the adjoint representation occurring in the tensor 1 1 0
= s——+l+m+ =

productC]® [1; the relevant eigenvalue is o * 1+1+m 1%l 2 N 2.
faa (0= 11
) meoty Log L eme
S(0)=854 (6)=—S1(6). (B20) N L 2T M o
Another constraint on the form factors comes form Lorentz 3 1 0
invariance. Under a Lorentz boost, corresponding to a simul- I N+ I +m-— o
taneous shift of all rapidities by, the two-particle form X (B29
factor of an operato© of spin s satisfies § +l+m— i
2 2i
Fo(01+A,0,+A)=eS"F(0,,6,). (B21)  Application of Euler’s Formula yields
In particular, the leftright) component of the Thirring cur- rl1- £+I ? r E+I+ 0
rent has spirs=+1 (s=—1) and one obtains o5 ﬁ N 2 2i
_ fadj(a)_|=o r(1+1) 1 1+I o
Fia(61,02) e (1 D200 9,)), (B22) 2 N 27
3 0
—(01+ 6,)2¢ 00 r §+|_2_7Ti
Fjg( 01,02)0(6 1 2 fad] (612) (823) % 3 1 0 (B30)
Note thathdjE(elz) is a function of ;,— 6,, and is thus r E_Nﬂ_ﬁ)

Lorentz invariant. The form factors corresponding to the
temporal and spatial components of the current may b

written as

0.+ 6 =
Fjg(ﬁl,ez)ocmsinh( 12 2>fEde(012), (B24)

0.+ 60,

(6. (B29)

FJ'?( 01,605)cm cosh(

Substituting Eq(B20) and either of Eqs(B24) and (B25)
into Eq. (B19), one obtains a constraint diys (),

F7(0—2mi) =100(0)8,(0). (B26)

Following the general arguments of Karowski and Wéisz
[Egs.(2.18 and(2.19] Eqg. (B26) may be solved by

fEde(G)zexp{

where 6=im— 6.5 Expanding the denominator factors in
powers ofe”?*, and employing the identity

Joc Sir?(x6/21r)
dx fi(X) ——=—=——, (B27)

0 sinhx

edx +
expf —ZG_BXSinh'yX='8 L4 (B28)
0o X B

one obtains the equivalent representation

As may be seen most clearly from E4B29) and(B30), this
Form factor is free of poles in the physical strip<®<i ,
and Watson’s minimal equationi;n Karowski-Weisz form
are explicitly satisfied, It is indeed minimal form factor.
Expressions (B27), (B29), and (B30) conform to the
Karowski-Weisz normalizationF(i7r)=1, and have the
asymptotic behavior

lim £557(6) ~exp( = 6/2N). (B31)

60— *too

In the limit N=2, one may write Eq(B27) in the form

25 6)— — i sinh( 0/2)

Xexp{ J’ wdx
0
(B32)

and expressiongB24) and (B25) coincide with the known
results for the SU(2) invariant Thirrindor sine-Gordop
model; see Eq(33) of Allen et al® or let &~ in the for-
mula for f ,(B81,82) given on p.46 of Ref. 29 and note the
different definition of the physical strip. In the limN— o,
the SUN) Thirring model maps onto a theory of free mas-
sive fermions, as reflected in the expli@matrices. In this
limit f_'(0)—1, and Eqs(B24) and (B25) coincide with
the free fermion form factors given in Eq108 of
Smirnov?®

Sir?(x6/27r)

< Sinhx [tanh(x/2)—1]
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