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SU„N… evolution of a frustrated spin ladder

Miraculous J. Bhaseen and Alexei M. Tsvelik
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

~Received 8 May 2003; published 5 September 2003!

Recent studies indicate that the weakly coupled,J'!J, spin-1/2 Heisenberg antiferromagnet with next-
nearest-neighbor frustration,J3 , supports massive spinons forJ35J'/2. The straightforward SU(N) gener-
alization of the low-energy ladder Hamiltonian yields two independent SU(N) Thirring models withN21
multiplets of massive ‘‘spinon’’ excitations. We study the evolution of the complete set of low energy dynami-
cal structure factors using form factors. Those corresponding to the smooth~staggered! magnetizations are
qualitatively different~the same! in the N52 andN.2 cases. The absence of single-particle peaks preserves
the notion of spinons stabilized by frustration. In contrast to the ladder, we note that theN→` limit of the four
chain model is not a trivial free theory.

DOI: 10.1103/PhysRevB.68.094405 PACS number~s!: 71.10.Pm, 75.10.Jm, 75.10.Pq
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I. INTRODUCTION

Frustrated quantum antiferromagnets are a source of
siderable theoretical and experimental attention—see, for
ample, Ref. 1. Their characteristics include enhanced cla
cal ground state degeneracies and the suppression of
range Ne´el order. In addition to their intrinsic interest, the
prominence is fueled by the high-Tc superconducting cu
prates, where hole doping frustrates, and ultimately dest
the long-range Ne´el order of the parent compounds—see,
example, Ref. 2. This motivates the quest for simple mod
of frustrated quantum magnets, and a detailed understan
of their properties.

Important examples include nearest-neighbor antife
magnets on frustrated lattices, such as the triangular,3 pyro-
chlore, and Kagome´4 lattices, and further neighbor mode
on regular lattices. The second variety embraces frustr
chains5 and ladders,6–8 the planar pyrochlore,9–11 and the
square lattice antiferromagnet with next-nearest-neighbo
teractions. Indeed, the latter model was suggested by An
son in his influential work12 on La2CuO4, as a means to
realize his ‘‘resonating-valence-bond’’ or ‘‘quantum spi
liquid’’ state. With isotropic nearest-neighbor exchange,J1,
this is often referred to as theJ1-J2 model—for an introduc-
tion to spin liquids see Chap. 6 of the book by Fradkin13

Other examples include multispin exchange models,
those of dimers.14 Although enormous progress continues
be made, frustrated quantum magnetism remains theo
cally challenging. In general, one must resort to 1/S or 1/N
expansions, numerical simulations, or other approxima
schemes—see, for example, Ref. 15.

Building on the work of Ref. 8, Nersesyan and Tsve
have made considerable advances in the so-called confe
ate flag model.16 This is an anisotropic version of the muc
studiedJ1-J2 model, in which the nearest-neighbor exchan
has a strongly preferred chain direction—see, Fig. 1. T
limit J3<J'!J may be viewed as a collection of weak
coupled, but nevertheless interacting chains, and field the
methods may be employed. In general, the massless spi
of the spin-1/2 chain17 are confined by the interchain inte
actions. However, along the line,J35J'/2, massive spinons
emerge in pairs, as the elementary spin excitations of
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coupled system.8,16 In general, they are neither bosons n
fermions, but have momentum dependent scattering. Th
have been many speculations about the existence of
excitations in two-dimensional frustrated antiferromagne
and their possible roˆle in high-Tc . The developments of Ref
16 deserve further investigation.

In this paper we return to an SU(N) generalization of the
ladder introduced in Ref. 8. Our motivation is twofold: firs
the large-N approach is known to miss qualitative features
this case,8 and we wish to track its evolution in detail. Large
N results will be important in two dimensions, and we ho
to gain expertise in all the solvable cases. Second, we ca
late the dynamical structure factors of the staggered mag
tizations. These involve correlation functions ofinteracting
Wess-Zumino-Novikov-Witten~WZNW! fields, and their
evaluation beyond the ladder is a highly challenging a
open problem.16,18

The layout of this paper is as follows: in Sec. II we rea
quaint the reader with the spin-1/2 model, and it’s mapp
on to two different ‘‘parity’’ sectors.8,16 We introduce the
SU(N) variant of the low energy action and comment on th
choice of generalization. We emphasize that this treatmen
not the same as replacing lattice spins by SU(N)
generators;19 we expand on this in Appendix A where w
comment on the connection between filling and SU(N)
‘‘spin’’ representations. In Sec. III we calculate the dynam

FIG. 1. 2D Heisenberg antiferromagnet with next-neare
neighbor frustrationJ3<J'!J. The strongly relevant interchain
interaction between staggered magnetizations vanishes forJ3

5J'/2 and renders deconfined spinons.
©2003 The American Physical Society05-1
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cal susceptibilities corresponding to the uniform and st
gered magnetizations. We conclude in Sec. IV with res
for the four chain model. In Appendix B we discuss in deta
the excitations, scattering, and form factors of the SU(N)
Thirring model. We hope this may be of some assistanc
the unfamiliar reader.

II. MODEL

In this section we reacquaint the reader with the spin-
confederate flag model, and its mapping on to two differ
‘‘parity’’ sectors;8,16 we shall specialize to the ladder in du
course. Consider a Heisenberg antiferromagnet on a t
dimensional square lattice~of spacinga0) with next-nearest-
neighbor exchange interaction 0,J3<J'!J as depicted in
Fig. 1:

H5(
i 51

L

(
n

@JSi ,n•Si ,n111J'Si ,n•Si 11,n

1J3~Si ,n•Si 11,n111Si ,n11•Si 11,n!#. ~1!

It is well established that the low-energy dynamics of
single spin-1/2~isotropic! Heisenberg chain,

Hi
1D5(

n
JSi ,n•Si ,n11 , ~2!

are described by the suˆ(2)1 WZNW model;20,21 for a review
see Refs. 22 and 23. This WZNW model has conserved
rents J5L a

† tabLb and J̄5R a
† tabRb , which generate the

sû(2)1 Kac-Moody current algebra;La (Ra) are left~right!
moving fermions witha51,2, andtab are fundamental gen
erators of SU(2). TheHamiltonian density,H5*dxH, may
be written in the following~Sugawara! form:

H i
1D5N \v ~ :Ji•Ji :1: J̄i• J̄i : !1••• . ~3!

Here v is the spin velocity,N is a normalization constant
and the ellipsis stands for less relevant operators. We rep
the perturbing lattice spin operators by their continuo
slowly varying, uniform, and staggered components:

Si ,n /a0→Si~x!5M i~x!1~21!nNi~x!, ~4!

wherex[na0 measures the distance along chaini. Neglect-
ing oscillatory and derivative terms, Hamiltonian~1! be-
comesH5*dxH, where

H5(
i 51

L

H i
1D1J'a0~M i•M i 111Ni•Ni 11!

12J3a0~M i•M i 112Ni•Ni 11!. ~5!

In terms of the currents,M i[Ji1 J̄i , the Hamiltonian den-
sity ~5! may be written as8,16

H5(
i 51

L

H i
1D1l1~J1 J̄! i•~J1 J̄! i 111l2Ni•Ni 111•••, ~6!

where
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l15~J'12J3!a0 , l25~J'22J3!a0 . ~7!

In particular, forJ35J'/2, the strongly relevant interchai
coupling l2 between the staggered magnetizatio
vanishes.8,16 Setting J35J'/2, and neglecting velocity
renormalizing terms, the Hamiltonian splits into two ind
pendent pieces, or ‘‘parity’’ sectors:8,16

H5H11H2 , ~8!

where

H15(
i

N \v ~J2i•J2i1 J̄2i 11• J̄2i 11!1l1J2i• J̄2i 11 , ~9!

andH2 is obtained fromH1 by the ~parity! transformation
J↔ J̄. In the sector of positive parity, the even~odd! chains
carry left ~right! moving fields; in the sector of negative pa
ity the situation is reversed~see Fig. 2!. Equivalently,H1

andH2 are interchanged under a shift bya0 transverse to the
chains. Specializing to the ladder,

H15N\v ~ J̄I• J̄I1JII•JII !1l1~ J̄I•JII !, ~10!

where we label the chains by roman numerals to avoid s
sequent confusion with space-time indices. Hamiltonian
~10! may be brought into a more familiar form by introdu
ing a spinor, the left component of which resides on o
chain and the right resides on the other,

c15S RI

LII
D . ~11!

In terms of this spinor, Hamiltonian~10! becomes

H15N\v ~J1•J11 J̄1• J̄1!1l1~J1• J̄1! ~12!

and similarly forH2 . ~Equivalently one may perform the
chiral interchangeJI↔JII on the original Hamiltonians.! We
see thatH1 is nothing but an SU(2) Thirring model. That i
to say,the frustrated ladder may be reformulated as the s
of two decoupledSU(2) Thirring models, labeled by their
parity.8,16We emphasize that each of these decoupled mo
captures the behavior of the coupled ladder, as highlighte
Eq. ~11!, and not just a single chain. In particular, the e
ementary excitations of the ladder are those of the SU

FIG. 2. The ladder Hamiltonian is the sum of two independ
SU(N) Thirring models:H5H11H2 . In the sector of positive
‘‘parity’’ the even ~odd! chains carry left~right! moving fields. The
sector of negative parity is obtained by reversing the arrows. E
tations of the ladder carry this6 index and may be produced i
both sectors.
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Thirring model, namely, massive spinons. These corresp
to domain walls separating regions of different spontane
dimerization.8

In this paper we straightforwardly replace the SU(2) c
rents by SU(N) currents, as suggested in Ref. 8. In ea
parity sector, the Hamiltonian becomes that of the SU(N)
Thirring model withN21 multiplets of massive spinons~see
Appendix B!. This is the simplest generalization which r
tains spinon excitations and parity sectors. We note that
alternative strategy of replacing lattice spins by SU(N) gen-
erators leads to problems at the outset.19 As we discuss in
Appendix A, the representation of the generators transl
into the filling of the corresponding electronic model. For t
critical SU(N) Heisenberg model, with spins in the lowe
fundamental representation, the corresponding Hubb
model has one electron per site.24 The corresponding ‘‘spin’’
density~4! has harmonics at multiples of 2kF52p/Na0 due
to all the fundamental primaries of the suˆ(N)1 WZNW
model. In this case, the simple finetuning condition,J3

5J'/2, does not remove all relevant perturbations.19 The
absence of such terms is crucial for spinons in the confe
ate flag model, and such a generalization would be inap
priate. Attempts to reinstate the condition of half-filling wi
Hubbard chains or the alternatingN^ N̄ magnet (q5N2

quantum Potts model! also lead to difficulties; forN.2 they
are massive and dimerized26,27,25,28and have little in com-
mon with the UV limit of decoupled spin-1/2 chains. Sin
our interest in these generalized models stems from
spinon physics of the confederate flag model, we con
ourselves to the simple minded extension of the low-ene
action. We study the SU(N) evolution of the original opera
tors, and retain the terms smooth and staggered magne
tions for these fields.

In the following section, we shall compute the dynamic
structure factors of the generalized model. These are a d
probe of the elementary excitations.

III. DYNAMICAL STRUCTURE FACTOR

In this section we compute the dynamical structure fac
~as may be seen by neutrons! for momentum transfers clos
to the ‘‘soft modes’’ at 0 andp. This is nothing but a Fourie
transform of the spin-spin correlation functions,

S~v,q,q'!}Imi E
2`

`

dxE
0

`

dt ei (v1 id)t2 ivqx

3^ @SI
a~ t,x!6SII

a~ t,x!,SI
a~0,0!6SII

a~0,0!# &.

~13!

The plus~minus! sign corresponds toq'50 (q'5p), andd
ensures convergence of the temporal integral. The longit
nal momentum transfers in the vicinity ofq50 (q5p)
probe the smooth~staggered! components of the spin opera
tors. The task is to relate the spin operators entering Eq.~13!
to the operators of the Thirring models, and to evaluate th
matrix elements.
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A. Smooth components

The smooth component of the sum of the chain spin d
sities may be expressed in terms of the two Thirring mod
as follows:

SI1SIIusmooth5JI1 J̄I1JII1 J̄II[J0,11J0,2 ,

whereJ0,15 J̄I1JII (J0,25JI1 J̄II) is the temporal compo-
nent of the Thirring current in the model of positive~nega-
tive! parity. Simply put, the structure factorS(w,q;0,0) of
the frustrated ladder may be obtained from the correlator
J0 in the SU(N) Thirring model:

S~v,q;0,0!}Im (P56
i E

2`

`

dxE
0

`

dt ei (v1 id)t2 ivqx

3^ @J0,P
a ~ t,x!,J0,P

a ~0,0!# &, ~14!

where the summation is over parity sectors. The elemen
excitations of the SU(N) Thirring model consist ofN21
multiplets of massive particles, corresponding to the fun
mental representations of SU(N). The length of the Young
tableau is termed the ‘‘rank’’ of the particle,29 and their
masses are given by Eq.~B1!. It is convenient to move to a
basis of such particles and to parametrize their energy
momentum in terms of rapidity:

Ei5micoshu i , Pi5misinhu i . ~15!

One may now insert a complete set of states between
current operators in Eq.~14!,

I5 (
n50

`

(
e i

E du1 , . . . ,dun

~2p!2n!

3uun , . . . ,u1&en, . . . ,e1

e1 , . . . ,en^u1 , . . . ,unu ~16!

where thee i are the internal~or isotopic! indices carried by
the members of each multiplet. Using

e18 , . . . ,en8^u18 , . . . ,un8uO~ t,x!uun , . . . ,u1&en , . . . ,e1

[ei(
j

(Ej82Ej )t2(Pj82Pj )x e18 , . . . ,en8

3^u18 , . . . ,un8uO~0,0!uun , . . . ,u1&en , . . . ,e1

~17!

one obtains
5-3
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S~v,q;0,0!}22p Im(
n50

`

(
e i

E du1 , . . . ,dun

~2p!nn!

3uFJ
0
a~u1 , . . . ,un!e1 , . . . ,en

u2

3F dS vq2(
j

mjsinhu j D
v2(

j
mjcoshu j1 id

2

dS vq1(
j

mjsinhu j D
v1(

j
mjcoshu j1 id

G ,

~18!

whereFJ
0
a(u1 , . . . ,un)e1 , . . . ,en

is a multiparticle form factor

of the temporal Thirring current,

FJ
0
a~u1 , . . . ,un!e1 , . . . ,en

[^0uJ0
a~0,0!uun , . . . ,u1&en , . . . ,e1

.

~19!

The dominant contributions to Eq.~18! come from the states
with the lowest mass. In the case at hand these are two
ticle states of the~rank-1! fundamentalh, and its~rank-N
21) conjugateh̄. The box notation serves as a mnemon
for the lowest fundamental multiplet of SU(N) spinons; in
the subsequent analysis we do not distinguish between iN
members. In particular, the current operator couples to
adjoint representation occurring in the SU(N) tensor product
h ^ h̄; for N52, h̄ is h. As we discuss in Appendix B
this form factor is

FJ0
~u1 ,u2!h,h̄}m sinhS u11u2

2 D f adj
hh̄~u12!, ~20!

where

f adj
hh̄~u12!5expH E

0

`

dx
2 exp~x/N!sinh~x/N!sin2~xû/2p!

x sinh2x
J

~21!

and û5 ip2u; see Eqs.~B24! and ~B27!. We have sup-
pressed the isotopic and component information in Eq.~21!
and concentrated solely on the rapidity dependence. Inse
this into Eq.~18! and performing theu integrations one ob-
tains

S~v,q;0,0!}
m2v2q2

s3As224m2
u f adj

hh̄@2u~s!#u2, ~22!

wheres25v22v2q2, u(s)5arcosh(s/2m) and

4m2,s2,H 16m2, N52,

9m2, N53,

16m2cos2~p/N!, N.3.

~23!

This result is plotted in Fig. 3 and is exact, provided Eq.~23!
is fulfilled. For larger energy transfers there are small corr
tions due to higher mass states; the upper thresholds c
spond to four rank-1 solitons, three rank-1~or rank-2! soli-
tons, and a rank-2 bound state and its conjugate, respecti
In particular, there are no single-particle bound states app
09440
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ing belowthe gap; the elementary Thirring excitations corr
spond to fundamental SU(N) representations, and do no
couple to the current directly, which spans the adjoint.

The result~22! interpolates between two known limits
For N52, it coincides with Eq.~34! of Ref. 8, and in the
limit N5`, where Eq.~21! tends to unity, we recover the
result for free massive fermions.6,8 In particular, the (u50)
threshold behavior of Eq.~21! is quite instructive: forN
52 it vanishes like sinh(u/2), as may be seen from Eq
~B32!, whereas it is finite and nonvanishing forany N.2.
As a result, the structure factor Eq.~22! vanishes as
As224m2 in the physical case ofN52, but diverges as
1/As224m2 for anyN.2—see Fig. 3. Solely on the basis o
the N52 andN5` limits,8,6 one might have expected th
threshold to get steeper and narrower with increasingN, but
to remain qualitatively correct forN,`. The actual evolu-
tion, and the departure even forN53, is a sobering example
of how SU(N) treatments may miss simple features over
entire range ofN.

Likewise, the smooth component of the difference of t
chain spin densities may be expressed in terms of the
Thirring models as follows:

SI2SIIusmooth5JI1 J̄I2JII2 J̄II[J1,12J1,2

whereJ1,15 J̄I2JII (J1,25JI2 J̄II) is the spatial componen
of the Thirring current in the model of positive~negative!
parity. Simply put, the structure factorS(w,q;0,p) of the
frustrated ladder may be obtained from the correlators oJ1
in the SU(N) Thirring model. The corresponding form facto
is given by Eq.~B25!,

FJ1
~u1 ,u2!h,h̄}m coshS u11u2

2 D f adj
hh̄~u12!. ~24!

We obtain

S~v,q;0,p!}
m2v2

s3As224m2
u f adj

hh̄@2u~s!#u2. ~25!

FIG. 3. Exact dynamical structure factorS(v,q;0,0) for N
52 ~solid!, N53 ~dashed!, and N5` ~dotted! with fixed q and
arbitrary normalization. TheAs224m2 threshold behavior for the
N52 physical case is replaced by a 1/As224m2 divergence for all
N.2.
5-4
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Once again, this result interpolates between the knownN
52 andN5` results,8,6 and the SU(N) approach leads to
qualitatively incorrect results over the entire range ofN
.2.

B. Staggered components

We denote the staggered component of the spin on c
I, SI(t,x)ustagg.by NI(t,x). In the UV limit ~corresponding to
decoupled chains andm50) N(t,x) is a spinless suˆ(N)1
primary field with ~full ! scaling dimensionD5121/N. For
the ladder we propose the following formula for the lon
distance asymptotics of the real space correlation functio

^@NI~ t,x!6NII~ t,x!#•@NI~0,0!6NII~0,0!#&

}^NI~ t,x!•NI~0,0!&6^NI~ t,x!•NII~0,0!&

}m2D @KD
2 ~mr!6K0

2~mr!#1•••, ~26!

wherer[Azz̄5Ax22t2 (v51) andKn(x) is Macdonald’s
function,30 also known as the modified Bessel function of t
third kind.31 The dots stand for more rapidly decaying term
In order to get a feel for this result we begin by studying
few limits. In the limit N→`, D→1, each parity secto
reduces to noninteracting massive fermions. More spe
cally, Ni may be replaced by the fermion bilinea
L i ,a

† tabRi ,b1R i ,a
† tabLi ,b and one obtains

^NI•NI&}^L I
†LI&^RIRI

† &, ~27!

^NI•NII&}^L I
†RII&^RILII

† & ~28!

with the usual massive Dirac fermion correlators:

^L †L&52mAz̄

z
K1~mr!, ~29!

^L †R&52mK0~mr!, ~30!

see, for example, Chap. 13 of Ref. 32. In Eqs.~27! and~28!
we see quite clearly that the correlators of staggered ma
tizations areproductsof correlators from the sectors ofdif-
ferentparity;8,16 by definition the left and right moving field
on a given chain belong to different sectors. In coupling
the staggered magnetizations, the solitons are still create
pairs, but belong to different sectors.8,16 In a given sector
~i.e., Thirring model! we thus require the matrix elements
single-soliton creation operators. The matrix elements
such operators have only recently become available.33–35The
free fermions appearing in Eqs.~27! and ~28! for N→` are
replaced by chiral fieldsLs ,Rs , which are nonlocal single
soliton creation operators and carry the Lorentz spin,6D/2,
of a Thirring soliton;36,37 we take the plus~minus! sign for
left ~right! movers. These chiral fields are the components
an ~interacting! sû(N)1 primary field, and the Lorentz spin i
nothing but the UV conformal dimension. The single-solit
form factors of such operators are governed~upto normaliza-
tion! solely by their Lorentz transformation properties:

^0uLsuu&5mD/2eDu/2, ^0uRsuu&5mD/2e2Du/2, ~31!
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and their two-point functions are now readily computed:

^L s
†Ls&5mDE du eDu e2tmch u1 ixmshu ~32!

5mDS z̄

z
D D/2

2KD~mAzz̄!, ~33!

^L s
†Rs&5mDE du e2tmch u1 ixmshu ~34!

5mD 2K0~mAzz̄!, ~35!

where z5t2 ix and t5 i t . The results for^R s
†Rs& and

^R s
†Ls& follow by interchangingz and z̄. In particular, Eq.

~33! first appeared in the study of weakly coupled on
dimensional Mott insulators.34 Replacing the correlators in
Eqs.~27! and ~28! with these more general expressions, t
result ~26! follows immediately.

Further, the Macdonald function has the asymptotic
pansion given by Eq.~9.7.2! of Ref. 38:

KD~mr!5A p

2mr
e2mr

3F11
m21

8mr
1

~m21!~m29!

2! ~8mr!2
1•••G , ~36!

wherem54D2. The leading term in Eq.~36! is independent
of D, and at separationsr @1/m, the interchain and intrac
hain correlations~amusingly! coincide:

^Na~ t,x!•Nb~0,0!&;
m2D21

r
e22mr. ~37!

Coupling the chains together not only generates expon
tially decaying interchain correlations, but also modifies t
1/r 2D behavior within the chains.

Substituting Eq.~26! into definition~13! and effecting the
Fourier transforms we obtain the following structure facto

S~v,q;p,0!}
@s1As224m2#2D1~2m!2D

sAs224m2
, ~38!

S~v,q;p,p!}
@s1As224m2#2D2~2m!2D

sAs224m2
, ~39!

wheres25v22(q2p)2. In deriving these expressions th
reader may find the integral representations~32! and ~34!
more convenient. At threshold,S(v,q;p,0) diverges as
1/As224m2 for all N, and we plot this behavior in Fig. 4
the larges behavior iss22/N. Similarly, at threshold,S(v,q
;p,p) tends to a constant forall N. In contrast to the mag-
netization correlators, we obtain qualitatively similar resu
over the entire range ofN.
5-5
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IV. CONCLUSIONS

In this paper we have studied the SU(N) evolution of a
frustrated spin ladder.8,16 The dynamical structure factor
corresponding to the smooth~staggered! magnetizations are
shown to be qualitatively different~the same! in the N52
andN.2 cases. A robust feature which survives, however
the absence of coherent single-particle excitations at low
ergies. This is in stark contrast to the unfrustrated ladder,
reinforces the notion of spinons stabilized by frustration.8,16

The success or failure of the largeN limit is not only model
and approach specific, but also depends on the phys
quantity probed. We are thus unable to extract a wider gu
ing principle other than one of caution. In the case at ha
the Lorentz invariant contribution to the uniform susceptib
ity has a smooth and unalarming dependence onN. Yet for
N52, it vanishes rapidly enough to remove the thresh
singularity that persists for all otherN.

In closing we note that theN5` limit of the two chain
model is a free theory, but this is not so in general. In p
ticular, each parity sector of the four chain model may
viewed as two~nonchiral! sû(N)1 WZNW models coupled
by currents:

H15sû~N!11sû~N!11lJ1J̄1 .

With transverse periodic boundary conditions the curre
J̄15 J̄I1 J̄III , J15JII1JIV generate suˆ(N)2 Kac-Moody al-
gebras, and it is convenient to write:16,39,40

H15ZN1@sû~N!21lJ1J̄1#.

TheZN parafermions40 describe gapless nonmagnetic exci
tions with central chargec52(N21)/(N12). They are un-
affected by the interaction~due to the boundary conditions!
and for N→` they reduce to two Gaussian models. T
sû(N)2 model, on the other hand, is rendered massive by
interaction, and is in fact integrable. The mass spectrum
incides with that of the~two chain! SU(N) Thirring model
~B1!, but the scattering is notably different. TheSmatrix can
be extracted from a straightforward generalization of
thermodynamic Bethe ansatz equations derived in Ref.

FIG. 4. Exact dynamical structure factorS(v,q;p,0) for N
52 ~solid!, N53 ~dashed!, andN5` ~dotted!. The threshold be-
havior is 1/As22m2 for all N, and we have normalized accordingl
The SU(N) approach leads to qualitatively similar results over t
entire range ofN.
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At low temperatures (T!M1) the free energy of the per
turbed sû(N)k WZNW model is given by

F/L52T (
j 51

N21

M jE du

2p
chu ln@11e2«k

( j )(u)/T#,

where in this casek52. The excitation energies«n
( j )

~ j51, . . . ,N21, n51,2, . . . ,) satisfy

T ln~11e«n
( i )(l)/T!2TAi j* Cnm* ln~11e2«m

( j )(l)/T!

5dn,kM i ch~2pl/N!,

where * denotes convolution, the kernelsCnm(l) and
Ai j (l) are given in Ref. 41 andl5Nu/2p. We extract the
Bethe equationsE5(a51

n m chua and

exp~ imL shua!5 )
bÞa

S0~ua2ub!

3)
a

e1~ua2la!)
b

E~ua2mb!,

where

S0~u!5expH 2E
2`

` dv

v
e2 iuvF 211

1

~11e22uvup/N!2

3S 11

shpS 12
2

NDv

shpv
D G J

and

en~x!5
x2 ipn/N

x1 ipn/N
, E~x!5

eNx/22 i

eNx/21 i
.

The rapiditiesla and mb are distributed according to th
AN21 heirarchy, the details of which do not concern us he
Similar equations occur for the SU(N) invariant Thirring
model (k51) but, without them rapidities and with a dif-
ferentS0(u). In the limit N→` one obtains

exp~ imL shua!5 )
bÞa

S0
`~uab!,

where S0
`(u)5exp@2i(p/2)sgnu#. This is to be contrasted

with the SU(N) invariant Thirring model whereS0
`(u)5

21. The absence of a simpleN→` limit will be crucial for
multiparticle form factors, and renders excitations with no
trivial statistics. In future publications we hope to study the
pertinent issues in more detail. Recent progress on sp
propagation in the four chain model may be found in t
work of Smirnov and Tsvelik.18
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APPENDIX A: SPIN OPERATORS

In this appendix we comment on the connection betw
SU(N) spin representations and filling. At each lattice s
~labeled byn) one may introduce the fermionic spin oper
tors

Sn
a5 (

a,b51

N

cn,a
† tab

a cn,b , ~A1!

wherec andc† obey the canonical fermionic anticommut
tion relations

$cn,a
† ,cm,b%5dn,mda,b , $c,c%50, $c†,c†%50

~A2!

and the generatorsta span the algebra su(N): @ ta,tb#
5 i f ab

c tc. It is readily verified that spins on different site
commute, whereas those on the same site satisfy the sN)
algebra:@Sn

a ,Sm
b #5 idn,mf ab

c Sn
c . In the fundamental repre

sentation, the generators are chosen to satisfy tr(tatb)
5C dab, tata5C2 I, with C51/2 andC25(N221)/2N; see
Appendix A.3 of Ref. 42.

One may specify the su(N) representation on which spi
operatorsSn act by the relevant Young tableau—see, for e
ample, Ref. 43. In particular, this fixes the value of the q
dratic CasimirSn

2 , and thus by Eq.~A1!, constrains fermion
occupation numbers. As we shall demonstrate, the const

(
a51

N

cn,a
† cn,a5h, ; n. ~A3!

corresponds to the vertical~i.e., antisymmetric! Young tab-
leau of heighth, as depicted in Fig. 5. The constraint~A3!
fixes h electrons per site, and the permissable states to b
the form

ca1 ,a2 ,•••,ah
5cn,a1

† cn,a2

†
•••cn,ah

† u0&, ~A4!

wherea iP@1, . . . ,N#. By virtue of the fermion anticommu
tation relations~A2!, this may be viewed as a tensor of ran
h, antisymmetric under the interchange of any pair of lab
a; by the standard conventions for Young tableau43 this cor-
responds to a vertical diagram ofh boxes. Moreover, it also
follows from the anticommutation relations~A2! that there
are N(N21)•••(N2h11)/h! independent states of form
~A4!; this coincides with the dimension of the representat

FIG. 5. Antisymmetric su(N) Young tableau of heighth.
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corresponding to the Young tableau of Fig. 5; see Sec. 8.
Ref. 43. Further, squaring Eq.~A1! and enforcing constrain
~A3!, one obtains51

Sn
25

h~N22h!

2N
1

h~12h!

2
. ~A5!

This coincides with the quadratic Casimir of the su(N)
Young tableau depicted in Fig. 5;44 see Eq.~2.19! of Ref. 45,
e.g., for the fundamentalh of su(2) (h51,N52) one ob-
tainsSn

253/4, as appropriate for spin 1/2.
Thus, Eq.~A1! supplemented by the constraint~A3! leads

to spin operatorsSn described by the Young tableau of Fig.

APPENDIX B: SU„N… THIRRING MODEL

In this appendix we discuss the excitations, scattering m
trices, and form factors of the SU(N) Thirring ~chiral Gross-
Neveu! model. More details may be found in appendix A
Smirnov29 and the literature.37,46,36,47,48

1. Excitations

The excitations of the SU(N) invariant Thirring ~chiral
Gross-Neveu! model areN21 multiplets of fundamenta
particles, corresponding to theN21 fundamental represen
tations of SU(N). Their masses are given by

Ma5m
sinpa/N

sinp/N
; a51,2, . . . ,N21, ~B1!

and following Smirnov, we shall refer to the labela as the
‘‘rank’’ of the particle.

2. S matrices

The S-matrix describing the scattering of two~rank-1!
fundamental particles in the SU(N) invariant Thirring~chiral
Gross-Neveu! model is given by37,29

S
e1 ,e2

e18 ,e28~u![e1e2
^u2u1uS hh~u!uu1u2&e1e2

, ~B2!

whereu5u12u2 , eP@1, . . . ,N#, and theS-matrix operator
acts on the two body Hilbert spaceh ^ h,

S hh~u!5S0~u! S uI2
2p i

N
P12

u2
2p i

N

D . ~B3!

I andP12 are the identity and permutation operator, resp
tively, with matrix elements

e
28e

18
^u2u1uIuu1u2&e1e2

5d
e1

e18d
e2

e28 , ~B4!

e
28e

18
^u2u1uP12uu1u2&e1e2

5d
e1

e28d
e2

e18 ~B5!

and
5-7



t-

o

t

,
n

n-

-

,

-

el-

we
rs,

for
v’s

lar

e

MIRACULOUS J. BHASEEN AND ALEXEI M. TSVELIK PHYSICAL REVIEW B68, 094405 ~2003!
S0~u!5

GS 12
1

N
1

u

2p i DGS 2
u

2p i D
GS 12

1

N
2

u

2p i DGS u

2p i D
. ~B6!

See Eq.~11a! of Ref. 37 or Appendix A~p. 182! of Ref. 29,
e.g., forN52 this reduces to Eq.~6! of Ref. 29. Using the
decompositionsI5P (1)1P (2), and P125P (1)2P (2),
one may also write~B3! in the form

S hh~u![(
r

S r
hh~u!P (r )

5S0~u!S P (1)1

u1
2p i

N

u2
2p i

N

P (2)D , ~B7!

whereP (1) andP (2) act on the symmetric and antisymme
ric representations occurring in the tensor producth ^ h;
e.g., 3̂ 35613̄ in SU(3). Bound states correspond t
poles of theS matrix, with masses

mb5Am1
21m2

212m1m2cosh~u12!. ~B8!

SinceG(z) is free of zeros, and exhibits simple poles az
50,21,22, . . . ,30 it follows that Eq. ~B7! has a single
simple pole atu52p i /N occurring within the physical strip
0,u,p i . This yields the bound state mass of the seco
fundamental particle,M25m sin(2p/N)/sin(p/N), as given
by Eq. ~B1!.

The S matrix describing the scattering of a~rank-1! fun-
damental particle off its conjugate~rank-N21) may be ob-
tained from Eq.~B7! by the crossing transformation:

S hh̄~u!5Ch S hh~ ip2u! Ch , ~B9!

whereCh is the conjugation operator onh. Utilizing P (0)

5Ch P12Ch /N, andI5P (adj)1P (0), one obtains

S hh̄~u![(
r

S r
hh̄~u!P (r )

52S1~u!S P (adj)1
u1p i

u2p i
P (0)D , ~B10!

where

S1~u!5

GS 1

2
1

u

2p i D
GS 1

2
2

u

2p i D
GS 1

2
2

1

N
2

u

2p i D
GS 1

2
2

1

N
1

u

2p i D
, ~B11!

andP (adj) andP (0) act on the adjoint and singlet represe
tations occurring in the tensor producth ^ h̄; e.g. 3̂ 3̄
5811 in SU(3). In particular, for N52, Eqs. ~B7! and
~B10! coincide~up to sign! as expected from the identifica
tion of h and h̄ in SU(2). Moreover, Eq.~B7! is also in
agreement with Eq.~1.6a! of Ref. 49. TheSmatrix ~B10! has
09440
d

a pole atu5p i 22p i /N occurring within the physical strip
0,u,p i . This is a cross channel pole.

For the purpose of calculating form factors in the follow
ing Sec. , it proves useful to have theS matrices in an inte-
gral form. Taking the logarithm of Eqs.~B6! and ~B11! and
employing

ln G~z!5E
0

`dt

t F ~z21!e2t1
e2tz2e2t

12e2t G , ~B12!

one obtains

Sa~u!5expH E
0

`

dx fa~x! sinhS xu

p i D J , ~B13!

where

f 0~x!5
2exp~x/N!sinh@x~121/N!#

x sinhx
, ~B14!

f 1~x!5
2exp~x/N!sinh~x/N!

x sinhx
. ~B15!

In particular, the su(2) ThirringS matrix coincides with the
sine-GordonS matrix with b258p,29

Sa~u! →
N52

2expH i E
0

`

dk
exp~2pk/2!

k coshpk/2
sink uJ .

~B16!

3. Form factors

In the previous paragraphs, we have discussed the
ementary excitations of the SU(N) Thirring model. They are
massive particles labeled by their rapidities,u i , and carrying
quantum numbers or isotopic indices,e i . In order to com-
pute correlation functions and dynamical susceptibilities,
will need the matrix elements of various physical operato
O, between the vacuum and the~lowest! multiparticle ex-
cited states. Such matrix elements are termedform factors,
and their computation is an important enterprise; see,
example, Ref. 29. As is discussed in Chap. 1 of Smirno
book,29 the two-particle form factors

FO~u1 ,u2!e1 ,e2
[^0uO~0,0!uu2u1&e2 ,e1

~B17!

satisfy a matrix~Riemann-Hilbert! problem, also known as
Watson’s equations,

F~u1 ,u212p i !e1 ,e2
5F~u1 ,u2!e

18 ,e
28
S

e1 ,e2

e18 ,e28~u12!.

~B18!

This equation may be diagonalized to yield the simpler sca
problem~s!

F~u1 ,u212p i !5F~u1 ,u2!S~u12!, ~B19!

whereS(u) are theS matrix eigenvalues. In particular, th
Thirring current operatorJm ~with N221 components!
5-8
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couples to the adjoint representation occurring in the ten
producth ^ h̄; the relevant eigenvalue is

S~u![S adj
hh̄~u!52S1~u!. ~B20!

Another constraint on the form factors comes form Lore
invariance. Under a Lorentz boost, corresponding to a sim
taneous shift of all rapidities byL, the two-particle form
factor of an operatorO of spin s satisfies

FO~u11L,u21L!5esLFO~u1 ,u2!. ~B21!

In particular, the left~right! component of the Thirring cur
rent has spins511 (s521) and one obtains

F j
L
a~u1 ,u2!}e1(u11u2)/2f adj

hh̄~u12!, ~B22!

F j
R
a~u1 ,u2!}e2(u11u2)/2f adj

hh̄~u12!. ~B23!

Note that f adj
hh̄(u12) is a function of u12u2, and is thus

Lorentz invariant. The form factors corresponding to t
temporal and spatial components of the current may
written as

F j
0
a~u1 ,u2!}m sinhS u11u2

2 D f adj
hh̄~u12!, ~B24!

F j
1
a~u1 ,u2!}m coshS u11u2

2 D f adj
hh̄~u12!. ~B25!

Substituting Eq.~B20! and either of Eqs.~B24! and ~B25!

into Eq. ~B19!, one obtains a constraint onf adj
hh̄(u),

f adj
hh̄~u22p i !5 f adj

hh̄~u!S1~u!. ~B26!

Following the general arguments of Karowski and Weis50

@Eqs.~2.18! and ~2.19!# Eq. ~B26! may be solved by

f adj
hh̄~u!5expH E

0

`

dx f1~x!
sin2~xû/2p!

sinhx J , ~B27!

where û5 ip2u.52 Expanding the denominator factors
powers ofe22x, and employing the identity

expE
0

`dx

x
2e2bxsinhgx5

b1g

b2g
, ~B28!

one obtains the equivalent representation
s-

09440
or
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f adj
hh̄~u!5 )

l ,m50

` F 11 l 1m

12
1

N
1 l 1mG 2F 1

2
2

1

N
1 l 1m1

u

2p i

1

2
1 l 1m1

u

2p i

G
3F 3

2
2

1

N
1 l 1m2

u

2p i

3

2
1 l 1m2

u

2p i

G . ~B29!

Application of Euler’s Formula yields

f adj
hh̄~u!5)

l 50

` F GS 12
1

N
1 l D

G~11 l !
G 2F GS 1

2
1 l 1

u

2p i D
GS 1

2
2

1

N
1 l 1

u

2p i D G
3F GS 3

2
1 l 2

u

2p i D
GS 3

2
2

1

N
1 l 2

u

2p i D G . ~B30!

As may be seen most clearly from Eqs.~B29! and~B30!, this
form factor is free of poles in the physical strip 0,u, ip,
and Watson’s minimal equations~in Karowski-Weisz form!
are explicitly satisfied, It is indeed aminimal form factor.
Expressions ~B27!, ~B29!, and ~B30! conform to the
Karowski-Weisz normalizationF( ip)51, and have the
asymptotic behavior

lim
u→6`

f adj
hh̄~u!;exp~6u/2N!. ~B31!

In the limit N52, one may write Eq.~B27! in the form

f adj
hh̄~u!→2 i sinh~u/2!

3expH E
0

`

dx
sin2~xû/2p!

x sinhx
@ tanh~x/2!21#J

~B32!

and expressions~B24! and ~B25! coincide with the known
results for the SU(2) invariant Thirring~or sine-Gordon!
model; see Eq.~33! of Allen et al.8 or let j→` in the for-
mula for f m(b1 ,b2) given on p.46 of Ref. 29 and note th
different definition of the physical strip. In the limitN→`,
the SU(N) Thirring model maps onto a theory of free ma
sive fermions, as reflected in the explicitS-matrices. In this

limit f adj
hh̄(u)→1, and Eqs.~B24! and ~B25! coincide with

the free fermion form factors given in Eq.~108! of
Smirnov.29
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