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Zamolodchikov's proposed exact solution of the Thirring model S-matrix satisfying 
unitarity and crossing and having certain required properties in the semiclassical limit, is 
shown to be in agreement with perturbation theory in the Thirring model coupling con- 
stant to third order. A useful integral representation of the soliton-soliton phase shift 
corresponding to Zamolodchikov's solution is exhibited. 

1. Introduction 

Only now, long after the satisfactory solution of  the massless Thirring model [ 1 ] 
is the structure of  its massive counterpart being uncovered and found to be equally 
fascinating. The recent progress was initiated by Coleman's [2] remarkable discovery 
of  the equivalence of  the massive Thirring model to the quantum sine-Gordon theory. 
Since then a concentrated effort has been invested in studying various aspects of the 
models, and many important results have been established [3]. 

In particular the existence of  an infinite set of conserved currents has been estab- 
lished in both theories [4,5 ] *. The corresponding conservation laws imply that in 
any scattering process the set of  outgoing momenta are identical to the set of incom- 
ing momenta. This has drastic effects on the S-matrix elements. Firstly absence of  
particle production implies that elastic unitarity holds for the two-particle S-matrix 
elements to arbitrarily high energies. Secondly the n-particle S-matrix elements are 
determined as products of the two-particle S-matrix elements (factorisation) [6].  
These results are at first surprising from the viewpoint of  four dimensions where ab- 
sence of  particle production in conjunction with non-trivial elastic scattering is in 
contradiction with unitarity and crossing [7]. In two dimensions this is however not 
the case, as was stressed by Schlitt [8].  

The general equations expressing elastic unitarity and crossing in two dimensions 
are reviewed in sect. 2. It has recently been suggested [9] that the classification of  
solutions of  these equations coupled with consistency conditions on the spectrum 

* So far, only the first non-trivial current has been rigorously treated for the Thirring model. 
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arising from factorisation might lead to a (practically) unique S-matrix. In the case 
of  the sine-Gordon theory the semiclassical spectrum is derived. Given the S-matrix 
the problem of  determining matrix elements of Heisenberg fields could be initiated 
[10].  

Meanwhile in a very interesting recent article, Zamolodchikov [ 11 ] has ingenious- 
ly constructed a solution of  the coupled unitarity and crossing equations by impos- 
ing certain semiclassical results. This solution is elaborated upon in sect. 3. A useful 
representation (3.11) for the soliton-soliton phase shift is derived. 

The main purpose of  this work is to report that Zamolodchikov's solution is in 
agreement with perturbation theory in the Thirring model up to third order; this is 
presented in sect. 4. This confrontation with perturbation theory is all the more im- 
pressive when one compares the failure of  the solution of  Berezin and Sushko [12] 
already at first order [13].  It is remarked that the results of  perturbation theory at 
second order can be uniquely obtained from general principles and known structure 
of  the diagrammatic contributions, without evaluating diagrams explicitly. At third 
order only one constant associated with singular order by order threshold behaviour 
of one of  the amplitudes remains undetermined by the above mentioned principles 
and requires thorough analysis of  a certain class of diagrams. 

2. Elastic scattering in two dimensions 

Consider the scattering of a particle (s) with its antiparticle (~-). Assuming the 
theory to be parity conserving * the elastic s~- S-matrix element may be written as 

°ut (S~1)S'~2)IS(p 1 )S- (P 2 ))in 

= (2rr)22p°2p° [6(Pl - P l ) 6 ~  - p~)F(v  + iO) + 6 ~ I  - p ~ ) 6 ~  - P l )  

X B(v  + i0)] , (2.1) 

where v = p t P 2 / m  2 C~1 in the physical scattering region.) The amplitudes F and B 
describe forward and backward scattering respectively, which are the only allowed 
elastic configurations in two dimensions. The physical amplitudes are boundary 

* If parity is not conserved, then each amplitude can be split into a parity even and parity 
odd part, 

F(p 1, P2) = FC(V) + sign(p~epvP~)FN(v) 

where we have used the fact that (p lP2) 2 - (p l eP2) 2 = p{p~. C parity conservation gives 
extra constraints in the amplitudes, as is the case for the Federbush model [ 14 ]. The Feder- 
bush model also possesses an infinite number of conservation laws, however, the S-matrix 
elements are rather uninteresting energy independent phases. 

** State normalization is chosen to be 

in<s~l)S'~2 ) Is(p l)S-(P2)) in = (2~r)22pO2p~6~t - pt)6(p~ - p~). 
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values of  real analytic functions F(z) ,  B(z )  cut along the real axes from 1 to oo and 
from - 1  to _oo. 

Under crossing, forward s~- crosses into ss (or equivalently ~-) scattering, for 
which there is no distinction between forward and backward, whereas backward s~ 
crosses into itself (in sharp contrast to the situation in four dimensions). We thus 
have * 

° U t ( S ~ l ) S ~ 2 ) ] S ( P l ) S Q 9 2 ) ) i n  = F ( - v  - i o ) i n ( s ~ l ) S ~ 2 ) [ S ( P l ) S ( P 2 ) )  in  , (2.2) 

B(z)  = B ( - z ) .  (2.3) 

A physical bound state appears as a pole on the real z-axis of  the physical sheet. 
Elastic unitarity implies for s~- scattering, (using real analyticity) 

F(z)F(Z)  + B(z)B(~)  = 1,  (2.4) 

F(z)B(-g) + B(z)F(~)  = 0 ,  (2.5) 

and for ss scattering 

F ( - z ) F ( - ~ )  = 1 , (2.6) 

for z = v + tO, 1 ~< v < vl where PI is the position of  the next threshold. 
The amplitudes F_+ describing scattering of  states Is091 )s-(pu)) -+ Is(pz)s-(p 1 )) of  

definite C parity are given by 

F+_ (z) = F(z )  + B(z )  . 

These obey separate unitarity equations 

F+_ (z)F+_ (Z) = 1 .  

(2.7) 

(2.8) 

In the absence of  particle production, which is the case for the Thirring model 
the elastic unitarity equations hold for the entire range 1 ~< v < oo. Moreover if it is 
assumed that the amplitudes are meromorphic functions in the rapidity difference 
variable 0 defined by z = cosh 0 * ' ,  (as is the case in low orders of  perturbation theo- 
ry) then the crossing symmetry relation (2.3) becomes, 

B(O) = B(iTr - 0 ) ,  

and the unitarity equations (2 .4)-(2 .6)  can be written 

F(O)F(-O)  + B(O)B(-O)  = 1 , 

F(O)B(-O)  + B(O)F(-O)  = O, 

F( in  + O~(ilr  - O) = 1 , 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

* Note as yet no reference need be made to the statistics obeyed by the particles s. 
** Under this transformation the first sheet_in the z plane is mapped into the strip 0 < Im 0 < 7r. 

Real analyticity now implies F(O) = F(-O) and similarly for B. 
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for all 0. Define 

A ( O )  = B(O) /F(O)  . (2.13) 

Then eq. (2.11) is satisfied if and only if, 

A ( O )  = - A ( - O )  . (2.14) 

It then remains to solve the eqs. (2.10), (2.12), which can now be rewritten as 

B ( O ) B ( - O )  = A(iTr + O)A(iTr - O) 

A(O)2 (2.15) 
A(0) 2 - 1 ' 

subject to the conditions (2.9) and (2.14). Note that to satisfy the crossing symme- 
try equation (2.9) it is obviously sufficient to make the ansatz 

B(O) = X(O)X(iTr - 0 ) .  (2.16) 

3. Solutions of the coupled unitarity and crossing relations 

There are obviously solutions with B ( z )  = 0, which mean absence of  backward s~- 
scattering. These can be completely classified by 

g ( z ) x / 1  - z  2 + 1 
: (3.1) 

F ( z )  g ( z ) x / T - ~  - 1 ' 

with g(z) an arbitrary meromorphic function. Examples of  this occur in the case of  
scattering of  self conjugate particles, in which case g ( z )  is even [8,9]. Another fa- 
mous example is that of Berezin and Sushko [12] 

sinh 1 (0 + ig)  (3.2) 
F(O)  - ~ ~ (0 - ig) " 

In a recent work, Zamolodchikov [ 11 ] ingeniously constructed a solution with 
non-vanishing backward scattering. His solution was based on requiring for the full 
theory the following semiclassical sine-Gordon theory properties: (i) The semiclas- 
sical soliton-antisoliton bound state (breathers) spectrum [ 15 ] * 

m n =2m sin ½nXTr, n = 1,2 . . . . .  <)k -1 , (3.3) 

where X is related to the conventional sine-Gordon coupling constant [2] by 

- -g-~] > 0 .  (3.4) 

Physical bound states appear as poles in F(O) (and or B(O)) on the imaginary 0-axis 0 < (Ira 0 
= ~r(1 - n~,)) < Tr. 
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The rationale for this assumption is given in ref. [9).  ( i i)Vanishing of  backward 
scattering for the special values k = I/n, with n a positive integer [16].  (iii) The ab- 
sence of  resonances [15].  

Zamolodchikov's  solution is given by  

- i  sin(n/k) 
A(O) - 

sinh(0/k) 
(3.5) 

with 

, o 
F(O) = - sinh R(O)R(in- 0), (3.6) 

n 

+ iO ~ t~-i1 r((1/k)[2/+ iO/nl)P(1 + (1/k)[21 + iO/~r]) 
R(O) = F 1 ~ ]  = r((1/x)[21 + 1 + iO/Trl)r(1 + (1/k)[21- i-~i0/Tr])" 

(3.7) 

Note that at the nth bound state posit ion * 0 = On = in(1 - nk) we have 

A(On ) = ( _ l ) n -  1 , (3.8) 

i.e. the bound states have alternating C parity.  This is consistent with viewing the 
nth bound state as a bound state o f n  lowest bound states [9] and assigning the low- 
est bound state negative C parity.  

It is convenient to derive a representation for the soliton-soliton phase shift which 
is more amenable to perturbat ion expansions than the infinite product  (3.7). This 
can be achieved by  using Malmst6n's formula [17] 

logF(z)= f [ z _  l l - e x p { - ( z - 1 ) t ) ] e i t  - ~- - -  ~ - t -  - -  d t ,  ( 3 . 9 )  

0 

valid for Re z > 0. One obtains for the soliton-soliton phase shift defined by  

F(in - 0) = e 2i655(0) , (3.10) 

the integral representation 

? dt sin(Ot/lr) sinh ~(k - 1)t 
8ss(0) ½ 

o j t ~ c - ~ - ~ t  ' (3.1 1) 

for IIm 01<  m i n [ G  kn].  This exhibits the absence of physical bound states for 
k > I. It  is now easily checked that 

(a) this phase shift has the desired semiclassical limit [18] and reproduces the 

* The limit 0 ~ ** can also be realized by the formal massless limit m ---, 0, s fixed. For the S- 
matrix in the zero mass model see ref. [19]. 
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known first quantum correction [19] 

(8~  0 2  ) anhlO logx 
8~(0)  --" 

a--*o ~-o l~x -~  dx + ff~" 
O ~ I R  + 

(b) 6s~ has the normalized threshold behaviour 

8~(0)  = 0 ,  

(c) 6ss tends to a constant as 0 ~ ~ [20] 

1] 

(3.12) 

(3.13) 

(3.14) 

4. The Thirring model elastic S-matrix amplitudes in perturbation theory 

In this section we derive the S-matrix amplitudes F, B of the massive Thirring 
model in perturbation theory in the coupling constant g appearing in the (formal) 
interaction Lagrangian 

. a=  - ~  g , " S  = gg'C',/'g' • (4.1) 

This has already been performed to second order by Hfihlen [13] who contrasted 
the result with the Berezin-Sushko [ 12] proposed solution (3.2). Zamolodchikov 
[11 ] has checked the agreement with his solution to second order. We extend this 
calculation to third order but for completeness we repeat the essential steps of the 
lower order calculations. We define the T-matrix elements f, b by 

1 
F(z)  = 1 + /:------~ f ( z ) ,  (4.2) 

X / l - Z -  

1 
B ( z ) -  ~ b(z)  , (4.3) 

and write f, b as power series in g 

oo 

f ( z )  = ~ a  fn ( z )g  n , (4.4) 
n = l  

0o 

b(z)= ~ a b n ( z ) g  n . (4.5/ 
n = l  

We now impose the unitarity equations order by order. To first order, unitarity im- 
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X 
Fig. 1. 

plies that f l ,  b 1 are meromorphic functions in the z plane. In the tree graph approx- 
imation, fig. 1, one obtains 

fl(Z) = 1 + z ,  (4.6) 

b t (z) = 2 .  (4.7) 

An extra information that we have is that in a renormalisable field theory higher 
order Feynman diagrams give contributions to the amplitudes with asymptotic be- 
haviour only logarithmically worse than those of the tree graphs. Given this addition. 
al information one immediately asks why it is not possible to derive the Thirring 
model results to all orders by iterating the tree graph results (4.6) (4.7) in the unit- 
arity and crossing symmetry and using dispersion relations for the amplitudes. The 
answer lies in the fact that without recourse to the explicit diagrams the threshold 
behaviours of the amplitudes are not completely specified order by order *. We onl,, 
have partial knowledge of the threshold behaviour, explicitly order by order in g 

f n ( - 1 )  = 0 ,  (4.8, 

and 

( f -  b)n(1) = 0 ,  (4.9) 

however 0e+ b)n diverges as z -+ 1. 
We now proceed to the second order. Very little additional information is need- 

ed other than observing that in perturbation theory we must have amplitudes of the 
form 

fz(z) = P l ( z ) r ( z )  + P 2 ( z ) r ( - z )  + (az + b ) r ( - 1 ) ,  (4.10) 

b2 (z)  = Pa(z ) r ( z )  + e 3 ( - z ) r ( - 2 )  + cT ( -  1), (4.11) 

where r(z) is the function appearing in the one-loop diagram, fig. 2. This function 
has just a right hand cut ** 

1 j dz' 1 
r(z)  rr z ' -  z ~ " (4.12) 

r(z) behaves as (1/z) log z as z -+ oo which implies that PI ,  P2 are a priori  second or- 

* This point has also been remarked by Flume and Glaser. 
** Note the relation r(z) + r( -z)  = l]41---~z . 
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der polynomials in z and P3 first order. Substituting (4.10) and (4.11) into the sec- 
ond order unitarity and crossing relations yields unambiguously the desired result 
[13] 

e l ( z  ) = ½[(1 + z) 2 + 4] , 

e 2 ( z )  = ½(1 + z )  2 , 

e3(z )  = 2(1 + z ) .  

The threshold relations (4.8), (4.9) yield 

½ c = a = 2 + b .  

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Thus to second order the amplitudes can be obtained without specific diagram cal- 
culations which involve tedious "/-matrix algebra. For completeness however we ex- 
hibit in fig. 3 the diagrams which contribute to this order. Here equivalent infinite 
mass scalar boson exchange (dashed lines) is used, which clearly indicates the vari- 
ous ways (up to direction) that the fermion charges can flow. The contributions to 
the 4-point vertex function from diagrams 3a and 3b exactly cancel and one is left 
only with contributions from 3c. 

Now we finally turn to the third order calculation. As far as external fermion con- 
tractions are concerned there are just two classes of  diagrams I, II which are display- 
ed in fig. 4. The structure of  the contributions from class I are clear. Using Cutkosky 
rules for the diagrams with external particles on shell *,  one can convince oneself 

* See e.g. ref. [8 ]. 
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1 II 

Fig. 4. 

that the only new integral appearing in a general contribution is 

dz' r ( - z ' )  (4.17) ~(z)=~ f (z,_ z ) ~ _  1 
1 

¢r 
This can be evaluated to yield 

1 1 
9 ( z ) = - l r ( z ) 2  4 z -  1" (4.18) 

The upshot of this analysis is that the diagrams of  class II are also expressible in 
terms of the one loop function r(z). Note, moreover, that the threshold behaviour 
of ~(z)  is only like that of  r(z). Summing up what we have learnt so far, the per- 
turbation result must have the structure 

f3(z) = Q1 (z)r(z) 2 + Q2(z )r ( - z )  2 + Q3(z)r(z)r(-1)  

e 
+ a 4 ( z ) r ( - z ) r ( - 1 ) +  d + + ( f z + h ) r ( _ l )  2 (4.19) 

• z - I  z + l  ' 

and 

b3 (z) = Qs (z)r(z) 2 + Qs ( - z ) r ( - z )  2 + Q6(z)r(z)r( - 1) 

+ Q 6 ( - z ) r ( - z ) r ( - 1 )  + k -1 1 + I r ( -1)  2 (4.20) 
1 z + l  

where Qi, Q2 are a priori third order polynomials; Q3, Q4, Qs are second order and 
Q6 is first order. Plugging the ansatz into the third order unitarity equations yields 
the polynomials Qi 

Ql ( z )  = 5z + I , (4.21) 

Q2(z) = - (1  + z ) ,  (4.22) 

Q3(z) = (1 + z)(az + b) + 2 c ,  (4.23) 

Q4(z) = ( i  + z)(az + b ) ,  (4.24) 

Qs(z) = 2(z 2 + z + 1),  (4.25) 

Q6(z) = 2(az + b) + (1 + z )c .  (4.26) 

Note the property 9 (z) + 9 (-z) = r(z)r(-z); a property which comes in so effectively in eval- 
uating S-matrix elements in ~4 theory to third order [8 ]. 
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Fig. 5. 

Threshold conditions give the further constraints 

e = 0 ,  

l ( d +  1) = [ 4 ( a - 1 ) + h -  f ] r ( - 1 )  2 , 

k = d ,  

½(d+ 1)= [-4(a- 1)-h-f+l]r(-1) 2 . 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

As mentioned above, we have unfortunately thus far been unable to discover a gen- 
eral property that would specify the precise threshold behaviour of  ( f+  b) order by 
order; in particular at third order the constant d remains to be determined. We thus 
resorted to the extremely tedious perturbation theory calculation *. We evaluated 
beth class I and class II contributions, despite the fact that by previous considera- 
tions it would have sufficied to extract d which arises directly only from class II 
contributions, or alternatively determine the leading threshold behaviour which 
comes from the class I s~- s-channel chains. The full calculation, at the very least, 
served as a good consistency check. 

The diagrams occurring in class I are exhibited in fig. 5. Contributions to the 
vertex function from 5a and 5b cancel exactly, as do those from 5c and 5d. We are 
left only with 5e, 5f  which yield contributions f ] ,  b I to f3, b3 as follows, 

J~(z) = ~(1 +z){[(1 +z )  2 + 12lr(z) 2 + (1 + z ) 2 r ( - z )  2 

* The author in fact calculated these contributions before the appearance of Zamolodchikov's 
work, to gain clues as to the nature of the exact solution! 



P.H. Weisz / Thirring model S-matrix 11 

(a~ (b "-" 

i i 

I I 
I l 

(c) 

(e) 

/7"~p, 
I 
I 
I 
I 
I 

(o) 

I 
I 
! 
I 

~ I r 

(dl 

( f )  

~t I 
/ /  ", I 

"" ' (h)  
Fig. 6. 

+ terms linear in r(z), r ( -z )}  , (4.31) 

bI3 (z) = ½ { [3(1 + z) 2 + 11 r(z) 2 + [3(1 - z) 2 + 11 r ( - z )  2 

+ terms linear in r ( z ) ,  r ( - z ) }  . (4.32) 

Comparing the polynomials occurring here with the correct results (4.21)-(4.26),  
it is dubious whether the iterated one-loop chain approximation gives a sensible ap- 
proximation to the correct amplitudes in any kinematic domain except possibly 
close to the s~- s-channel threshold. 

The various diagrams contributing to class II are shown in fig. 6. Here again can- 
cellations occur; contributions 6a cancel with 6b and 6c cancel with 6d. We are left 
with contributions from 6c, 6d, 6e, 6f  among which (at least on shell) certain sim- 
plifications occur *. As mentioned above the result for d can be obtained by equat- 
ing the leading threshold behaviour of f3(z)  (4.19) with that off3I(z) (4.31). One 

* Because there is no (infinite) coupling constant renormalization in the Thirring model the 
vertex functions are finite in every order; however, individual diagrams are divergent. We em- 
ployed the BPHZ renormalization scheme in our calculations. 
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obtains 

d = - 1 .  (4.33) 

These sorts of considerations of  leading threshold behaviours can certainly be ex- 
tended to higher orders. Now one constant remains undetermined at every order 
n > 1. This is of  course only a reflection of  the fact that we have not defined the 
coupling constant g by a normalization condition. We choose to define g by the re- 
quirement 

F ( - z )  ~ e - ' g  as z ~ oo + i0 . (4.34) 

This is possible since the asymptotic behaviour of  f is in each order no worse than 
that of the tree diagram, which is in agreement with the existence of  a finite mass- 
less limit [20].  The requirement (4.34) requires that we set 

1 
a = 0 ,  f =  6 r ( _ l )  2 . (4.35) 

Using the explicit expression for r in the rapidity variable 

1 i n - O  
r(O) - (4.36) 

7r sinh 0 ' 

one obtains to third order 

A(O) = si--n-fi-o 1 - g 2 0  coth 0 + - ~n 2 + 7r sinh 20 . . . .  
(4.37) 

l O g 2 1 I s O  ] 6ss(O) = -~g  tanh-~ -t - 1 
7r sinh0 inh0 

I 02 cosh 0 ~.]  + g3 2 1 - -  -I- 1 i f 2  tanh 2 
Jr 7r 2 sinh 0 sinh20 .... 

(4.38) 

We now wish to compare these perturbation theoretic results with the Zamolodchi- 
kov solution. The connection between X and g is:supplied by comparing the normaliza- 
tion condition (4.34) with the Zamolodchikov result (3.14). This gives us the (con- 
ventional) identification 

2g = 1 _  1.  (4.39) 
rr 

Expanding Zamolodchikov's solution (3.5) and (3.11)in powers of  g using the Fou- 
rier transform, 

a o  

f dte itOl~r tanh ta _ 2hi (4.40) 
2 a sinh(O/a) ' 
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(and its derivatives), one finds exact agreement with the perturbation theoretic re- 
sults (4.37) and (4.38). 

5. Conclusion 

The general classification of the solutions to the coupled unitarity and crossing 
equations, with non-trivial backward s~- scattering, remains to be completed. Such a 

classification is desirable for the application of the previously proposed programme 
[9] of deriving the Thirring model from such solutions, subject also to consistency 
conditions on the spectrum in the n-particle channels. This is in turn constitutes the 
first step in the larger programme of deriving matrix elements of the Heisenberg 
fields and ultimately the construction of the full Green functions. An intermediate 
question is of course, when does a particular solution correspond to a local quantum 
field theory? 

A particular solution with non-trivial backward scattering has recently been ob- 
tained by Zamolodchikov [ 11 ]. This solution is an excellent candidate for the exact 
Thirring model S-matrix since it has, by very construction, known S-matrix proper- 
ties in the semiclassical limit and furthermore, as we have demonstrated, agrees with 
the Thirring model up to third order in perturbation theory. The investigation of 
the matrix elements of Heisenberg fields, in particular the soliton electromagnetic 
form factor corresponding to this solution, is in progress [10,11]. 

As we have conjectured above, the massive Thirring model is probably as soluble 
as is the massless model. The solubility is a direct consequence of the validity of an 
infinite set of conservation laws which forbid particle production. From the point 
of view of strong interaction physics, this property is however in many ways unfor- 
tunate, since it would seem to render the model even less interesting for high energy 
phenomenology than its very two-dimensional nature. The generalizations of the 
model to include more fermio/as, with various internal symmetries, are in this respect 
more interesting since they do not in general exclude particle production. It is hoped 
that the study of the Thirring model, and its generalizations will serve in the future, 
as an inspiration for new general ideas applicable also in four dimensions, as it has in 
the past. 

I would like to thank B. Schroer, T.T. Truong and many other colleagues for dis- 
cussions. 
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