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In the two-dimensional SU(N) Thirring model, the 1IN expansion seems to predict 
spontaneous breaking of the continuous ehiral symmetry. This is impossible in two- 
dimensions. Reasoning along the fines of Berezinski, Kosterfitz and Thouless for the two- 
dimensional X- Y model, we argue that, in fact, rather than showing long-range order, 
(~k(x) ~X0(0)) vanishes in this model as Ix I - I lN  at large Ix I. The I[N expansion is, in 
fact, a rather good guide to the properties of this model. 

1. Introduction 

The purpose of  this paper is to resolve a problem that arises in the SU(N) Thir- 
ring model  in two space-time dimensions. This model  possesses a U(1) chiral sym- 
metry which, apparently,  should prevent the fermions from acquiring mass. The 
model, however, has been solved in the 1IN expansion [1 ], which is usually reliable, 
and in this expansion it is found that  the chiral symmetry is spontaneously broken, 
the fermions acquire mass and a Goldstone boson appears. 

The problem is that in two space-time dimensions, spontaneous breaking of  a 
continuous symmetry is not  possible, and there are no Goldstone bosom.  This 
might seem to show that  the 1/N expansion must be seriously wrong in this theory.  
However, we will see that,  if  treated carefully, the 1IN expansion is a good guide to 
the properties of  the SU(N) Thirring model. We will argue that the properties of 
this model are as follows: the symmetry  is not  spontaneously broken; there is a 
massless particle but  it is not a Goldstone boson; the physical fermions have mass. 
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2. A soluble model 

As a preliminary, let us consider a scalar field theory with U(1) invariance: 

£ = / d 2 x  [O u ~* Ou ¢ _ g 2  (~b*~b - a 2 )  2]  . (1) 

In more than two dimensions this theory can exhibit a phase with spontaneous sym- 
metry breaking and long-range order: 

lim (~b*(x) ~(0)) ¢ O. (2) 

In addition there is a symmetric phase with masses and exponential fall-off of  cor- 
relations 

e -rex  m > 0 (3) (~*(x) ~(0))ix,-~oo ' 

In two space-time dimensions, spontaneous breaking of a continuous symmetry 
is, according to Coleman's theorem [2], not possible, and one might expect that 
only a phase analogous to (3) would be present. However, it has become clear in 
recent years [3] that in addition to the high-temperature phase (3), this theory pos- 
sesses in two space-time dimensions an additional phase in which the symmetry is 
"almost" spontaneously broken and the correlation functions fall like powers 

(¢*(x) ~b(0)) ~ Ix I - a  . (4) 

Our main claim in this paper is that theories with U(1) chirat symmetry in two 
space-time dimensions possess a low-temperature phase of the Berezinski-Kosterlitz- 
Thouless type, similar to (4). In this phase, the fermions have mass, just as if there 
were true spontaneous symmetry breaking. 

In this section we will consider a soluble example; in sect. 2 we turn to the SU(N) 
Thirring model. (The model that follows has been discussed by Kogut and Sinclair 
[4] and many of the points that follow have been treated in their paper.) The solu- 

.ble model with U(1) chiral symmetry is described by the Lagrangian 

- ~ [ ~ ( 1  + 3'5) ~ ei°/a + ~(1 -- "YS) ~ e-W/a]] • (5) 

This model possesses a chiral symmetry ~k ~ ei#'~s, o ~ o - 2~ .  Apparently, if 
unbroken, the symmetry would prevent the fermions from having a mass. As we 
will see, however, the symmetry is not broken, but the fermion has a mass. 

The model can be solved exactly by using the boson representation of fermions 
[5]. We introduce a new boson field c with 

~i i~  ~ = ½(a~c)  ~ , 

~(1 -+ ")'s) ¢s = exp(-+iVc~c), 
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-~ v" ~' = - ~ e~ O ~ c , 

and the Lagrangian now becomes 

Z= f d~x{~Ouo)2 +1 

+ 

(6) 

(7) 

Introducing new fields 

vq-~c + o/a -c/a + o~/~ 
? -  X/47r + 1/a 2 ' ° = X / ~  + 1/a 2 ' (8) 

the Lagrangian takes the form 

£ = f d 2 x [ ½ ( 3 u ~  2 + -~(3u ~ 2 - X cos(~/41r + 1/a2~] . (9) 

There is thus a free, massless scalar ~" and a sine-Gordon field ~. 
The sine-Gordon spectrum is known exactly [6], and in this case, since 

= v f ~  + l /a  2 is greater than , ~ ,  it consists only of a massive fermion (the soli- 
ton) and a massive antifermion (the antisoliton). These are the original fermion and 
antifermion ~ and f of (5); they have acquired masses. 

How have the fermion and antifermion managed to acquire masses despite chiral 
symmetry? To answer this, we should ask what form the original chiral current takes 
in terms of ~and ~. The chiral current defined from (5) is 

A u  = f Tu Ts ~b - 2aau o . (10) 

In terms of the new variables, one finds simply 

V A u =  , -  ~+4z 'a2~u~.  (11) 

Thus, the chiral current involves only ~ and not b ~. This means that the field ~, and 
therefore also the physical fermion and antifermion associated with this field, are 
neutral under chirality. Thus, even though the elementary fermion field ~ has non- 
zero chirality, the physical fermion particles have zero chirality. This zero chirality 
of the physical particles enables the theory to evade the apparent connection 
between chiral symmetry and massless particles. 

The point can perhaps be clarified by introducing a new fermion field that has 
the quantum numbers of the physical particles. We simply introduce a new ferrnion 
field ~ with 

~v"~ -- - @  e ~ .  (12) 

According to the standard rules, (9) can now be written 

, ~  1 1 ~ u ~ 2  £=fd2x[~ i~ / -X~,++~(~) (+" /  +)+½(a,o-')2] . (13) 
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In this form, it is obvious that our theory consists of a massive fermion with self- 
interaction, and a free, massless scalar. 

Moreover, it is instructive to compare perturbation theory for (5) to perturbation 
theory for (13). Perturbation theory in these models means an expansion in powers 
of 1/a for large a. If we naively expand (5) in perturbation theory, we find that the 
fermion has a mass ~, the scalar is massless, and the theory becomes a free field 
theory at a = oo. However, in this approximation chiral symmetry is spontaneously 
broken, something we know to be impossible, and this may lead us to distrust all of 
the perturbation theory results. But looking at (13), for which perturbation theory 
does not involve any dubious spontaneously broken symmetry, we see that in fact 
the fermion has a mass ~., the scalar is massless, and the theory becomes a free-field 
theory for large a. Thus, perturbation theory is a good guide for all properties of 
the theory, except the question of whether the symmetry is spontaneously broken. 

Now, let us discuss and attempt to resolve the various paradoxes that could be 
posed in connection with Lagrangian (5). 

In perturbation theory of (5) the ~ particle has a mass, and the chirally asym- 
metric part of its propagator is non-vanishing. We have seen that the mass is actually 
present. This in itself does not mean that chirality conservation has been broken, as 
long as the physical fermion is neutral under chirality, which we have seen to be 
the case. But the chirally asymmetric part of the propagator must vanish, by Cole- 
man's theorem. If it were non-zero, this would mean spontaneously broken chiral 
symmetry. Let us see how it vanishes. 

Let 4+ and 4 -  be the positive and negative chirality components of the original 
4 field, and 4~ and 4*-- their Hermitian conjugates. A chiral transformation 
4 ~ e i~s ~ has 

4 _ ~ e - i a 4 _ ,  4L-->eia4_.  (14) 

The chirality violating (but fermion-number conserving) fermion propagator is 
G ( x , y )  = (4+(x) if*--0')). To calculate this, we should express the original 4 field 
in terms of the free field ~ and the fermion field ~ which creates the physical fer- 
mions. The connection can be made using Mandelstam's operator form of the boson 
representation [7]. Roughly speaking, the correct formulas, obtained by combining 
Mandelstam's formulas with (6) and (I 2), are 

4 -  = e - iba f f -  , 4*- = eibaff*- , (15) 

where b = X/~/V~ + 4n2a 2. (We say "roughly speaking" because Mandelstam's for- 
mulas actually require a splitting of ~ into left-moving and right-movi.'ng parts. This 
is extraneous for our purposes and we will ignore it.) 
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We now see that the chirality violating propagator is 

G(x,y)  = ~+(x)  ¢I_f.v)~ 

= (eiOY(x) 2+ (x) e ion(y) 2+ (Y)). (16) 

Because 8 and 2 are decoupled, this factorizes: 

G(x,  y )  = (e ibm(x) eibY(Y))( 2+(x) 2;(Y)) • (17) 

But for the free massless field ~, a classic calculation [3,5] shows that 
(e ion'(x) e iby(y)) = 0. Thus, the chirally asymmetric part of the fermion propagator 
vanishes. 

It may be useful to see wherein lies the subtlety. As we have mentioned, pertur- 
bation theory for (5) is an expansion in powers of l /a,  or equivalently, in powers 
of b. In an expansion in powers of b, one would expect 

(e ibm(x) e ibm(y)) = 1 + O(b 2) , 

whereas in fact this object, because of infrared divergences, vanishes. 
It is also interesting to compute the chirally symmetric part of the fermion propa- 

gator: 

( ~+(x) ~b ~ (0)) = (e ibm(x) e-/bb'(°))(2+ (x) 2+(0)). (18) 

But [3,5] 

(e ibm(x) e -ib~'(O)) = Ix I -b2147r , 

while (~+(x) ~ ( 0 ) ) i s  the propagator of a massive fermion, and therefore behaves 
for large I xl a s  e - m  Ix I, m being the mass. So the long-distance behavior of (18) is 

(~+(x) ¢+(0)) = [x [ -b2/4~r e -m IxL . (19) 

The appearance of a power law correction to the exponential decay means that the 
spectral function does not have a one-particle pole but rather begins with a cut. 

This is because the ff field has non-zero chirality while the physical fermion has 
chirality zero, so the physical fermion cannot appear as a pole. 

Finally, we may consider the behavior of fermion bilinears, such as 
(~(1 + 7s) ~(x) ~(1 - 7s) ~(0)). In view of Coleman's theorem, this must vanish 
for large Ix 1. Actually, 

~(1 + 3's) ~b(x) = ~(1 -+ 7s) 2(x) e +2ib~(x) , 

so we have 

(~(1 + Vs) 2(x) ~(1 - 7s) 2(0)) (e2ib~'(x) e - 2 i b ~ ' ( O ) )  • 

The first factor approaches a constant for large Ix I, but the second decays like 
Ix [ -b2/'r. The two-point function for a chirality violating fermion bilinear thus 
decays according to a power law. The power-law decay shows that we are, in fact, 



E. Witten / Chiral symmetry 115 

dealing with a low-temperature phase analogous to (4). 
The main lessons to be learned from this exactly soluble model are as follows. 
The theorem concerning the absence of spontaneous breaking of a continuous 

symmetry means that chirality violating Green functions must vanish. Indeed they 
do; we have seen, for instance, that the chirality violating part of the fermion propa- 
gator vanishes. 

This theorem also implies that there are no Goldstone bosons in two dimensions. 
A Goldstone boson is a massless boson whose singular contributions to Ward identi- 
ties enable the identities to be satisfied even though some symmetry breaking 
Green functions are non-zero. This is not possible in two dimensions. But massless 
bosons are possible. The massless boson in this theory is not a Goldstone boson; it 
satisfies no pertinent low-energy theorems; in this theory the chirality violating 
Green functions are zero and there is no room for Goldstone-boson contributions in 
the Ward identities. 

In this theory there is a Fermi field ~ with a chiral symmetry ~ ~ e i~'rs ~. In 
such a situation one usually feels that if the chiral symmetry is unbroken, the physi- 
cal fermions will be massless. In perturbation theory this is true. But the correct 
statement is that if the symmetry is unbroken, and the physical fermion appears as 
a pole in the two-point function of ~, then the fermion must be massless. If  the 
physical fermion does not have the same quantum numbers as t~, and so does not 
appear in the ~ two-point function as a one-particle state, then chiral symmetry 
does not tell us whether the fermion will have zero mass. 

The physical properties of this model may be summarized as follows. Although 
- ~  has no long-range order, it is so close to having long-range order (we have seen 
that its two-point function decays only like a power law) that the usual physical 
consequence of long-range order, a fermion mass, is present even though long-range 
order is not quite present. 

For this "almost long-range order" with power-law decay of correlations a mass- 
less particle is clearly necessary. That the massless particle decouples is not neces- 
sary. By adding extra fields and interactions, one could get a model with similar 
physical properties, but no longer exactly soluble, and with the massless particle no 
longer decoupling. The tempting idea that "a Goldstone boson is allowed in two 
dimensions if it decouples" is a misunderstanding. The massless particle of this mod- 
el is not a decoupled Goldstone boson; it is a non-Goldstone, massless boson. 

3. The SU(N) Thirring model 

Now we turn to the model of main interest in this paper, the SU(N) Thirring 
model. This is a system o f N  Dirac fields ~g, k = 1 .... N, with Lagrangian 

£= f d2x[i~ki~Ok + g -- qJk)2)] , (20) ( (~k  ~k)  ~ - ( ~ k  ~'5 
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where the factor of N is included so as to have a smooth limit as N --> oo. The Lag- 
rangian possesses a U(1) chiral symmetry ff k -+ ei#~'s ~k. 

Following ref. [1 ], we may equivalently introduce auxiliary fields a = ~ff, 
7r = i~3's ~b, and write 

£=fd2x[i~k~t~k 1 2 ' 2 VN k; - 5 0  -~Tr + ~k(o+iTrTs) ff . (21) 

The symmetry is now 

"--> e i/3ys ~ , o + in ~ e2i/3(o + in) . 

To carry out the 1IN expansion, one now integrates over the Fermi fields, yield- 
ing the effective Lagrangian 

£eff i N T r l n ( i ~ + ~  ) ½ f  = (o + irrTs) - d2x(o2(x) + rrZ(x)). (22) 

As explained by Gross and Neveu, this Lagrangian is apparently of the symmetry 
breaking type, in the sense that the minimum of the action occurs for non-zero 
values of o and 7r. But if one expands around a non-zero value of  a and n, one is 
introducing symmetry breaking and Goldstone bosons, which are not possible in 
two dimensions. 

The resolution of  this problem is very simple: it is just the Berezinski-Kosterlitz- 
Thouless phenomenon. One writes o + in = pe i°. We can expand around a non-zero 
vacuum expectation value of p without breaking the symmetry. The dangerous 
step, which must be avoided, is to assume for 0 a definite vacuum expectation value, 
such as zero. This would violate the symmetry. In these variables, chiral symmetry is 
O-+O+c. 

In terms of t9 and 0, our effective Lagrangian is 

£eff:iN Tr ln ( i~  + |//_g_g 119 ei0ys ) v N  ~ _ I f  d2x192(x) . (23) 

In analyzing the infrared behavior of  this theory, one may just as well set 19 equal 
to a c-number, its vacuum expectation value, since the infrared behavior will be 
determined by the massless field 0. As far as the 0 dependent terms are concerned, 
only the term proportional to (V0) 2 is important, since other terms have higher 
dimensions and will not be important in the infrared. The (70) 2 term is readily cal- 
culated, and we find 

~rr=-~f~ f d2x(VO)2 , (24) 

plus terms that will not be important in the infrared. 
We would like to calculate the behavior in the SU(N) Thirring model o f  matrix 

elements that could show symmetry breaking and long-range order. For instance, 
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let us calculate the large x form of (~(1 + 7s) ~b(x) ~(1 - 75) ~(0)).  With 

5(1 + 7s) qJ = o ~ in  = p e ;i° , 

we must calculate (p (x )  e - i °  (X)p(O) e iO (0)). Replacing p by its c-number, vacuum 
expectation value, the x dependence will be that of  (e -iO(x) e iO (0)) in the free field 
theory with Lagrangian (24). This, in turn, is [3,5] Ix I - x / u .  So we conclude that, 
in the SU(N) Thirring model, 

(~(1 + 7s) ~k(x) f ( 1  - 7s) ~ ( O ) ) ~ C I X ]  - I / N  , (25) 

for large Ixl. 
The procedure followed in arriving at (25) may seem rather cavalier. However, it 

is shown in the literature on the X-Y model [3] that this sort of  behavior is stable 
against perturbations. The reason for this is simply that, as we have said, the infrared 
behavior is determined by the massless field 0, and 0-dependent terms other than the 
free field term (70)  2 have higher dimension and are unimportant in the infrared 
(remember that terms like 04 or 02 (70)  2 are forbidden by the symmetry 0 -+ 0 + c). 

(25) is certainly the nicest result in this paper. I f  in (25) one sets N = o~ one finds 
the two-point function approaching a constant for large x, erroneously indicating 
long-range order and symmetry breaking. For any finite N, on the other hand, this 
two-point function vanishes as Ix l ~ o% but it vanishes very slowly i f N  is large. 

This "almost  long-range order" is sufficient to justify many of the physical 
results that come from the large-N expansion. There is no reason to doubt the pre- 
diction of  the 1IN expansion that the physical fermions have masses. On the con- 
trary we should expect this, since we have seen in the last section that "almost  long- 
range order" like (25) is sufficient to generate Fermi masses. The 1IN expansion 
correctly predicts that there is a massless particle, the 0 particle, although it is wrong 
in indicating that it is a Goldstone boson. The 1 [iV expansion can be validly used to 
calculate the elementary fermion S matrix as an expansion in powers of  1 IN. As 
long as one interprets the results carefully and as long as one does not break the 
symmetry by attributing a mean value to 0, the 1 / N  expansion is a quite reliable 
guide to the properties of  this model. 

For completeness, although it is outside the main purpose of this paper, we 
should note that there is a simple (and fairly well-known) field theoretic argument 
for the existence of  a massless particle 0 in this model. The argument also shows 
that 0 decouples from the S matrix, and it applies equally well to the soluble model 
of  sect. 2. The argument is that, as one can see from the equations of  motion, the 
chiral current A u of  this model satisfies a free, massless wave equation, V2Au = O, 

and therefore, when acting on the vacuum, it creates a free, massless particle, which 
we have called 0. The decoupling of  0, incidentally, can be seen in leading order 
from the fact that (24) is a free field Lagrangian. 

We should also note that, independently of  the arguments given above, the fact 
that the 1/iV expansion gives the correct spectrum for this model can be seen from 
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the bosonized version of this model, which was described by Banks, Horn and Neu- 
berger and by Halpern [8]. 

I would like to thank T. Banks for some enlightening discussions about this 
model. 
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