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We show that the two-dimensional (~0) 2 model is, for N = 3, equivalent to the 
supersymmetric sine-Gordon equation, and for N = 4, equivalent to two decoupled sine- 
Gordon systems. In addition, we argue that the kinks of this model are isospinors, and 
we construct some of the higher conservation laws that are responsible for the exact 
solubility of this system. 

1. Introduction 

Recently Zamolodchikov [ 1], Karowski, Weisz, Truong, and Thun [2], and 
Zamolodchikov and Zamolodchikov [3] have shown, in some very interesting work, 
how to determine what are apparently the exact S matrices of  certain two-dimen- 
sional models, including the sine-Gordon equation, the nonlinear sigma model, and 
the (~ff)2 model. It is also possible, by the same methods, to determine the S ma- 
trices of  the supersymmetric generalizations of  those models [4]. 

Of particular interest are the sigma model and the ( ~ b )  2 model, which resemble 
realistic four-dimensional models in a number of  ways, including asymptotic free- 
dom and dynamical mass generation. 

The purpose of  this paper is to describe some properties of  the ( ~ b )  2 model 
which may aid in understanding and interpreting the S matrix of  the model **. In 
addition, so far as this S matrix has not yet  been fully determined (the S matrix is 
known for the elementary particles, but  not  yet  for the kink states), some of  the 
results might be helpful in completing the determination of  it. We will pay partic- 
ular attention to the behavior of  the theory when the number N of  components of  
the field is 3 or 4, because there are hints (for instance, the instantons of  the sigma 
model) that these models resemble four-dimensional theories most when the number 

* Junior Fellow, Harvard Society of Fellows. 
** A considerable amount is already known about this model. The large N expansion was 

studied in ref. [5a] and a semiclassieal analysis, exhibiting what appears to be the exact 
spectrum was made in ref. [56]. 
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of components of the field is small. Our main results are as follows. 
In sect. 2 we apply the boson representation of fermions to the N = 3 and N = 4 

theories. The N = 3 theory is equivalent to the supersymmetric form of {he sine- 
Gordon equation, while the N = 4 theory is equivalent to a pair of decoupled sine- 
Gordon models, all at the critical coupling ~2 = 87r in the case o f N  = 4). 

A. Zamolodchikov has suggested that the spectrum for N = 3 and N = 4 consists 
only of kink states. In sect. 3, therefore, using the semiclassical method of Jackiw 
and Rebbi [6], we attempt to determine the quantum numbers of the kink states, 
to see if the kink spectrum is compatible with the results of sect. 2. Surprisingly, 
the kinks turn out to be isospinors. The isospinor kink spectrum is perfectly com- 
patible with the results of sect. 2. 

In sect. 4 we describe a new conservation law of the model. For N = 3 the new 
charges are supersymmetry charges; for N = 4 they are the difference between the 
energy and momentum of the two decoupled sine-Gordon theories. For N > 4 the 
new charges seem to generate 3's transformations in isospin space for the isospinor 
kinks. 

Finally, in sect. 5, we discuss, and attempt to justify, one of the basic assump- 
tions of the Zamolodchikov-Zamolodchikov work - the existence of an infinite 
number of conserved local currents transforming with arbitrarily large weight under 
Lorentz transformations. Although our discussion is incomplete, we claim that 
such currents do exist and that they are manifestations of the conformal invariance 
of the underlying classical field theory. 

2. Bosonization of the three- and four.component models 

The model under consideration is described by the Lagrangian 

N N 

i=I i=I 

where ~ is an N-component Majorana Fermi field. The theory has an obvious 
O(N) invariance, corresponding to rotations of the ~i. 

Since two Majorana fermions are equivalent to one Dirac fermion, the theory 
for N = 2 is a theory of a single interacting Dirac field; in fact, it is just the Thirring 
model. 

Here we will use the boson representation of fermions [7] to analyze the model 
(1) in the cases N = 3 and N = 4. A similar analysis has been carried out by Banks 
et al. and by M.B. Halpern for a Lagrangian similar to the above N = 4 model [8] 
and the decoupling result that we will derive for N = 4 has been found indepen- 
dently by A.M. Polyakov (unpublished) and by A. Luther and M.B. Halpern (un- 
published). 

To formulate a boson representation, it is necessary to group the Majorana fer- 
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mions in pairs (two Majorana fermions being equivalent to a Dirac fermion). This 
procedure will unfortunately not be manifestly 0(3) or 0(4) covariant. 

The basic rules of the boson representation are as follows. Given two Majorana 
spinors ffl and if2, it is possible to introduce a canonical real scalar field ~b such that 

1 ( 3 1 i ~  @1 + - -  "2 ~2i~ ~2) = ~ (~u~b) 2 

31 ~I + 321]J2 =: COSV t '~ ~b : ,  

1 
31~ '~2  - -- X/rr euvavqS. (2) 

We will also need to use a rather less familiar equation which can be deduced from 
(2). By a Fierz transformation, 

(31 ffl + 32~2) = 2(313'uff2) 2 + c number (3) 

(the c number, which would be absent classically, is present quantum mechanically 
because of the normal ordering or other procedure that is needed to define the com- 
posite operators carefully). From (2) and (3) it follows that 

:cosx/r~ ~b:2 = - 2  (Ou~b) 2 + c number. (4) 
7r 

Eq. (4) has no classical counterpart and is certainly rather hard to understand intui- 
tively. It is discussed more fully in the appendix. 

(Note that we have not specified precisely the procedure for defining our normal 
ordered products. In principle the second equation in (2) contains a free constant 
depending on the definition of the normal ordered product; we have used our liberty 
to set this constant equal to one. For a fuller discussion of this and other mathe- 
matical aspects of the bosonization procedure, see ref. [7] .) 

We are now ready to describe the boson representation of the N = 3 and N = 4 
models. For the N = 3 model, the Lagrangian can be written 

£ = y d 2 x [  l (~ l i~  ~1 + ~2i~t~2 + 33i~ ~3) +g (31~ l  + ~2~2) 2 

+ 2g(~a~x + 32~2)  33 f3 ]  • (5) 

Note that we have dropped a term (~3 if3) 2. This vanishes by Fermi statistics, since 
~b 3 is a Majorana fermion. 

We may now follow (2) to replace ffl and ~02 by a boson field ~b. The resulting 
form of the Lagrangian is 

£ =fd2x[~(~u¢)  2 + 21- ~3iP if3 +g :  c.os V~-~ ¢:z + 2g: cos V~-~ ~b: ~3~03] . 

(6) 
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Let us compare (6) with the supersymmetric form of the sine-Gordon equation, 

£ =fd~x[½(au~) 2 + ~ ~ i ~ f  + 2A 2 cos2BO +AB(cosB¢) f f ] ,  (7) 

which possesses a conserved supersymmetry current 

~u [((3'x0x~ b) - 2//1 sin B~b] Tuff] = 0 .  (8) 

(The cosine squared interaction in (7) can be written as the more familiar cosine 
interaction, by using the identity cos2B¢ = 1 cos 2BO + ~ .) 

Comparing (6) and (7), we see that, naively, (6) is supersymmetric if and only if 
g = ½ 7r. However, in a renormalizable theory such as this one, the coupling constant 
changes under a scale transformation, and we do not expect g = ~ ~r to be special. 
In fact, when g 4:½ rr, the Lagrangian (6) naively fails to be supersymmetric only 
because the coefficient of  the :cos 4~r¢: 2 term is incorrect. But in view of (4), the 
:cos 41r~: 2 term is, in quantum mechanics, equivalent to a renormalization of  the 
kinetic energy (which in turn can be absorbed in a rescaling of the field ~), so this 
coefficient can be adjusted at will. Thus, the theory (6) is actually supersymmetric, 
and is equivalent to (7), with appropriate values of  the parameters. It turns out 
that, after using (4) and rescaling ~, (6) can be rewritten as 

- 2 1 2 Z-fd xh(a.o) +l-~3i~f3+2A2:cos~'o:2+A~/:cos'yo:~3f3], (9) 

where in terms of  

X = 292 (1 - 4gfir) 
- 8g 2/~ ' 

we Fred 

A -- ~ x / ~ ,  

and where 

= ,/~ ~ ,  

47T 

So the N = 3 model is, unexpectedly, equivalent to the supersymmetric form of  
the sine-Gordon equation. 

For the N = 4 model, in addition to the field ¢ defined by (2), we introduce a 
second boson field ~' that satisfies the analogous equations 

1(~3i~ ~3 + ~4i~ ~4) = ~ ( a J )  ~ , 
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~ 3 ~ 3  + ~4@4 = :cos V / ~  ¢' :  , (10) 

In terms of ¢ and ¢', the N = 4 Lagrangian takes the form 

(11) 

where use has been made of (4) in treating the (~ x ~ x + ~2 ~2) 2 and (~ 3 ~/3 + 
~4 ~4) 2 terms. Letting 

¢± = X/t~ +gilt (¢ + ~ ' ) ,  (12) 

the Lagrangian becomes 

1: = f d 2 x [ ~ O u ¢ + )  ~ + 5,1:0, ¢ - ,  ~= 

+ 2g :cos ~/27r/(1 + 2gilt) (¢+ + ¢_): :cos x/21r/(1 + 2g/Tr) (¢+ - ¢_):] .(13) 

Using the formula cos(A +B) cos(A - B) = ~(cos 2A + cos 2B), this is 

lr~ ¢~z :cosx/8rr/(1 + 2g/Tr) ¢+: =fd2×[½(~ .¢+)  ~ + ~, , , +g 

+ g :cos X/8~r/(1 + 2g/Tr) ~_ :] . (14) 

Thus, the N = 4 model is a theory of two decoupled sine-Gordon equations. 
This rather surprising decoupling makes somewhat more sense in the light of the 

following group theoretical facts. The symmetry algebra 0(4) of this theory can be 
expressed as a direct product, 0(4) ~ 0(3) X O(3), where the generators of 0(4) 
are arbitrary real antisymmetric 4 X 4 matrices and the generators of O(3)L and 
O(3)a are, respectively, the self-dual and anti-self-dual 4 X 4 matrices. 

Let us consider the def'mitions of the fields ~b+ and ¢_, 

6/zvOv~)+ = __%/1 7r +g(~ l~ /"~12  + ~3~/'tt~4) , 

e/wOu,_ = --~ 1 + g (~l,y/~ ~/2 ~3,y# ~/4) (15) 2 ~ -- . 

These currents generate, respectively, the transformations represented by 
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and by 

[~~ 0001 0001 - ! ]  

on the four-component isovector field ffi. The first of these matrices is self-dual 
and so is a generator of O(3)R, while the second is anti-self-dual and is a generator 
of O(3)L. The currents in (14) thus transform as (1,0) and 0, 1), respectively, un- 
der O(3)L X O(3)R, and ~b+ and q~_ transform in the same way. 

Thus, this theory decouples into fields, and excitations, that are singlets under 
O(3)L, and fields, and excitations, that are singlets under O(3)R. 

It is also possible to see this decoupling in perturbation theory. IfJ~ are the 
O(3)R currents and Kvi are the O(3)L currents, then it is possible to establish the 
factorization 

N M N M 

<oir(  J,,;(x,.)  : jCvj))to) = <otr(Z  <oir(Z  r j.Cvj))io> 
i=1 /=1 i=1 j = l  

(16) 

for the current matrix elements. That this factorization is satisfied order by order in 
perturbation theory can be established by using the Ward identities for the currents 
J~ and K~, plus those for the axial currents e~vJ ~/and e~vK vi, keeping track of all 
possible anomalies. We will omit the details here. (For a prototype for this argu- 
ment, see ref. [9].) The factorization (16) implies that the excitations created from 
the vacuum by the J~ propagate independently of those created by the K~. 

3. The kink spectrum of the model 

The results of the previous section have striking consequences for the particle 
spectrum of the N = 3 and N = 4 models. For N = 3, the states must form super- 
symmetric multiplets of bosons and fermions. For N = 4, all one particle states 
must transform as (p, 0) or as (0, q) under O(3)L X O(3)R, since the O(3)L and 
O(3)R degrees of freedom are decoupled. 

The "elementary fermions" of the model, whose exact S matrix has been deter- 
mined [3], do not satisfy these conditions. For N = 4 the elementary fermions 
would transform under isospin as (I, ½), which is inconsistent with the decoupling 
theorem. For N = 3 the problem is that, according to the S matrix of ref. [3], there 
are no bosons degenerate with the elementary fermions, to form a supersymmetry 
multiplet. Thus, the elementary fermions must be absent for N = 3 and N = 4. 

A. Zamolodchikov has suggested (private communication) a very attractive reso- 
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lution of this problem. In addition to the elementary fermions and their bound 
states, this model contains also kink states, associated with the spontaneous break- 
ing of the discrete chiral symmetry. The kinks interpolate between the two possible 
vacuum states at spatial infinity, and a semiclassical formula for their mass is known 
from work of CaUan, Coleman, Gross and Zee [10]. 

In the sine-Gordon equation, it is known that the elementary particle disappears 
from the spectrum when the coupling constant becomes strong enough that the 
elementary particle mass reaches the kink-antikink threshold. For/3 2 > 4rr the spec- 
trum of the sine-Gordon equation consists only of kinks and antikinks. 

Zamolodchikov has suggested that a similar phenomenon occurs in the (~ff)2 
model. When N is small enough, the elementary particle becomes unstable against 
decay into a pair of kinks, and disappears from the spectrum. The semiclassical for- 
mula for the kink mass indicates that this occurs at N = 4 *. Then the spectrum for 
N = 3 and N = 4 would consist only of kinks. 

This provides a welcome explanation for the absence of the elementary particle 
states for N = 3 and N = 4. However, we must still ask whether the kink quantum 
numbers are consistent with the decoupling results for N = 4 and with supersym- 
metry for N = 3. In fact, what are the quantum numbers of the kinks? 

Following Jackiw and Rebbi [6], we will attempt to determine the isospin quan- 
tum numbers of the kinks from a semiclassical point of view. Let us attempt semi- 
classical quantization in a kink state, that is, in a topologically nontrivial configura- 
tion of the composite field o = ffff. The N Majorana fermion species ¢i interact 

N with o via a coupling o~i= 1-~it~i • As shown by Jackiw and Rebbi, a fermion inter- 
acting with a topological kink by such a coupling will possess a single, normalizable 
zero energy mode fo, in addition to the non-zero energy solutions fn (fo and fn are 
spinors; we will suppress spinor indices). The non-zero energy solutions of deffmite 
frequency are complex; the zero energy solution is non-degenerate and real. The 
semiclassical expansion for the field ~i is 

~k i = ~ (fnan i + fn* an i*) + fo bi . (17) 

H e r e  an i a n d  an i* are creation and annihilation operators for particles of  type i in 
the states corresponding to fn. The operators b i are hermitean, since the ffi are, and 
they transform according to the vector representation of O(N), since the ffi do. 
Moreover, the canonical commutation relations for ffi imply that the b i satisfy the 
Clifford algebra relations 

{b i, b ]} = 28/1.. (18) 

* Properly speaking, the semiclassical analysis is only valid for large N. However, Dashen, Hass- 
lacher and Neveu speculated [5] that  the semiclassical results become exact  with the substi- 
t u t i o n N ~ N  - 2, and this seems to be conf i rmed by the analysis in ref. [3]. It is the  im- 
proved semiclassical formula,  with N replaced by N - 2, that  indicates that  N = 4 is the  
critical value. 
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In short, the bi have the transformation properties and the anticommutation rela- 
tions appropriate for the gamma matrices of  O(N). 

The kink states, on which the b i act, therefore transform in the spinor represen- 
tation of O(N). The kinks are isospinors. 

Before proceeding, a few mathematical remarks about the algebra (18) may be 
in order. 

In any representation of  (18), it is possible to define operators Mii = bibj - bjbi 
which are generators of  O(N). It is also possible to define an operator 3'5 = iblbL.,  b N 
which commutes with the group generators Mij. Moreover, 3's 2 = 1, so the possible 
eigenvalues of  3's are -+ 1. 

I f N i s  odd, then 7s commutes with all the Clifford algebra generators b i, and in 
an irreducible representation of  the Clifford algebra 7s is a constant. There are for 
odd N two inequivalent irreducible representations of  the Clifford algebra, one with 
7s = - 1  and one with 7s = +1. These representations each have dimension 2 (N- 1)/2. 

I f N  is even, 7s does not commute with the Clifford generators, and any repre- 
sentation of  the Clifford algebra must contain both "left-handed" isospinors with 
7s = - 1 ,  and "right-handed" ones with 7s = +1. In this case there is a single irre- 
ducible representation of  the Clifford algebra; it has dimension 2 N/2. However, 
since 75 commutes with the group generators, these 2 N/2 states transform reducibly 
under the O(N) group; the left-handed and right-handed states transform indepen- 
dently. 

Returning now to physics, we would like to decide whether the kink states form 
an irreducible representation of  the Clifford algebra. In this regard there is an addi- 
tional, discrete symmetry of  the theory that should be taken into account - the 
operation ~ --> -~k. Corresponding to this symmetry, there is an operator P with 
P~kP = - 4  and p2 = 1. Of course, P commutes with the O(N) group. 

It follows from the formula (17) or from the Jackiw-Rebbi analysis that the 
fermion field operators have nonzero matrix elements among the kink states lot). 
In fact 

<ill frijol> = fl~lbila>, (19) 

where the b i, as we have said, generate a Clifford algebra. Since ~i is odd under P, 
the b i must also be odd under P. 

So, in the space of  kink states, there must exist an operator P which anticom- 
mutes with all the Clifford generators. Can such an operator exist if the kinks form 
an irreducible representation of  the Clifford algebra? For even N such an operator 
certainly exists - we have already seen that for even N, there is an operator 7s that 
anticommutes with the Clifford generators. But for odd N, an operator P that anti- 
commutes with the Clifford generators must anticommute with 7s; in an irreducible 
representation, such an operator does not exist because 7s is a c-number. Therefore, 
for odd N, because of  the existence of  P, the kink states do not form an irreducible 
representation of  the Clifford algebra, but rather a reducible representation, with 
the 7s = +1 and 7s = - 1  representations each occurring at least once. 
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So the minimal possibility, which we believe is actually realized, is that for even 
N the kink states form an irreducible representation, of dimension 2 N/:,  of the 
Clifford algebra, while for odd N, they form a reducible representation, of dimen- 
sion 2(2(N- 1)/2). 

In fact, the operator P simply distinguishes bosons from fermions. We are saying 
that for odd N, there are two isospinors of kinks, an even P isospinor of boson 
kinks and an odd P isospinor of fermion kinks. For even N, there is a single iso- 
spinor of kink states. Of these, the left-handed and right-handed spinors have oppo- 
site behavior under P and therefore have opposite statistics. We have not determined 
whether the right-handed spinors are bosons and the left-handed ones fermions or 
vice-versa, and this point may well be ambiguous, because of the difficulty in some 
cases of distinguishing bosons from fermions in one space dimension. 

Are these results about the kink states compatible with the conclusions of sect. 2 
about the N = 3 and N = 4 models? 

For N = 3 - odd N - we claim that the spectrum consists of an isodoublet of 
boson kinks and an isodoublet of fermion kinks. This is certainly compatible with 
a possible supersymmetry. 

For N = 4, the spinor representation transforms as (~, 0) + (0, ~) under O(3)L X 
O(3)R. So isospinor kinks are certainly compatible with the decoupling of the 
O(3)L and O(3)R variables. 

Having determined the kink quantum numbers, it is natural to try to use the 
method of ref. [3] to determine the kink-particle and kink-kink S matrices. This 
has been done by Shankar and Witten [11 ] who argue that the semiclassical bound 
states, with the right masses and isospin quantum numbers, appear as poles in the 
kink-kink S matrix. 

4. A new conservation law 

In this section, we will describe a new conservation law of the (~ff)2 model, 
which will shed light on the results of the preceeding two sections. 

It will be convenient to use light cone coordinates. We define x+ =Xo +xl ,  x_ = 
x0 - x l ,  and let ~k+ and ~b_ be the chiral components of the fermi fields. Under a 
Lorentz transformation 

/cosh 0 sinh 0 

t sirth 0 cosh 0 )  

these variables transform as x+ -~ e°x+, x _  -~ e - ° x _ ,  ~b+ --> e °/2 ~k+, ~b_ ~ e -° /2  ~_. 
An object that transforms a s f ~  eP° fwe  will consider to have Lorentz weight p, so 
~b+, for example, has weight ~. In these coordinates, the Lagrangian is 

£ = f d x +  dx_ [~bai~_ ~b a + ~a_ ia .  ~b a + g~b a ffa_ fib+ fib] . (20) 
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We can now easily describe the following conservation law *. Let eq ...iN be the 
completely antisymmetric tensor. Let 

J+ = e i l . . . iN~)+i l  ... ~ + i N  , 

J -  = e i l . . . i N ~ ) _ i l  "" l~_ iN  . (20) 

J÷ is the product of all N positive chirality Fermi fields, and J -  is the product of 
all N negative chirality fields. Remarkably, at the classical level, J+ and J -  satisfy 
free field equations, 

0_J  + = 0 , 0+J- = 0 . (21) 

To check these statements, one simply uses the equations of motion, together with 
the fact that an arbitrary product o f N  + 1 positive chirality fermi fields (o rN  + 1 
negative chirality Fermi fields) vanishes by fermi statistics. 

If (21) is not modified by anomalies, it implies that the theory contains massless 
particles, because J+ and J - ,  being free, massless fields, will create free, massless 
particles when acting on the vacuum. 

To what extent may (21) contain an anomaly? 0_J  ÷, if not zero, is a local opera- 
tor of dimension ½N + 1 and Lorentz weight ½N - 1, and moreover it is a pseudo- 
scalar, rather than scalar, in isospin space, because of the factor %~ ...~tN. The only 
isotopic pseudoscalar with this dimension and weight is 

Z + = ... e~.. .~4)~,_~ua_(O+~3+) ~,,+ q)~N+ • 

But z + is in turn a total divergence, z + = 0+R-, where 

1 
R-  - N -  2 eux ""uN~ul-t~u:-~ku3+ "'" ~)UN+ • 

Likewise O+J-, if not zero, must be proportional to 0_R +, where 

1 
R + - e~ ,~ . . .UN~U~+ 4'u2+ q ) u 3 -  "" ¢)u • N - 2  

Consequently, the only possible anomaly in (21) is that (21) might be modified to 
read 

0_J  + +f(g) 0+R- = 0 ,  0+J- +f(g) 0_R + = 0 ,  (22) 

where f(g) is some function of the coupling constant. In perturbation theory, an 
anomaly such as (22) does occur. 

Eq. (22) is no longer a free field equation, but it is still a conservation law. What 
are its consequences? 

* A similar point  has been made by Callan and Gross in connect ion with two-dimensional 

gauge theories (unpublished). 
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For N = 2, the conservation law (22) is just the axial vector current of the mass- 
less Thirring model (and in this case only, f(g) = 0). 

For N = 3, the new current is cubic in the Fermi fields and so is an anticom- 
muting spinor current. It also has dimension 23- and Lorentz weight ~ ; these are the 
approriate values for a supersymmetry current satisfying the usual algebra. Actually, 
if one rewrites (22) in the boson language, one obtains the supersymmetry current 
of eq. (8). (Some care is required; (8) itself is modified by an anomaly to include a 
term (~u¢) if3-) It is also possible to verify directly in the fermion representation 
that the charges associated with (22) satisfy, for N = 3, the usual supersymmetry 
algebra - their anti,zommutators are the energy-momentum operators. (This also 
requires some care; in evaluating the anticommutators, it is useful to define the 
composite operators by a point splitting method.) 

For N = 4 the new currents have weight two and dimension two, as is appropriate 
for an energy.momentum tensor. In the boson language, these currents turn out to 
be simply the difference between the energy-momentum tensors of the decoupled 
fields q~+ and q~_. 

How are the new conservation laws to be interpreted for N > 4? Let Q÷ and Q -  
be the conserved charges and I f  a) the elementary fermion states (which do exist 
for N > 4!). Now, consider the states Q÷l f  a) and Q - I f ) .  If  these states are not 
zero, they must be degenerate in mass with the I f  a). 

For odd N, the Q-+ are anticommuting charges, and the Q+-If a), if not zero, 
would be boson states degenerate with the Ira). For even or odd N, the states 
Q±l f  a) would transform as pseudovectors under isospin (as opposed to the I f  a), 
which transform as vectors), because Q± are isotopic pseudoscalars. 

The S matrix proposed in ref. [3] for the elementary particles shows no hint of 
bosons degenerate with the elementary fermions for odd N, or of isospin pseudo- 
vectors degenerate with them for even or odd N. Therefore, we are led to suspect 
that Q± may annihilate the elementary particle states. 

If  Q+- annihilate the elementary fermions, they must also annihilate all the bound 
states of the elementary fermions. Therefore Q± can have a non-zero action only on 
the remaining states, namely the kink states. 

Given that Q± are isotopic pseudoscalars, what action can they have on the kink 
states? The only matrix in the space of kink states that transforms like a pseudo- 
scalar under isospin is the matrix 7s defined in sect. 3. Taking account of the Lorentz 
transformation properties of Q+-, we are therefore led to conjecture that 

a+-Io~ p) = p(±N-2)12(Ts)aol~, p) , (23) 

where la, p) is a kink of type a and momentum p. 
Although formally the same, (23) has a somewhat different import depending 

on whether the Q± are commuting or anticommuting charges (even or odd iV). For 
odd N, (23) implies a sort of supersymmetry in the scattering of Bose and Fermi 
kinks. 

For even N, (23) implies that the number of left-handed (or right-handed) kinks 
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is conserved. More than that, it implies that in a collision of a left-handed and a 
right-handed kink, there is no backward scattering. For in a collision of  a left-handed 
kink of momentum p and a right-handed one of  momentum q to give a left-handed 
kink of momentum r and a right-handed one of  momentum s, conservation of Q+- 
give s 

(p+_)(n-2)/2 _ (q + ) ( N -  2 )/ 2 = (r + ) ( N -  2 )/ 2 _ (S +_ ) ( N -  2 )/ 2 . (24) 

This, plus momentum conservation, implies p = r, q = s. 

5. Conservation laws of arbitrary weight 

Finally, we wish to ask this question about the (~ff)2 model: why does the con- 
struction of  the S matrix in ref. [3] work? This construction involves, as a basic 
assumption, the existence of local conserved currents transforming under the 
Lorentz group with arbitrarily high weight *. Such currents are known in the sine- 
Gordon equation. They must exist also in the (~ff)2 and non-linear sigma models, 
or the construction of the exact S matrix would fail. But what are they? 

(Of course, in the previous section we described one new conservation law, but 
the calculation of  ref. [3] requires an infinite number.) 

Since this section was originally written, a considerable literature has developed 
on this subject. We will here review the relationship of  the literature to the analysis 
presented below. 

Pohlmeyer [12] and Neveu and Papan__icolaou [13] have constructed conserved 
local currents in the classical sigma and (ff~b) 2 models, respectively. These currents, 
however, are fractional functions of  the fields and, on the face of  things, one would 
not expect them to be present in quantum theory. Luscher and Pohhneyer [14], 
however, were able to construct nonlocal conservation laws by using the construc- 
tion of ref. [12], and Luscher showed, in an elegant treatment [15], that these 
non-local conservation laws survive in quantum theory and explain the factoriza- 
tion of the S matrix and the absence of particle production. Polyakov, using Pohl- 
meyer 's  work as a starting point [16], constructed a conserved local current for 
the quantum nonlinear sigma model. (Polyakov actually constructed the same con- 
served current that we construct below from a completely different point of  view.) 
Finally, Araf'eva, Kulish, Nissimov and Pacheva [17], whose point of  view is sim- 
ilar to the one that we follow below but whose treatment is much more mathemat- 
ical, have derived a general result of  which the result that follows, derived by a 
much simpler method,  is a special case. 

Our point of  view is that for the existence of  conserved local currents in the 
(~ff)2 and nonlinear sigma models, deep properties of  the classical theories are not 
essential. The main property that is essential is the conformal invariance. 

* This is pointed out in refs. [2,3], and reviewed in detail in ref. [4]. 
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In terms of the notation introduced at the beginning of the previous section, the 
components of the energy-momentum tensor in the ( ~ ) 2  model are (classically) 
T++ = ~k +ao + t~ + a, T _ _  = ~ _ a o _  ~_a,  T+_ = O. T+_ is the trace of the energy-mo- 
mentum tensor (since in these coordinates the metric tensor is (Y1 t~), and its vanish- 
ing is the sign of conformal invariance. 

Because 7"+_ = O, the conservation of energy-momentum reduces to 

0_T++ = 0 , 0+T__ = 0 .  (25) 

Thus, the energy-momentum tensor is a free field. 
Eq. (25) states that the energy and momentum densities propagate as if there 

were no interaction. Consequently, the scattering, classically, can consist only of 
isospin exchange. 

Thus, any conformally invariant theory in one space dimension will automati- 
caUy possess the basic property assumed in refs. [2,3] in deriving S matrices: the 
scattering consists only of isospin exchange. This statement is equally true in clas- 
sical or quantum physics. 

We have seemingly made no reference to the existence of conserved currents of 
high weight, but in reality this is implicit in (25). For (25) implies the existence of 
an infinite number of conserved currents of arbitrarily high weight, such as 

0-(T++ 2) = 0 ,  0_ (T++ 3) = 0 ,  0_((0+ T++) 2) = 0 .  (26) 

However, as we know, the theories under discussion here are not conformally 
invariant in quantum mechanics; T+_, because of anomalies, is not zero; and (25) 
is not satisfied. (25) is modified by the anomalies to read 

0_T++ + 0+T_+ = 0 ,  0+T__ + 0_T+_ = 0 .  (27) 

From (27) we cannot infer higher conservation laws such as (26), and (27), of 
course, does not restrict the scattering to isospin exchange. 

In fact, in most theories in which anomalies modify (25) into (27), our state- 
ments above are all invalid in the quantum theory, and the Zamolodchikov- 
Zamolodchikov assumptions would also not be valid. 

What is special about the sigma and (~ff)2 models, is, apparently, that although 
(25), from which (26) was deduced, is ruined by anomalies, (26) still survives. More 
exactly, the currents in (26) are modified by anomalies and cease to be free fields, 
but the conservation laws survive. 

We do not have a general proof of this, but will show explicitly that it is true 
for the first conservation law stated in (26). 

For the ( ~ ) 2  model, this conservation law is, naively, 0_((~//+0+a ~+)(~/+0+~+))a b b _- 0. 

We must show that all possible anomalies in this equation are themselves total di- 
vergences. 

Any possible anomaly must be an operator of dimension five and Lorentz weight 
three. Such an operator must be linear in 0_ and zeroth order in if_, or zeroth 
order in 0_ and quadratic in if_. Operators of the first type can always be rewritten 
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as operators of the second type by using the equations of motion, so we will re- 
strict our attention to operators quadratic in ~k_ and zeroth order in a_. 

So we must consider the operators of dimension five, quadratic in ~_', zeroth 
order in ~_, and prove that each is a total divergence. Of course, we may drop 
those operators that vanish by Fermi statistics or by the equations of motion. Of 
the remaining operators, it turns out that most can be written as total divergences 
even without using the equations of motion. In fact, the only one that cannot be 
so written without use of the equations of motion is ( ~  ¢a)2(~b_ a_ ~b__). But it is 
easy to see, by use of the equations of motion, that this operator is a linear combi- 
nation of a 3 a a a 2 b a_(~+a+~k+), a+((~_ ~+) a+(~_ ~+b)), a+((a+(~a ~a))2) and 
a+((~ba_ ffa)2 ffb+a + Cb+). This completes the argument that the conservation law asso- 
ciated with a_(T++ 2) = 0 survives in the quantum mechanical (~b)  2 model, although 
the current is modified and ceases to be a free field. 

A similar result can easily be seen to hold for the conservation law a_(T++ 2) = 0 
of the nonlinear sigma model. It too survives in the quantum theory. 

we have not studied the other conservation laws of the type indicated in (26), 
but suspect that they also survive quantum mechanically. 

Perhaps it is worthwhile to stress that the fact that these conservation laws are 
satisfied despite anomalies is a special property of the ( ~ ) 2  and nonlinear sigma 
models. It is true because the O(N) symmetry, under which the fields transform as 
an irreducible multiplet, restricts severely the possible anomalies. In a theory with 
naive conformal invariance and less internal symmetry, the conservation law 
a_(T+÷ 2) = 0 would, in general, be completely mined by anomalies. 

6. Conclusions 

We have found a number of unexpected properties of the (~b)  2 model: super- 
symmetry for N = 3, decoupling into two sectors for N = 4, and isospinor kinks 
with 3's invariance for any value of N. Understanding these properties may help in 
understanding the S matrix. 

Finally, in the last section, we have tried to understand why the Zamolodchikov- 
Zamolodchikov calculation works. Although the analysis is incomplete, this seems 
to be a consequence of the conformal invariance of the classical theory, not all of 
whose consequences are mined by anomalies. 

Appendix 

Here we will give a fuller derivation of eq. (4), for which one argument has 
already been given in the lext. 

For the composite operator cos tiC, normal ordering is equivalent to a multiplica. 
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tive renormalization [7]. In fact, 

:cos/~¢: = (A/I.O 32/41r cos i3¢, (28) 

where A is an ultraviolet cutoff,/.t a scale parameter, and cos/3¢ is defined without 
normal ordering. The same is true for the chiral components  e ± i ~ :  

:e ± i ~ :  = (A/p)~/4rr e ± i ~  (29) 

To define the product :cos/~b: 2, we may use a point splitting method and consider 
instead limx_.y :cos/3¢(x): :cos/3¢0,): , which, expanding in chiral components,  is 

4 ! lim (:eit~(x): :ei~(Y): + :e--i/~(x): :e-iflO(Y): (30) 
x--+ y 

+ :ei~(x): :e-ifJCP(Y): + :e-i~(x): + :eifXp(Y):). 

We claim that the first term vanishes as A ~ oo: 

lim :eiCC~x): : ei0C(Y): = 0 .  (31) 
x-.-~y 

In fact 

= ( A ) e / 5 .  

- / ',,u 

=(A) f~12~r (e 2 i~ (y )  + O(x - y ) )  (32)  
x/A/ 

= + O(x - y ) .  
x p /  

A s x  -*y  and A -* 0% (32) vanishes. 
(From the point of  view of  the analogy between the sine-Gordon equation and 

the Coulomb gas, (31) has a simple interpretation. :eit~: can be regarded as a 
charged particle, and (31) vanishes because the amplitude to have two particles of  
the same charge at the same point is zero.) 

Likewise, the second term in (30) vanishes as A -> oo. 
As for the third term, 

: e_ i~ (y ) :  = ( A ) ~ / 2 ,  (e /~(x)  e - / ~ ( Y ) )  • (33)  :ei/~(x): 

Naively, as x approaches y ,  e i~(x) e - i l~ (y )  simply approaches one. I f  this were the 
full story, the operator: cos/~¢:2 would be a'c number,  since the first two terms in 
(30) vanish and the last two would be c numbers. Actually, it is necessary to pro- 
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ceed more carefully, making an operator product expansion for the product 
e igor(x) e - i ~ ( y ) .  In this expansion, the most singular term is a c number, but  there 

are also less singular terms proportional to gradients of 4. Carrying out this expan- 
sion, keeping only the terms that do not vanish as x ~ y  and A ~ 0% and averaging 
over the separation between x and y in a Lorentz-invariant way, we arrive at (4). 
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