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The factorized total S-matrix in two space-time dimensions with isotopic O(N) sym- 
metry is constructed. Arguments are presented that this S-matrix is the exact one of the 
O(N) chiral field• 

I. Introduction 

Recent progress in the study of  two-dimensional quantum field theory has led to 
the extensive development of  some models which have a remarkable property:  an 
infinite set of conservation laws, leading to the absence of multiple production and 
the conservation of  the set of individual momenta  of  particles in scattering [1,2]. 
The factorization of  the total S-matrix also seems to be an effect of these conserva- 
tion laws [3]. The classical analog of  all these models is connected with non-linear 
equations, completely integrable by the inverse scattering method. 

An example of  this type is the massive Thirring model (MTM), or, equivalently, 
the quantum sine-Gordon model. It turns out that due to the simplified scattering 
properties of  this model, all the elements of  the total S-matrix [4 -6 ] ,  and some off. 
shell matrix elements [7], can be found explicitly. 

In a recent paper, Karowski, Thun, Truong and Weisz [8] have shown that the 
analyticity,  unitari ty and factorization equations [5,6] of this model can be solved 
uniquely giving a one-parameter set of solutions, where the parameter can be con- 
nected with the MTM coupling constant. 

Being the model of  charged fermions, the MTM has the phase symmetry U(1) = 
0(2).  In the present paper the factorized S-matrix with isotopic O(N) symmetry is 
constructed for any N >~ 3. We assume the existence of  an isovector N-plet of  par- 
ticles of  mass m and require O(N) isosymmetry of  the S-matrix elements. It turns 
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out that under these requirements the S-matrix can be determined uniquely *, with- 
out parameters except for the overall mass scale. The latter is shown in sects. 2 and 3, 
where we derive the explicit form of the S-matrix. 

At the present time we cannot definitely say which two-dimensional field theory 
(if any) leads to this S-matrix. We have some arguments, however, that such a theory 
is an O(N) chiral field model described by the Lagrangian density 

N 
~ =  1 ~)"~(~uni) 2 (1.1) 

2g 0 = 

with the constraint 

N 

n~ = 1.  (1.2) 
i = 1 

This model is O(N) symmetric, renormalizable and asymptotically free [10,11 ]. 
The infrared charge singularity in this model seems to lead to the disintegration of 
the Goldstone vacuum and to mass transmutation of  particles [ 12], which should 
form the O(N) multiplets in this case. The O(N) symmetry of  the spectrum and in 
particular the existence of  an isovector N-plet of  massive particles are clear in the 
framework of  the 1IN expansion of the model [13] (see sect. 4). 

In asymptotically free theories with spontaneous mass transmutation, the observ- 
able characteristics do not depend on the coupling constant (due to the renormaliza- 
bility) [14]. We should like to mention in this connection that the S-matrix obtained 
in sect. 3 does not depend on free parameters. 

It is worth mentioning that the classical equation of motion of  model (1.1) posesses 
an infinite set of  conservation laws [15]. However, in quantum theory, such laws, if 
they remain in this case at all, are surely modified by quantum corrections. Thus, the 
existence of  an infinite set of conservation laws in quantum theory, or direct factori- 
zation of  the quantum S-matrix, requires special verification. A suitable device to do 
this is the 1IN perturbation theory of  model (1.1). 

In sect. 4 we show that in 1/N perturbation of  model (1.1), there is no particle 
production and the S-matrix really factorizes to the order of 1IN 2. Furthermore, the 
two-particle matrix elements calculated to the order of  1IN coincide with the corre- 
sponding terms of the 1/N expansion of the S-matrix obtained in sect. 3. 

Comparison of  the ultraviolet asymptotics of  the S-matrix of  sect. 3 with the 
results of  the ordinary g-perturbations of  model (1.1) is another argument in favour 
of the supposed connection. Although in such perturbation theory one deals with the 
( N -  1)-component multiplet of  Goldstone particles instead of  the N-component 
multiplet of  massive particles and, hence, faces infrared divergences, one may suppose 

* In this case, as well as in the MTM, the unitarity, analyticity and factorization conditions admit, 
of course, an arbitrariness of the CDD-type, so here we mean the uniqueness of the "minimum" 
solution, i.e., the solution with the minimum set of singularities (see sect. 3). 
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that the contribution of ultraviolet logarithms of perturbation theory to the scattering 
amplitudes gives the correct asymptotic behaviour of  these amplitudes (at least up to 
g2). Comparison with perturbation theory is performed to order g2 in sect. 4. The 
result also supports our hypothesis. 

2. Analyticity, unitarity and factorization equations for the O(N) symmetric S-matrix 

Consider an O(N) isovector N-plet of  particles of  mass m. The S-matrix element of  
the 2 ~ 2 scattering can be taken in the form 

p~t dp,, 
t, Sj, = P, ~ P; = 8(p,-p:)~(p~-p;)[~,,Sjt(~,(s)÷~j~d,(s)÷8,,Sj,~3(s)], (2.]) 

where s = (Pl + P2) 2" Further it will be convenient to use the rapidities 0 i instead of 
the momenta  Pi 

pO = m ch Oi, p] = m sh Oi. (2.2) 

Then ol,  02 and 03 will be functions of  the rapidity difference of the initial particles 
0 = 101 - 021, which is simply connected with s: 

s = 2m2(1 + ch 0 ) .  (2.2a) 

Note that under the transformation (2.2a) the threshold points s = 0 and s = 4m 2 
of the functions o(s) (which are square-root branch points due to two-particle uni- 
tarity) become non-branch points of o(0). Thus ol,  o2 and 03 are meromorphic 
functions of  0. 

The two-particle unitarity conditions and the crossing-symmetry relations of the 
two-particle S-matrix (2.1) can be represented as the functional equations 

o2(0) o2( -0)  + o3(0) 03( -0)  = 1 , (2.3a) 

02(0) 03(-0) + o3(0) 02(-0) = 0, (2.3b) 

[Nol(O) + 02(0) + 03(0)] [NOl( -O)  + o 2 ( - 0 )  + 03(-0)] : 1 , (2.3c) 

02(0) = o2(in - 0 ) ,  (2.4a) 

03(0 ) = ol(irr - 0 ) .  (2.4b) 

Eqs. (2.3) and (2.4) do not determine the functions o(0). In addition to unitarity 
and analyticity let us require factorization of the multiparticle S-matrix. 

Factorization means the following special structure of  the multiparticle S-matrix: 
the multiparticle S-matrix elements are sums of terms, each being the product of  
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two-particle S-matrix elements, as if multiparticle scattering were the consequence 
of two-particle collisions [5,6,16,17]. 

The factorized S-matrix can be represented by a simple algebraic construction [5], 
which in our case consists of  N types of  special non-commutative symbols Ai(O); 
i = 1,2,  ... N, each symbol corresponding to a certain component of the isovector 
multiplet. The asymptotic states of the scattering theory should be identified with 
products of  these symbols, each symbol Ai(Oa) corresponding to the particle with 
rapidity Oa in the state. We identify the in (out) states with the products in which all 
symbols are arranged in order of  decreasing (increasing) 0. Any in state can be 
reordered in terms of out states by means of the commutation rules 

N 

Ai(O l) Aj(02) = 6ij O1(012) ~ A k(O2)Ak(O 1) 

+ 02(012)Aj(O2)Ai(O 1) + 0"3(012)Ai(O2)Aj( 01), (2.5) 

which correspond to the two-particle S-matrix (2.1). This construction represents the 
factorized total S-matrix. 

The self-consistency of the above construction (namely the associativity property 
of A's) requires Ol, 0.2 and 0.3 to satisfy certain functional identities. One obtains 
them by rearranging the product of  three symbols A i(O1)A/(O 2)A k(0 3) in two pos- 
sible successions and requiring the results to be equal. The factorization property 
necessarily forces these identities, so we shall refer to them as the factorization equa- 
tions. 

The factorization equations have a simple meaning. Consider, for example, the 
collision of  three particles with rapidities 01 ~> 02 ~ 03- In the infinite past they have 
spatial coordinates Xl < x2 < x3. The particles collide with each other sequentially 
in the interaction region, the succession of  the collisions depending on the initial po- 
sitions of  particles, as is shown in fig. la and b. 

In quantum mechanics both these possibilities contribute to the same outgoing 
wave. The conservation of the set of momenta implies the monochromatic nature 
of this wave ; hence, the outgoing waves of  the processes in figs. 1 a and b should be 
coherent. The factorization equations ensure this coherence. 

02 el e~ 

0) bl 

Fig. 1. Two possible successions in the collision of three particles. 
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The number and the form of factorization identities turn out to be different for 
the cases N = 2 andN~> 3. F o r N =  2 the factorization equations are given in [5,6,8] 
and their solution is the sine-Gordon S-matrix. For the case N ~> 3 they acquire the 
form 

0 2 0 3 0 3 + 0 3 0 3 0 2 = 0 3 0 2 0 3 , (2.6a) 

0 2 0 1 0 1  + 0 3 0 2 0 1  = 0 3 0 2 0 1  , (2.6b) 

N o  1 0 3 0 1  -t- u 1 0 3 0 2  -l- 0 2 0 3 0 1  -I- 0 1 0 - 3 0 3  -t- 0 3 0 3 0 1  - t -010201 - t -010101 = 0 3 0 1 0 3 ,  

(2.6c) 

where the first, second and third o in each term are functions of  0, 0 + 0' and 0', 
respectively. 

3. Solution of the unitarity, analyticity and factorization equations 

In terms of the ratio h(O) = o2(0)/o3(0), eq. (2.6a) takes the form 

i.e., 

h(O) + h(O') = h(O + 0 ' ) ,  (3.1) 

03(0)= ixo2(o), (3.2) 

where X is a certain parameter. The crossing-symmetry equations (2.4) lead to 

01 (0  ) : - - i  - -  0 2 ( 0  ) . ( 3 . 3 )  
iTr - 0 

Note that (3.2) and (3.3) satisfy equations (2.3b) and 2.6b) identically. It is 
notable also that, after substitution of eqs. (3.2) and (3.3), eqs. (2.3c) and (2.6c) lead 
to the same algebraic equation for the parameter X, which has (except for the trivial 
case X = 0) the unique solution 

21r 
X - (3.4) 

N - 2 '  

The remaining eq. (2.3a) acquires the form 

02 
o 2 ( 0 ) o 2 ( 0 )  = 02 + X2. (3.5) 

Eqs. (3.5) and (2.4a) form the system for 02(0). 
It is clear that these equations permit o2 to be multiplied by any 27ri periodic 
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meromorphic function which is real on the imaginary axis and satisfies the identities 

f (O) f ( -O)  = 1, 

f(O) = f(ilr - 0 ) .  (3.6) 

Therefore the general solution having singularities on the imaginary axis only has 
the form 

L 
02(O)=[k~__l s h 0 +  i s i n a k ]  (o),~, 

0 - - i s~n  ~-kJ °~" it1), (3 .7)  

where c~ k are real numbers and o~ °) is the "minimum" solution of  eqs. (3.5) and 
(2.4a), i.e., the solution with the minimum set of  singularities in the 0 plane 

050)(0) = O(O) O(iTr - 0) ,  (3.8) 

where 

I'( A -- i0/27r) I'(½ - iO /2rr) (3.9) 
a(o) = r,(_io/2~)r( 1 + A - i0/2~)' 

and 

X 1 
A - - (3 .10 )  

2rr N - 2  

In principle, all solutions (3.7) are permitted.  However, the solution 02 = o~ °) is 
the only one which does not lead to an isospin degeneracy of the spectrum *. This 
solution does not display any poles on the physical sheet of  the s-plane, i.e., isovec- 
tor particles cannot produce any bound states. 

Note that in the case N = 3, i.e., A = 1, the expression (3.8) is reduced to 

O(iTr - O) (3.1 1) 
°~°)(0) = (27ri - 0) (in + 0) " 

4. Comparison of the factorized S-matrix with the 1/N expansion of model (1.1) 

It is convenient to develop the 1/N expansion of  model (1.1) in the following way 
[13]. The generating functional for the Green functions of the ni(x ) field can be 
written in the form Z[Ji] = I[Ji]/I[O], 

I [ J i ]  = f g d ~  N i dn iexp{ i  f d2x[12'[ni,~o] + x l ~ o J i n i ] }  , (4.1) 

* Another remarkable solution contains the single CDD pole a 1 = 2~rA. Unlike a~ 0), this solution 
corresponds to an attractive interaction and seems to be the exact S-matrix of the fundamental 
fermions of the Gross-Neveu model [14,18 ]. The arguments will be published elsewhere. 
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where 

~_'[ni, co] = 1-~-[(~uni)2 - con]] + co(x) (4.2) 
2g0 2go 

The n i integration in the integral (4.1) can be performed explicitly and leads to 
Z[Ji] = f [Ji]/I' [01, 

I'[Ji] = f x[I dco exp{iSeff[co] + i f J i ( x ) J i ( x ' )G(x ,  x'lco) dx dx '} ,  (4.3) 

where 

Serf[col = i  N Tr ln(O~ - c o (x ) )  +fco (x )  d2 x (4.4) 
2g o 

and G(x, x'lco) is the Green function of  the operator ~2 _ co(x). The perturbative 
calculation of the integral (4.3) leads to the 1/N expansion of  model (1.1). The sta- 
tionary-phase point of  the integral (4.3), co(x) = m 2 = A 2 exp(-47r/Ngo), should be 
taken into account, so the functionals Seff and G(x, x'  I co) should be expanded in 

, m 2 co = a~ - rather than in w. 
It is convenient to use in calculations the following diagrammatic technique which 

contains: 
(i) the co' field propagator 

- Nq~ ( ~  ' ( 4 . 5 )  

(ii) the n i propagator 

G~:j(K2) = . L . 2 . s ~ j  = /.6'id (4.6) 
KZ_mS+LE ' 

(iii) the vertices 

' " '  " n  n ( 4 . 7 )  

In this technique the closed loops of n i field lines should not be drawn (they are 
already taken into account in (4.7)), and 

1 f i  d2p (4.8) 
i4~(k2) = ~ p2 _ m 2 + ie)((p + k) 2 - m 2 + ie)" 

The calculation of  loops in (4.7) can be made explicitly by means of  the following 
"cutting rule" [19] *. The arbitrary loop is the sum of terms, each corresponding to 

* An analogous result for the arbitrary fermion loop has been obtained in ref. [20]. 
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()K 
K 

J j 
Fig. 2. T h e  2 --~ 4 ampl i tude .  

any division of the loop through two lines. 

I 

(4.9) 

• k Kj I I 

The momenta  k i and k/are restricted by the condit ion k 2 = k 2 = m 2. The contribu- 
tion of each division is equal to the product  of  the two trees separated by the dashed 
line in (4..9) by the f u n c t i o n  i~(sij ). At sij fixed, the equations k 2 = k 2 = m 2 have two 

solutions (ki  ~ k j )  both should be taken into account in rule (4.9). 
Consider the 2 -* 4 amplitude (fig. 2) to order 1 I N  2. For the sake of  simplicity we 

shall concentrate on the case i 4 : j  v e k. This amplitude is given by the sum of  diagrams 
in fig. 3. Using the rule (4.9) one can replace the diagram in fig. 3g by the sum of  the 
loop divisions. 

Consider, for example, the division in fig. 4. Two solutions of k ] = k 2 = m 2 are 

kl  = Ps, k2 = P6 and kl  = P6, k2 = Ps. The factor i~ ($56  ) in this division is the recipro- 
cal wavy line with an opposite sign. Therefore the division in fig. 4 cancels out diagrams 
in fig. 3e and f. It is easy to check that other possible divisions of  the triangle in fig. 4 
cancel out diagrams in fig. 3 a - d .  

The cases i = j, j = k, and so on, contain more diagrams; however one can check 
that the same cancellation takes place in all these cases too. 

Now let us turn to the process 3 ~ 3 (fig. 5) and consider again the case i #=j =/= k. 
To order 1/N the matrix element contains disconnected diagrams only, the kinematics 

~-oP, 
a) b) c) ,6 d) 

6 

e) ~) 9 ) 

Fig. 3. Diagrams contributing to the amplitude in fig. 2 in tho case i ~/' ~ k. 
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6 

Fig. 4. Division of the three co' vertex in the diagram in fig. 2g. 

ensuring the conservation of the set of  momenta.  To order 1/N 2 we have 7 connected 
diagrams listed in fig. 6. 

It can easily be checked, that if all the intermediate propagators in the diagrams 
in figs. 6 a - f  are non-singular, different divisions of  the diagram in fig. 6g cancel the 
other diagrams in the same manner, as in the previous example. Mass-shell singulari- 
ties of  diagrams in fig. 6 a - f  require more detailed analysis. For example, ifp'l  ~P3 ,  

t t 

P2 ~ P l ,  P3 ~ P 2 ,  the diagrams in fig. 6c, d and f acquire mass-shell poles. It can be 
shown, however, that the principal parts of these three diagrams cancel each other, 
and one remains with some regular function and terms with mass-shell 6-functions. 
The diagram in fig. 6g cannot cancel the latter, being non-singular in this region (all 
the momentum transfers are space-like). Finally we are left with 6-function terms 
only, the 6-functions ensuring the factorized structure of the S-matrix element in 
fig. 5. 

Using the technique (4.5), (4.6) and (4.7), one can calculate two-particle S-matrix 
elements. To order 1/N they are 

P' P~ ~ { - - "  P' • 2~ 
(4.10a) 

P, 
Os(O) = ~ $-~ ~ = - i  2~ k't x'-'~'l[A'lnl"~ 

N 8  ' 

(4.10c) 

The expressions (4 .10a-c )  indeed coincide with the first terms in the 1IN expan- 
sion of the solution (3.8), (3.2) and (3.3). 

K K 

Fig. 5. The 3 -~ 3 amplitude. 
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P, _ _  p/ p,._,...,_ P,' P , ~ p , '  p,...~.F---p; 
P2J--Fp; ~-T---~- p; 
p,._t__p; p ~ e ;  p, ~ p; p - - p . ;  

o) b) c) d) 

P , ~ p ;  P,.-,----- P/ P/ 
P ~  PJ 

P,--~--'-- P; 6 P; 
e) f) g) 

Fig. 6. Diagrams contributing to the amplitude in fig. 5 in the case i 4: ] 4: k. 

Another possible expansion check of  the S-matrix obtained is worth mentioning. 
Assuming the S-matrix (3.8), (3.2) and (3.3) to correspond to some renormalizable 
and asymptotically free field theory, one can expand matrix elements which are 
functions of  

s s + / ( u )  dg 
ln~-~ = (4.11) in U2 /3(g)  ' 

in asymptotic series in powers ofg(/a). Taking the first term [10] of the Gell-Mann- 
Low function of  model (1.1) 

N - 2  
/3(g) - _ _  g2 + 0(g2),  (4.12) 

27r 

one gets (up to g2(g = g~u))) 

02 (s) = 1 - ig-~2 + O(g3), 
8 

• N _ 2  2 ~-g 03 (s) = - tg  + i In + O(g 3) 
2 27r g 

N -  2 2 + 0(g3) .  (4.13) N -  2 g21n ~ -  ~ g  ° l ( s ) = i g - i  2-~- 

In eqs. (4.13) the asymptotic behaviour s ~ ~ is written down and power terms 
in s are dropped. 

The usual g-perturbations of  model (1.1) are based on the Goldstone vacuum and 
therefore lead in two dimensions to infrared divergences. However, one can obtain 
the asymptotic behaviour of the scattering amplitudes by calculating the ultraviolet 
logarithms of  the scattering amplitudes of  the Goldstone particles (to circumvent th~ 
infrared difficulties one can formally assume the mass of  the Goldstone particle). 
Calculations are straightforward and the result coincides with (4.13). 
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