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Abstract. Based on the trigonometricR-matrix of Uq [sl(2)] a family of q-deformed discrete
Knizhnik–Zamolodchikov equations is formulated. Solutions to them are constructed by using
the generalization of the algebraic Bethe ansatz developed to solve difference equations. These
solutions are shown to be of highest weight with respect to the underlying quantum group
structure. Using the variant of the nested Bethe ansatz method these results are extended to the
higher-ranked symmetry ofUq [sl(n)].

1. Introduction

This paper can be considered as an addendum to a previous paper [1] on matrix difference
equations and a generalized version of the Bethe ansatz. For an introduction to their role
in mathematical physics the reader is referred to [1–4] and references therein.

One important application of such difference equations is that of so-called form factors
in integrable quantum field theories as done recently in [2] for the Sine–Gordon model.

Though q-deformations of discrete Knizhnik–Zamolodchikov equations have been
treated in much detail in recent years [4, 5], it is not completely clear how those solutions
are related to the underlying symmetry of such problems.

The conventional algebraic formulation of the Bethe ansatz demonstrates the close
relation between the eigenvector problem and the representation theory of its connected
symmetry group (either classical orq-deformed): Bethe vectors can be constructed as
highest weight vectors of irreducible representations and therefore by simply counting them
one makes certain of spanning the whole space of states.

However, one has to be careful when moving from classical Lie algebras to a quantum
group, as can be seen when a one-dimensional periodicXXX Heisenberg chain is deformed
to the anisotropicXXZ model. Deforming the Hamiltonian in a straightforward way will
not preserve the (quantum) symmetry. Instead one is forced to change the boundary
conditions [6] or to take additional terms (arising from the nontrivial toroidal topology)
into account as done in [7].

The behaviour of the difference equation

Q(x; i) f (x1, . . . , xi, . . . , xN) = f (x1, . . . , xi + κ, . . . , xN) i = 1, . . . , N (1.1)

where f (x) is a vector-valued function onN variablesxi , Q(x; i) a family of linear
operators andκ an arbitrary shift parameter, indeed resembles this problematic nature: the
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operatorsQ(x; i) can be regarded as types of generalized transfer matrices and therefore
the analogy with a quantum spin chain becomes obvious.

In section 2 we formulate this equation in a way adapted to quantum symmetry and
obtain solutions by a generalized Bethe ansatz. In section 3 they are shown to be highest-
weight vectors, and we also calculate their weights. For the sake of transparency both
sections are fixed toUq [sl(2)] containing all essential features of a quantum group. Finally,
for completeness, we briefly discuss the aspects of the higher-ranked case in section 4,
followed by a summary of the results given in section 5.

2. The generalized Bethe ansatz

ConsiderN vector spacesVi ' C2, each given as the representation space of the fundamental
representation ofUq [sl(2)]. The basis vectors will be denoted by|1〉 and |2〉, respectively.
TheR-matrix then acts as a linear operator on two of such spacesVi andVj :

Rij : Vi ⊗ Vj → Vj ⊗ Vi (2.1)

and is given by the quasi-triangular Hopf algebraic structure ofUq [sl(2)] [8]. In the natural
basis of tensor products its matrix form reads

R =


1 0 0 0

0 q−1 0 0

0 (1− q−2) q−1 0

0 0 0 1

 . (2.2)

If in addition one associates a variablexi with each spaceVi , it is possible to define a
‘spectral-parameter’-dependentR-matrix:

R(x) := qex/2R − q−1e−x/2PR−1P

qex/2− q−1e−x/2
=


1 0 0 0

0 b(x) c−(x) 0

0 c+(x) b(x) 0

0 0 0 1

 (2.3)

whereP is the permutation operator in the sense of (2.1)

Pij (vi ⊗ vj ) = vi ⊗ vj vi,j ∈ Vi,j
andx = xi − xj . The Boltzmann weights read explicitly

b(x) = ex/2− e−x/2

qex/2− q−1e−x/2
c±(x) = e±x/2(q − q−1)

qex/2− q−1e−x/2
. (2.4)

R(x) satisfies the Yang–Baxter equation

R12(x1− x2)R13(x1− x3)R23(x2− x3) = R23(x2− x3)R13(x1− x3)R12(x1− x2). (2.5)

One defines a monodromy matrixT0(x, x0) acting on the tensor product spaceV =⊗N
i=1Vi

and an additional auxiliary spaceV0 ' C2

T0(x, x0) := R10(x1− x0)R20(x2− x0) · · ·RN0(xN − x0). (2.6)

However, as we will see later it is more useful to work with the doubled monodromy matrix
as proposed in [9] some years ago as an application of the ‘reflection’ equation introduced
in [10]. In what follows we will use the special type introduced in [7], which is given by

T0(x, x0) := R01R02 · · ·R0NR10(x1− x0)R20(x2− x0) · · ·RN0(xN − x0). (2.7)
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Its dependence onV0 becomes obvious ifT0 is written as a matrix with respect to the
auxiliary space:

T0 =
(A B
C D

)
. (2.8)

Equation (2.5) implies the Yang–Baxter equation forT :

Rab(v − u)Ta(x; u)RbaTb(x; v) = Tb(x; v)RbaTa(x; u)Rba(v − u) (2.9)

giving the following commutation relations for the operatorsA, B andD:[
B(x; u),B(x; v)] = 0

A(x; u)B(x; v) = q−1b−1(u− v)B(x; v)A(x; u)

−B(x; u)
[
q−1c−(u− v)

b(u− v) A(x; v)+ (1− q
−2)D(x; v)

]
D(x; u)B(x; v) = qb−1(v − u)B(x; v)A(x; u)− q c−(v − u)

b(v − u) B(x; u)D(x; v)

(2.10)

(for a detailed proof see [7]).
Analogous to the definition (2.7), consider a further set of monodromy-type matrices

defined by

T Q(x; i) := R01R02 · · ·R0NR10(x1− x0) · · ·Pi0 · · ·RN0(xN − (x0+ κ))
(i = 1, . . . , N) (2.11)

whereκ is the arbitrary shift parameter which has already appeared in (1.1). They still
have the block structure of (2.8), but no longer depend on the parameterx0 of the auxiliary
space. The monodromy matricesT andT Q now fulfill another Yang–Baxter equation:

Rba(xi − u) Tb(x ′; u)Rab T Qa (x; i) = T Qa (x; i) Rba Tb(x; u)Rab(xi + κ − u). (2.12)

Again we give some commutation rules relating their matrix elements:

AQ(x; i)B(x; u) = q−1b−1(xi + κ − u)B(x ′; u)AQ(x; i)

−BQ(x; i)
[
q−1c−(xi + κ − u)

b(xi + κ − u) A(x; u)+ (1− q
−2)D(x; u)

]
DQ(x; i)B(x; u) = qb−1(xi − u)B(x ′; u)DQ(x; i)− q c−(u− xi)

b(u− xi) B
Q(x; i)D(x; u).

(2.13)

The first terms in equations (2.10) and (2.13) are called ‘wanted’, and all others ‘unwanted’.
Now taking the Markov trace† over T Q gives the operator on the left-hand side of the
difference equation (1.1):

Q(x; i) := trq T Q(x; i) = AQ(x; i)+ q−2DQ(x; i). (2.14)

Denote by� the usual reference state (� = |1〉⊗N ) and apply an arbitrary numberm of B
operators thereto, defining the following:

Bethe ansatz vector.This is defined as

f (x) =
∑
u

B(x; um) · · ·B(x; u1)� g(x; u) (2.15)

† Its asymmetric form results from the choice of normalization in (2.2).
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where the summation overu is specified by∑
u

=
∑
l1∈Z

u1=ũ1+l1κ

· · ·
∑
l1∈Z

um=ũm+lmκ

(whereũ is an arbitrary set of complex numbers) (2.16)

and the the functiong(x; u) is defined by

g(x; u) =
∏
i,j

ψ(xi − uj )
∏
k<l

τ (uk − ul). (2.17)

Theorem. The difference equation (1.1) defined by (2.14) is solved by the Bethe vectors
(2.15) if the functionsψ(x) andτ(x) satisfy the difference equations

q−1b(x + κ)ψ(x + κ) = ψ(x) q2 τ(x)

b(x)
= τ(x − κ)
b(−x + κ) . (2.18)

Remark. As a variation of the solutions given in [5] the following functions fulfill this
conditions:

ψ(x) = (q2ex; e−κ)∞
(ex; e−κ)∞ τ(x) = (1− ex)

(q−2ex−κ; e−κ)∞
(q2ex; e−κ)∞ (2.19)

where

(z;p)∞ :=
∞∏
n=0

(1− zpn).

Proof. We apply the operatorQ(x; i) in its decomposition (2.14) tof (x). Using relations
(2.11) and (2.14) one commutes the operatorsAQ andDQ to the right, where they act on
the reference state� according to

AQ(x; i)� = �, DQ(x, i)� = 0

and

A(x; u)� = � D(x, u)� =
N∏
j=1

b(xj − u)�

respectively. The wanted term contribution ofAQ reads

A(x; i)
∑
u

B(x; um) · · ·B(x; u1)� g(x, u) =

=
∑
u

B(x ′; um) · · ·B(x ′; u1)�

m∏
j=1

q−1b−1(xi + κ − uj )g(x, u) = f (x ′)

where in the last step the quasi-periodic property ofψ (equations (2.18)) has been used.
The q−2DQ wanted contribution vanishes due to the fact thatDQ(x; i)� = 0.

In a second step one has to verify that all other terms cancel each other under the
sum (2.16). Denote the unwanted terms obtained fromAQ (q−2DQ) that are proportional
to BQ(x; i)B(x; um−1) · · ·B(x; u1)� by uw(i,j)A (uw(i,j)D ). (They result when one first
commutes the ‘unwanted’ terms due to (2.13) and then always the wanted ones due to (2.10).)

uw(i,m)A =
[
−q−1c−(xi + κ − um)

b(xi + κ − um)
∏
k<m

q−1b−1(um − uk)

− (1− q−2)
∏
k<m

qb−1(uk − um)
N∏
j=1

q−1b(xj − um)
]
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×BQ(x; i)B(x; um−1) · · ·B(x; u1)�g(x; u) (2.20)

uw(i,m)D = −q−1c−(um − xi)
b(um − xi)

∏
k<m

q b−1(uk − um)

×
N∏
j=1

q−1b(xi − um)BQ(x; i)B(x; um−1) · · ·B(x; u1)�g(x; u). (2.21)

Using the symmetry property(c−/b)(−x) = −(c−/b)(x) − (1− q−2) combine (2.21) and
the second term of (2.20). Then both expressions in (2.18) are applied to this term, and
obviously this term cancels with the first one of (2.20) under the sum (2.16), which completes
the proof. �

3. Bethe vectors and highest-weight modules

The generators ofUq [sl(2)] can be derived from the monodromy matrixT0(x; u) (2.7) in
the limits u→±∞:

T =
(
T 11 T 12

T 21 T 22

)
:= lim

u→−∞ T0(x; u) = q−N
(

1 0

(q − q−1)J+ 1

)
qW

T̃ := lim
u→+∞ T0(x; u) = qNq−W

(
1 (q − q−1)J−
0 1

) (3.1)

whereW = diag{W1,W2} contains the Cartan elements. In order to prove the highest-weight
property off (x), i.e. the statement

T 21f (x) ∝ J+f (x) = 0 (3.2)

analogous to (3.1) we introduce

T := T̃ −1 T (3.3)

as a limit ofT (x; u). First we show thatT 21f (x) = 0. The Yang–Baxter equation (2.12)
implies [

T 21,B(u)
] = (1− q−2)

[
A(u)T 22− T 22D(u)

]
. (3.4)

Again due to the commutativity of theB-operators it is sufficient to consider the term
proportional toB(um) · · ·B(u2). BecauseA(u), D(u) and T 22 act diagonally on� it
remains for us to show that∑

u

[A(u1)−D(u1)] �g(x; u) = 0

which follows directly from (2.18). SincẽT −1 is an invertible operator, equation (3.3)
implies the statement (3.2).

The weightsω of the Bethe vectorsf (x) are defined by

qWi f (x) = qωi f (x) ω = (ω1, ω2).

The commutation relations

AB(u) = q−2B(u)A DB(u) = q2B(u)D
and equation (3.3) therefore imply

T 11f (x) = qN−mf (x) and T 22f (x) = qmf (x)
giving the weight vectorω = (N −m,m) as expected.
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4. The higher-ranked caseUq[sl(n)]

In this section we briefly discuss the case of aUq [sl(n)] difference equation. (For a more
detailed description of the nested Bethe ansatz method in general we refer the reader to
[1, 7].)

Denote byEij the unit matrices inMn,n(C). TheUq [sl(n)] R-matrix is then given by

R =
∑
i

Eii ⊗ Eii + q−1
∑
i 6=j

Eii ⊗ Ejj + (1− q−2)
∑
i>j

Eij ⊗ Eji (4.1)

whereas the definitions forR(x), T0(x; u) andT0(x; u) can be carried over directly from
the equations (2.3), (2.6) and (2.7). The latter two operators are now considered asn × n
matrices; the commutation relations of their elements read in analogy with equations (2.10)
and (2.13):

A(x; u)Bγ (x; v) = q−1b−1(u− v)Bγ (x; v)A(x; u)

− q−1

[
c−(u− v)
b(u− v) Bγ (x; u)A(x; v)+ (q − q

−1)Bα(x; u)Dαγ (x; v)
]

Dβγ (x; u)Bδ(x; v) = q b−1(v − u)
[
Bγ ′′(x; v)Dβ ′δ′(x; u)Rδ

′γ ′
δγ (v − u)Rγ

′′β
β ′γ ′

− c−(v − u)Rγ
′β

β ′γ Bγ ′(x; u)Dβ ′δ(x; v)
]

AQ(x; i)Bγ (x; u) = q−1b−1(xi + κ − u)Bγ (x ′; u)AQ(x; i)

− q−1

[
c−(xi + κ − u)
b(xi + κ − u) B

Q
γ (x; i)A(x; u)+ (q − q−1)BQα (x; i)Dαγ (x; u)

]
DQβγ (x; i)Bδ(x; u) = q b−1(u− xi)

[
Bγ ′′(x ′; u)DQβ ′δ′(x; i)Rδ

′γ ′
δγ (u− xi)Rγ

′′β
β ′γ ′

− c−(u− xi)Rγ
′β

β ′γ B
Q
γ ′(x; i)Dβ ′δ(x; u)

]
where the lower-case greek indices run from 2 ton. The operatorsQ(x; i), which
define (1.1) are given by theUq [sl(n)] Markov trace

Q(x; i) := trqT Q(x; i) = AQ(x; i)+
n∑
α=2

q−2(α−1)DQαα(x; i). (4.2)

We further denote the number of particles byNn. The Bethe vectors that solve (1.1) are
created by the action ofNn−1 B-operators and read

f (x) =
∑
u

BβNn−1
(x; uNn−1) · · · Bβ1(x; u1)� g

β(x, u) (4.3)

where, in contrast to section 2,g(x; u) is a function with values inV (n−1) = ⊗Nn−1C(n−1)

given by the ansatz

g(x; u) =
∏
i,j

ψ(xi − uj )
∏
k<l

τ (uk − ul) f (n−1)(u) (4.4)

with functionsψ(x) andτ(x) as given by (2.19) and a (yet undetermined) functionf (n−1)

with values inV (n−1). To prove (1.1) one has to applyQ(x; i) to f (x); the ‘wanted’
contribution ofAQ again produces the right-hand side of (1.1). On the other hand the
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‘unwanted’ terms cancel exactly iff (n−1) satisfies the(n−1)-dimensional analogue of (1.1).
Therefore we repeat the ansatz (4.3) forf (n−1) and all the resulting subsequent Bethe ansatz
levels, where consequently the number ofB-operators used at thekth level is denoted by
Nn−k. Finally after n − 2 steps the problem has been reduced to theUq [sl(2)] problem
already solved in section 2.

The highest-weight property of the Bethe vectors (4.3) is proved in a way parallel to
that followed in section 3. At some stages the higher-ranked case is a little more involved,
but those aspects have been already treated carefully in [13].

The resulting weight vectorω then reads

ω = (ω1, . . . , ωn) = (Nn −Nn−1, . . . , N2−N1, N1) (4.5)

again fulfilling the maximum weight condition

ω1 > · · · > ωn > 0. (4.6)

5. Conclusions

Starting from theUq [sl(2)] R-matrix we derived a family ofq-deformed discrete Knizhnik–
Zamolodchikov equations. These difference equations are investigated in an analogous way
to that used for the problem of relating aXXZ-type spin-chain to its corresponding quantum
group: the quantum symmetry is preserved only by a suitable choice of boundary conditions.
Using the the generalization of the algebraic Bethe ansatz as developed in [1] we constructed
solutions to this difference equations. These solutions are then proved to be highest-weight
vectors of a representation ofUq [sl(2)], the underlying quantum group structure. Using
the variant of the nested Bethe ansatz method we extended the results to the higher-ranked
symmetry ofUq [sl(n)].

In a further paper we will apply these results to the form-factor problem of the quantum
Sine–Gordon model in an way analogous to that used in [2] for the Sine–Gordon model.
The main use of the method presented here will lie in a better classification of the derived
form-factors due to the heighest weight property of the states.

On the other hand, it is possible to extend the method to other types of symmetries,
e.g. quantum groups based on graded Lie algebras (see, e.g., [14]). Further generalizations
of the nested Bethe ansatz methods for other simply laced Lie algebras and theirq-deformed
analogues (e.g., theO(2n) case, for the conventional algebraic Bethe ansatz see [15]) are
also under consideration.
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