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Third lecture: Theoretical questions in genome biology

• DNA correlators.

• Graph theory for protein interactions networks and regulatory networks.
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Analysis of DNA correlations.

Can we identify, using entropy methods and correlation functions, the
different types of DNA (coding, non-coding, repeats...) in a typical genome?

Goals:

• Study of global, large scale properties of DNA sequences (HMM are
better for short scale properties)

• distinguish coding from non-coding

• find out hidden structures and regularities among different species
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Index

• Long range behaviour (100-100000 bp): domain structure

• Short range behaviour:(1-15 bp) binding sites and period three of the
coding regions.

Tools:

• Correlators

• Entropy and related quantities
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Correlators

The basic measure of correlation among bases in a DNA sequence are
the 16 correlation functions between all 16 possible base-pairs:

{Γαβ(d)} ≡ {ΓAA(d),ΓAC(d), . . . ,ΓGT (d),ΓTT (d)}

each defined as the correlation between nucleotide α and another nucleotide
β separated by a distance d:
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Γαβ(d) ≡ Pαβ(d)− Pα·P·β α, β = {A,C, G, T},
where Pαβ(d) is the joint probability of observing α and β separated by a

distance d, Pα· ≡
∑

β′ Pαβ′(d) and P·β ≡
∑

α′ Pα′β(d) are the density for
nucleotide α and β, respectively.

Because of the relations:∑
α

Γαβ(d) =
∑

β

Γαβ(d) = 0

the number of independent correlation functions (not yet considering any
other symmetries) is actually 9.
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Estimation of correlations from a sequence with finite
length

Since the correlation at longer distances is typically small, it is important
to use the best possible estimator to measure the correlation. Otherwise,
the error due to a finite sample size can be as large as the correlation
value itself. The simplest and most popular choice is the Frequency-count
estimator:
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The probability of an event a (Pa) is estimated as

(P̂a)freq =
Na

N
.

where Na= the number of counts for a and N= total number of counts.

The frequency-count estimator for the correlation function Γαβ(d) is:

Γ̂αβ(d)freq =
Nαβ(d)

N
− Nα·

N
· N·β

N
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Symmetries

1 Strand complementarity:

DNA sequences are double-stranded with nucleotides on one strand
complementary to those on the other. As a result, Γαβ(d) on one strand
(in 5’ → 3’ direction) is exactly the same with the Γβ̄ᾱ(d)opposite on the
opposite strand in the opposite direction (but also in 5’ → 3’ direction
viewed from that strand). For example, ΓCT = Γopposite

AG
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2 Strand symmetry:

It was observed that Γαβ(d) on one strand is approximately equal to
Γαβ(d)opposite on the opposite strand in the opposite direction. This
suggests the idea of a “strand symmetry”. Combining strand symmetry
with strand complementarity, we have Γαβ(d) ≈ Γβ̄ᾱ(d) on one strand. For
example, ΓCT ≈ ΓAG. This approximate symmetry reduces the number of
independent correlation functions from 9 to 6.

Let us see an example: in the following figure the 16 correlation functions
Γαβ(d) for d from 1 to 1000 are shown for the budding yeast chromosome
1. Correlations at 5 neigbouring distances (e.g. d=1,2,3,4,5) are averaged
to smooth the curve. From [W. Li 1997].
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Considerations

1] Larger symmetries:

It is evident from the figure that ΓAA(d) ≈ ΓTT (d) and ΓCC(d) ≈
ΓGG(d), with all other cross-correlations roughly similar to each other.
This is indeed a general phenomenon. It suggests that more approximate
symmetries are present in the data. In particular the simplest way to
understand the data is to assume that correlations are approximately
the same under simultaneous A → T and T → A transformation
(e.g. ΓAG ≈ ΓTG) and separately an analogous C → G, G → C
transformation. (”binary” approximation)

11



2] Anticorrelation

it is also evident that while correlations between the same nucleotide are
always positive, those between different nucleotides are usually negative
(”anticorrelation”) or compatible with zero. Models have been proposed
to understand this behvaiour. The simplest one is the so called ”domains
structure” model [Li et al. 1994]
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3] Power law behaviour

The most interesting and surprising feature of these correlations is that
they show a power law behaviour. Which is the origin of this “critical”
(from the statistical mechanics point of view) behaviour? Also in this
case many models have been proposed. The simplest option is to assume
a fractal structure of the domains

There are claims that this behaviour is different between coding and
non-coding regions. Attempt have been done to use it to distinguish
between the two.
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(a)

N1 N2

N = N1 + N2

(b)

N1 N2 N3 N4 N5

N =
∑

i Ni

Figure 1: Domain struture model: Illustration of the situation when
the sequence can be decomposed into (a) two sub-regions, or (b) many
sub-regions, with each sub-region being a white noise, but different base
compositions.
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Two Sub-region Case: Assume the sequence is divided into two regions
of same size N/2 and the extreme situations in which the two domains are
made only of nucleotides of type α (first domain) and of type β (second
domain). The mean values will be:

Nα

N
=

Nβ

N
=

1
2

If the distance d is d << N we have with a good approximation that also

Nα,α

N
=

Nβ,β

N
=

1
2
− d

N
∼ 1

2

while
Nα,β

N
=

d

N
∼ 0
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Thus

Γα,α = Γβ,β ∼
1
2
− 1

4
=

1
4

> 0

while

Γα,β =
d

N
− 1

4
∼ −1

4
< 0

A power low d-dependence could appear if we are in presence of a
hierarchy of domains (see fig (b)) which have all the possible sizes.

Let us see few other examples in the case of Prokaryotes (taken from [M. de
Sousa Vieira 1999] web link: http://xxx.sissa.it/abs/cond-mat/?9905074 )
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Generalized Entropies

Goal: use Entropy–like quantities as tools to identify sequence
structures.

Definitions: In order to describe the structure of a given string of length
L using an alphabet of λ letters {A1A2 . . . Aλ} we introduce the following
notations:

Let A1A2 . . . An be the letters of a given substring of length n ≤ L. We
define the probability to find in a string a block of length n (subword of
length n) with the letters A1 . . . An as

p(n)(A1 . . . An).
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Entropies: We shall use the following quantities:

1. Shannon Entropy:

H1 = −
λ∑

i=1

p(1)(Ai) log p(1)(Ai) ,

a few results: for white noise H1 = log(λ), which is a maximum. If all
the symbols are the same, H1 = 0.
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2. Shannon word entropy

the entropy per word of length n is given by

Hn = −
∑

p(n)(A1 . . . An) log p(n)(A1 . . . An) ,

The sum is over λn entries. The limit

Hmet = lim
n→∞

Hn

n

is usually called metric Entropy. In case of white noise it should be
Hn
n = log(λ) See figures below
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3. The differential Entropy

This quantity essentially describes the uncertainty of the letter following
a block of length n

hn = Hn+1 −Hn ,

4. The entropy of the source (related to the Kolmogorov–Sinai entropy)

h = lim
n→∞

hn .
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5. The mutual information, also called transinformation Let us define the
probability of having a pair with (n− 2) arbitrary letters in between as

p(n)(A1, An) = p(n)(A1 ? ? ? ? An) .

Then we may define the mutual information as:

I(n) =
∑
AiAj

p(n)(Ai, Aj) log
(

p(n)(Ai, Aj)
p(1)(Ai) · p(1)(Aj)

)
,
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This quantity can be understood as follows: Consider a compound
system (X, Y ) consisting of two susystems X and Y . Let pi denote the
probability of finding system X in state i and qj that of finding system
Y in state j . Let pij denote the probability of finding the compound
system in state (i,j). Then the entropies of X, Y and (X, Y ) are:

H1(X) = −
λ∑

i=1

pi log pi ,

H1(Y ) = −
λ∑

j=1

qj log qj ,

H1(X, Y ) = −
λ∑

i,j=1

pij log pij ,
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Then:

• if the two systems are scorrelated H(X) + H(Y ) = H(X, Y )
• we can apply the formalism to a sequence assuming that X and Y

are two bases located at a distance, say, n and using the probability
defined above.

• then it is easy to see that

I(n) = H(X) + H(Y )−H(X, Y )
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Let us see two applications.

First a systematic study in Eukaryotes and Prokaryotes of the behaviour
of Hn/n versus n In particular in the following three figures one can see
Fig. 1 : I, IV, VI and XV yeast chromosomes.

Fig. 2 rpxx, ecoli, tpal, mtub, mpneu, mgen bacteria genomes.

Fig. 3 comparison of human 22 chromosome, genomes of bacteria:
synecho, aful, hinf, hpyl and XV, XIII, VI, IX yeast chromosomes.

One can see an impressive decrease of the entropy as larger words are
taken into account.

Second: Use of the mutual information function to identify coding from
non coding regions. With this indicator the period 3 in the coding region
becomes evident (taken from [Grosse et al., 2000]
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Defining the average mutual information as follows:

Î =
1
3
[I(3) + I(4) + I(5)]

one finds, sampling the DNA chain into nonoverlapping fragments of 54 bp
[Grosse et al. 2000]
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Means(variance) of log10(Î) for coding and noncoding DNA

33



References

[1] S. Zoubak, O. Clay, G. Bernardi (1996), “The gene distribution of the
human genome”, Gene, 174, 95-102.

[2] B.T.M. Korber, R.M. Farber, D.H. Wolpert, A.S. Lapedes (1993),
“Covariation of mutation in the V3 loop of HIV-1: an information
theoretic analysis”, Proceedings of National Academy of Sciences, 90,
7176-7180.

[3] H. Herzel, I. Grosse (1995), “Measuring correlations in symbol
sequences”, Physica A, 216, 518-542.

[4] H. Herzel, I. Grosse (1997), “Correlations in DNA sequences - the role
of protein coding segments”, Physical Review E, 55, 800-810.

34



[5] I. Grosse et al (2000), “Species indipendence of mutual information in
coding and noncoding DNA”, Physical Review E, 61, 5624.

[6] W. Li, K. Kaneko (1992b), “DNA correlations” (scientific
correspondence), Nature, 360, 635-636.

[7] W. Li, “The study of correlation structures of DNA sequences: a critical
review.” http://babbage.sissa.it/abs/adap-org/9704003

[8] W. Li, T. Marr, K. Kaneko (1994), “Understanding long-range
correlations in DNA sequences”, Physica D, 75, 392-416 [erratum, 82,
217 (1995)].

[9] G. Bernardi (1989), “The isochore organization of the human genome”,
Annual Review of Genetics, 23, 637-661.

35



Graphs and Biology

Graphs turn out to be a clever way to organize data in Biology. They
are in particular efficient to disentangle hidden collective behaviours and
above all to detect universal behaviours. The typical questions which one
can pose to a graph description of a biological problem are:

• To which class of networks the graph in which we are interested belongs?

• Which is the degree of universality of the observed pattern?

• Which are the biological implications of the relevant graph observables?
i.e. what can we learn from the graph?
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Main observables

From the adjacency matrix one can easily obtain some general
observables, which, even if very simple, contain a lot of important
information on the structure and properties of the graph:

• Clusters: disjoint connected components of the graph.

• Percolating cluster: giant connected cluster (of size comparable with the
number of vertices)

• Number of clusters: the function Nc(c) which counts the number of
clusters of size c in the graph

37



• Degree of a vertex (also called connectivity): number of links of a given
vertex. Notation: z(i). The mean connectivity is denoted by z.

• Connectivity distribution: The function Nk(k) which counts the number
of vertices with degree k
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Non trivial observables

There are also other quantities which are slightly more difficult to
evaluate and also describe important (and less obvious) properties of the
graph.

• Clustering coefficient C

Mean probability that two nearest neighbours of a given vertex are also
nearest neighbours among them. For a random graph this quantity can
be evaluated exactly: C = z/N and is very small. In most of real
networks it is a much larger number.
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• Diameter

Mean distance (evaluated over all the possible pairs of vertices). Recall
that the distance between two vertices is defined as the minimum number
of links needed to join the two vertices. It is rather large in regular graphs.
In most of real networks (and in random graphs) it is much smaller.

• Assortativity The assortativity A of a network is the linear correlation
coefficient between the connectivities of the nodes on the two ends of a
link.

– A > 0: (assortative network) nodes are preferentially linked to nodes
of similar connectivity

– A < 0: (dissortative network): high connectivity nodes are
preferentially linked to low-connectivity ones

40



Roughly speaking A measures the probability that two highly connected
vertices are connected between them.

A dissortative graph is composed by isolated hubs. Removal of a high-
connectivity node strongly disrupts the topology of the network → highly
connected nodes are ”essential”.

An assortative graph is composed by a core of highly connected hubs.
Removal of a hub does not affect the topology of the network → high
degree of “redundancy”.
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Universality classes

There are several classes of graphs. In particular we concentrate here on
three families:

• random graph

• ”exponential” graph

• ”power-like” graph

They should be considered as “reference graphs” against which we compare
the real graph in which we are interested.
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Random graph

The random graph is obtained by randomly switching on links between
the vertices, with a probability p. By increasing p one smoothly moves from
the empty graph made of N disjoint vertices: (p = 0, , Nl = 0, Nc = N)
to the complete graph: (p = 1, Nl = N(N − 1)/2, Nc = 1).

The number of links for a given value of p is Nl = pN(N − 1)/2 hence
z = p(N − 1)

The connectivity distribution is (in the large N limit) a Poisson
distribution
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Nk =
(

N
k

)
pk(1− p)N−k ∼ zke−z

k!

The distribution has a peak for k = z i.e. most of the vertices has
degree z and only an exponentially small number of vertices has a very large
or very small degrees.

Remarkable feature of the random graph: there is a percolation threshold
above which a percolating cluster appears.
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Exponential graphs.

The connectivity distribution is in this case:

Nk = Ce−k/ξ

As for the random graph large (with respect to ξ) degrees are always
suppressed. However small degrees in this case are always enhanced.
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However many real world networks are not of random or exponential type.
The easiest way to see this is to look at the connectivity distribution which
turns out to be power like.

See the following examples taken from Albert and Barabasi, Rev. Mod.
Phys. 74, 47 (2002).

• (a) Internet at the router level

• (b) Movie actor collaborations network

• (c) High energy physics coauthorship

• (d) Neuroscience coauthorship.
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Power-like graphs.

The connectivity distribution is:

Nk = Ck−τe−k/ξ (k > 0)

with C a suitable normalization constant.

If ξ is large enough there is a window in which the connectivity
distribution follows a power like decay with exponent −τ . The exponential
cutoff at large values of k is a consequence of the finite number of vertices
of the graph. The typical feature of this class is that it contains a
small number of highly connected vertices (hubs) and a large number of
peripherical vertices with small degree.
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The scale-free model
(Barabasi and Albert, Science 286:589 1999)

A model (almost) as simple as the Erdos-Renyi random graph, giving rise
to a connectivity distribution decaying as a power law. The ingredients are

• Growth: new nodes are added to the network one at a time and linked
to existing nodes

• Preferential attachment: new nodes are attached preferentially to existing
nodes of high connectivity

P (k) ∝ k−γ γ = 3
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Protein Networks

Let us see as an example the network of protein-protein interaction in S.
Cerevisiae.

Ref: A.-L. Barabasi et al. Nature 411 (2001) 41

In this case the vertices of the graph are proteins and the links the
(experimentally validated) protein-protein interactions. The network has
1870 vertices and 2240 links. From the adjacenty matrix it is easy to
reconstruct the cluster decomposition. It turns out that the graph is
composed by a giant cluster of 1458 proteins (78%); 4 isolated clusters with
7 proteins and 168 clusters with a number of component less or equal to 6.

The connectivity distribution is power like and follows the law:
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Nk = ak−τe−k/ξ

with ξ ∼ 20 e τ ∼ 2.4.

The same pattern is found if one studies:

• a different set of interaction in yeast

Ref: Schiwokswki et al. Nature Biotechnol. 18 (2000) 1257

made of 1825 proteins and 2238 links

• the protein interaction network in H. Pylori

Ref: Rain et al. Nature 409 (2001) 211

made of 724 proteins and 1407 links
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• The network of interaction between nuclear proteins only in yeast (see
file 0205380.pdf).

Ref: Maslov and Sneppen, cond-mat/0205380

in this case we have 329 proteins and 318 links

Universality seems to be fulfilled
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From this analysis we extract three suggestions which could be of
biological relevance and can be tested directly on the graph:

1] Proteins with larger connectivity are the lethal ones, i.e. are those
without which the cell cannot survive. To test this hypothesis one must
study the correlation between connectivity and lethality.

This hypothesis is indeed confirmed by the data:

93% of proteins has a connectivity less or equal 5, but only 21% of them
is lethal. Similarly only 0.6% has connectivity greater than 15 but 62% of
them turns out to be lethal. This means that highly connected proteins
have a much larger probability to be lethal.

2] Highly connected proteins are indispensable to keep the network
topology. If we selectively eliminate these proteins the diameter of the
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network increases dramatically while with a random elimination process
almost nothing happens.

3] The number of links between highly connected vertices is smaller than
expected on a random basis.

This means that the protein network is a ”dissortative graph”. This
effect decreases the likelihood of cross talk between different functional
modules of the cell, and increases the overall robustness of the network
by localizing effects of deleterious perturbations.
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Coregulation networks

Construct a network whose nodes are the genes, and a link is formed
between two genes whenever they are coregulated (e.g. the correlation
coefficient between their expression profiles is higher than a certain cutoff).

Coregulation: two genes are coregulated if their expression profiles are
similar (as measured e.g. by linear correlation coefficient).
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Also in this network a strong correlation between centrality and lethality
can be found.
Example: of all genes in the network, ∼ 18% are essential. Of the 138
genes with 60 or more neighbors, 84 (∼ 61%) are essential.

However a remarkable difference with respect of the protein network
is that the coregulation network is strongly assortative: high connectivity
nodes are connected to each other, so that eliminating a central node does
not disrupt the topology of the network.

The hubs form a highly connected core of “central genes”
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Central genes

An explanation can be found by biological analysis of the central genes in
the coregulation networks:

• Being central is a property of a set of genes, largely independent of the
experimental conditions.

• Central genes are involved in basic cellular functions (e.g. ribosome
biogenesis and protein synthesis).

• Central genes are evolutionarily conserved: most central genes are
common to yeast and human
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The analysis of the coregulation network allowed us to identify a tightly
coregulated core of essential and evolutionarily conserved genes, simply by
looking at the connectivity distribution.
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