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Plan of the lecture

• Identification of T.F. and miRNA binding sites in eukaryotes

1] Introduction
2] Our strategy for the TF binding site identification
3] Example: Transcription factor binding sites in yeast
4] Example: Transcription factor binding sites in human
5] MiRNA target sites

• Graph theory approach to fragile sites characterization
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1. Introduction.

Let use recall a few important features of the human genome and of the
process of gene regulation that we have seen in the first lecture

• The density of protein-coding and RNA-coding sequences becomes lower
and lower as the complexity of the organism increases. It is rather high
in Prokaryotes, low in S. Cerevisiae, very low in the human genome:
most of DNA in the human genome is not coding and is expected to be
involved in the regulation of gene expression

• Gene expression is tightly controlled and regulated:

– All cells in the body carry the full set of genes, but only express about
20% of them at any particular time
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– Different proteins are expressed in different cells (neurons, muscle
cells....) according to the different functions of the cell.

The most important example of such interactions is the transcriptional
regulation of protein coding genes. Even if this is not the only regulatory
mechanism of gene expression in eukaryotes it is certainly the most
widespread one.

The goal of our research project (as of many others in the world) is to
reconstruct these interactions by comparing existing biological information
(like the coregulation of sets of genes) with the statistical properties of the
sequence data.
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Transcription factors.

TFs act by binding to specific, often short (5-10 bp) DNA sequences in
the upstream noncoding region of genes.

T.F.’s themselves are proteins produced by other genes.

The Genome is a complex network of interactions between genes and
their products This network pattern is ubiquitous in Postgenomic biology
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The problem.

However, computational detection of regulatory sites is a difficult task,
in particular in eukaryotes:

• the consensus sequences recognized by transcriptional factors are
generally rather short (5-20 bp)

• they can be quite variable

• they are in general dispersed over large distances

• they are generally active in both orientations

A simple study of relative frequencies of sequences can be meaningless
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Luckily we have a few tools to attack the problem:

• Binding sites are often overrepresented. One can use this to separate the
signal (binding site) from the noise (background upstream sequence)

• Binding sites are often evolutionary conserved. One can use comparative
genomics to recognize them.

• Genes which share the same functions may also share the same regulatory
mechanisms. One may use microarray experiments or functional
annotations to identify binding sites.
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The standard strategy :

Coregulated genes.

step 1 Identify a set of genes experimentally known or presumed to be
coregulated (for example because they are involved in the same biological
process or because they show similar expression profiles in microarray
experiments).

step 2 Find which short motifs are overrepresented in their upstream
region, compared to suitably defined background motif frequencies that
take into account the basic features of non-coding DNA of the organism
under study. These motifs are likely to be involved in the coregulation of
the genes in the set.
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See for instance:

• van Helden J, André B, Collado-Vides J,

Extracting regulatory sites from the upstream region of yeast genes by
computational analysis of oligonucleotide frequencies. J Mol Biol 1998,
281, 827-842.

• Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM:

Systematic determination of genetic network architecture. Nature
Genetics 1999, 22, 281-285.
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Main problems:

• Unsupervised clustering

• Motif’s variability

• Same expression without coregulation
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Our Proposal

Reverse the procedure!

M Caselle, F. Di Cunto and P. Provero,

Correlating overrepresented upstream motifs to gene expression: a
computational approach to regulatory element discovery in eukaryotes.

BMC Bioinformatics 2002, 3:7
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first step Grouping of genes based on the motifs that are overrepresented in
their upstream regions. To each possible word w we associate the set Sw

of all the genes in whose upstream region the word w is overrepresented

second step Select those sets which show some kind of functional
characterization using microarray experiments or Gene Ontology
annotations.

• Microarray: For each set Sw we compare the expression distribution
within the set with the genome wide one (using for example Kolmogorv-
Smirnov test).
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• Gene Ontology: For each set Sw we compute the prevalence of all GO
terms among the annotated genes in the set, and the probability that
such prevalence would occur in a randomly chosen set of the same
size:
– hypergeometric distribution to assess the significance of the

intersection
– evaluation of false discovery rate through comparison with randomly

generated gene sets (using only the best p-value for each set as
criterion for the comparison)

The words which survive this analysis are candidates to be binding sites.

The Gene Ontology Consortium ”Gene Ontology: tool for the unification
of Biology” Nature Genetics 25 (2000) 25.
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Overrepresented words
in the upstream regions

Many binding sites are effective only when repeated many times in the
upstream region of the gene they regulate.

Example: the word GATAAG—CTTATC is a known binding factor for
nitrogen-regulated genes: Examine the 500 bp’s upstream of two of them.
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>YPR138C upstream sequence, from -500 to -1

TCCACCTTATCTCGGCGCCAAATCCTTATC

TCTCGTAGCTGGTTTGCCCGCGATAAGGCG

GGCGAGTTATTTTGAAGTTTTCCATAAACT

GGTTTTCCATCTCGAGGTTTTTCCTCGCTT

TCCACGCTATGACCCTTTTTAGTTAAGGTA

CCCGATGGCATACTTTATATATTATATATA

TATGTTAAGTTAATATGTTTTAGCAGATTT

GATATGCTGATATGCAGCACGGACTTTCCC

TCTCCTTGTCTTATCGCATCTTATCGCAAC

AATTTGATAGATATCTTCTCCCTTTCCTAT

CTTGTAGAATAAGGTTGTGTGCTTTGAGTC

TGATAGCCGTCTTCTTTCGGTCGCTTCTTC

TCTCTTTTGGTTCTTTGATTGTCTATTACA

16



>YIR028W upstream sequence, from -500 to -1

ATTCTCGGGTCTAATGTGGCTCGAGGGTAT

CTCTTATCGGTATTACTTTCTTATCAATGA

AAAATTTCTGCCAGGGAAAATGCGCCCGCT

TTTTTTCCGGCCATCCTTACTCGCTGTCGC

ATACAAAATAGCGCCTCTAATCTAGTTGCG

ATAAGGAATGTGTATGTGTAATTGAAGATC

CAGGATGTTTTCCTTTTCAGGGAGATGAGA

AGGAATAATAGGATGGATTGACCGCTTTGC

TGTCACGTCGATAAGGTTCCTTTAAAAATT

GTGTCCAATGATTAGCATAGAGAGGTAGAG

TATCAGAGAAACAAGTTTGTAATCGAGAAA

CTTGATCTGCTAGTGTTGAGCATAGAAGGC

TAGGAAAACATGGGGAAGAAAAAAAAAGTA
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The sets S(word)

• For each word (5 to 8 bp’s) compute the frequency in the upstream
sequences of the whole genome considered as a single sample: these will
be our reference frequencies.

• Then count occurrences of the word in the upstream region of each gene
separately.

• If the number of occurencies of the word in the upstream region of gene
G is statistically significant (compared to a binomial distribution based
on the above reference frequencies), then the gene G belongs to the set
S(word).
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Choices in our study on yeast:

• upstream sequences length: 500 bp

• probability cutoff P = 0.01
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The Gene–Ontology filter.

For each set S(m) we computed the prevalence of all Gene Ontology
(GO) terms among the annotated genes in the set, and the probability that
such prevalence would occur in a randomly chosen set of genes of the same
size.

For a given GO term t let K(t) be the total number of ORFs annotated to it in

the genome, and k(m, t) the number of ORFs annotated to it in the set S(m). If J

and j(m) denote the number of ORFs in the genome and in S(m) respectively, such

probability is given by the right tail of the appropriate hypergeometric distribution:

P (J, K(t), j(m), k(m, t)) =

min(j(m),K(t))∑
h=k(m,t)

F (J, K(t), j(m), h)
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where

F (M, m, N, n) =

(m
n

) (
M−m
N−n

)
(

M
N

)
In this way a P-value can be associated to each pair made of a motif and a Gene Ontology

term.
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False discovery rate

Problem:

Given the huge number of P-values that we compute (in principle equal
to the number of GO terms multiplied by the number of words analysed) it
is clear that very low P-values could appear simply by chance.

The usual way of dealing with this issue, that is the Bonferroni correction,
is not appropriate, because due to the hierarchical nature of the Gene
Ontology annotation scheme, the P-values we compute are very far from
being independent from each other.
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Our proposal

We randomly generated a large number NR of sets of genes comparable
in size to the typical size of the sets associated to the motifs and ranked
the random sets based on their best P-values.

In this way we can determine a false discovery probability pf(C) as a
function of the cutoff on P-values C

Warning:

The lower is the FDR required, the higher is the precision required in
determining the function pf(C) and hence the number NR of sets to be
generated randomly. For instance a FDR of 0.01 requires the generation of
3.5× 106 randomly chosen sets.
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3. Example: Yeast

Identification of TF binding sites in yeast using Gene–Ontology

Output of the analysis:

• With the false discovery rate set at 0.01 we find a total of 108 associations
between 80 different words (of 5-8 letters) and 41 Gene Ontology terms.

• The words can be organized in 12 different groups. Within each group
the motifs are very similar to each other and are associated to the same
or to very similar Gene Ontology terms. For each group we construct a
consensus sequence (“motifs”) by aligning the words.
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Validation:

• Comparison with known TF’s and binding sites (Transfac + literature
survey)

• Comparison with the genome wide ChIP experiment of: T.I. Lee et al.,
Transcriptional regulatory networks in Saccharomyces cerevisiae. Science
298, (2002) 799.

Results:

• All the motifs we find correspond to known binding sites. (No false
positive!)
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• For some of the motifs we are able to

– refine the putative binding sequences.
– identify candidates for combinatorial regulation (example: PAC and

RRPE))
– Refine the functional annotation of already known TF’s
– identify new potential targets of known TF’s (example: Hcm1p)

D. Corá, F. Di Cunto, P. Provero, L.Silengo and M. Caselle, BMC
Bioinformatics 2004, 5:57
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motif C F P TF

TGAAAC - - sexual reproduction DIG1

STE12

TGAAACA - - sexual reproduction DIG1

STE12

TGAAACA

ACTGTG - - sulfur amino MET4

acid transport

TGTGGC - - sulfur metabolism MET4

MET31

ACTGTGGC

Table 1: Two examples of motifs with significant intersection with ChIP
data

D. Cora’, C. Herrmann, C. Dieterich, F. Di Cunto, P. Provero and M.
Caselle, BMC Bioinformatics 2005, 6:110
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4. Example: Human

The extension of our algorithm to the human genome is not
straightforward. At least 15.000 bp long upstream regions must be taken
into account leading to a very small signal to noise ratio.

It is mandatory to perform a comparative analysis selecting only those
parts of the upstream regions which are conserved between men and mouse.

This can be done using the CORG database:

C. Dieterich et al., CORG: a database for comparative regulatory
genomics. Nucleic Acid Res., 31, (2003) 374.
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The CORG database.

CORG is a collection of conserved sequence blocks in the non-coding,
upstream regions of orthologous genes from man and mouse.

These blocks are obtained by searching statistically significant local
suboptimal alignments of 15kb regions upstream of the translation start
site.

The database contains more than 10,000 pairs of orthologous genes.
The alignments were obtained using the Waterman-Eggert algorithm. We
used two different choices of the PAM matrix: PAM1 and PAM10 to test
the robustness of the results.
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The two releases are very different:

• PAM1

– number of genes in the database: 10999
– mean number of conserved blocks for gene: ∼ 20
– mean length of the union of conserved blocks: ∼ 500
– number of genes with a GO annotation 6187

• PAM10

– number of genes in the database: 12943
– mean number of conserved blocks for gene: ∼ 40
– mean length of the union of conserved blocks: ∼ 900
– number of genes with a GO annotation 7260
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Results.

In the PAM10 case, out of the 43250 possible words of 5,6,7 and 8
letters

• 154 different words survive the G–O filter

• 331 words survive the Microarray filter

• the intersection between the two sets is 109 words which corresponds to
a p–value e−201

• similar results are obtained with PAM1. Despite the fact that the PAM1
and PAM10 CORG databases are very different our results seems to be
very robust: most of the words are present in both releases.
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Clustering of words.

Due to the larger amount of words and to the higher motif’s variability,
clustering of words is more delicate than in the yeast case. To decide if two
words belong to the same motif we make a two steps analysis.

• First step: we check if at least one of the following conditions is met:

– at least one GO term is significant for both motifs
– there is at least one time point in the cell cycle MA experiment in

which both motifs are simultaneously significant.
– the intersection of the two sets of genes (labeled by the two words

that we are testing) is statistically significant.

• Second step: we check if an alignment can be found between the two
words with no gaps, at least 4 bases correctly aligned and at most 1
mismatch.
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Validation.

Comparing our finding with the data collected in the Transfac database
we were able to recognize some well known TF’s.

Example: NF–kB

motif C F P

GGAAATTC - chemoattractant -

GGRAAKTCCC Transfac consensus

Table 2: The putative NF–kB motif.
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Example: E2F

motif C F P

TTTCGCGC - - DNA replication initiation

TTTSGCGC Transfac consensus

Table 3: The putative E2F motif.
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Example: A putative new motif

motif C F P

A ATGTTG Golgi lumen - -

TGTTGA Golgi lumen - -

ATGTTGA Golgi lumen - -

T T ATGTA Golgi lumen - -

TWATGTTGA

Table 4: A putative motif with no reference in Transfac.
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5. miRNA.

Gene expression can be regulated at many of the steps in the pathway
from DNA to RNA and protein.

MicroRNAs(miRNAs) are a family of 21 - 25 nucleotide small RNAs
that negatively regulate gene expression at the post-transcriptional level.
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The main ingredients of the problem

- miRNAs inhibit translation by pairing on suitable binding sites in the
3’-UTRs.

- Perfect complementarity or G-U pairing between the target 3-UTR and
the first nucleotides 1-7 or 2-8 of miRNA is needed.

- Additivity of the inhibitor function.

- Evolutionary conservation of miRNA target sites.

- Remarkable tissue specificity.
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our proposal

Use a mixture of the following ingredients

• word overrepresentation

• mouse-human conservation of overrepresented words

• strand asymmetry

• Gene-ontology filter
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human
3’ - UTR

sequences

mouse
3’ - UTR

sequences

non redundant 3’-UTRs non redundant 3’-UTRs

sets of 
human genes

sets of 
mouse genes

over -
reppresentation

BLAST -
all-against-all

Gene Ontology
filter

A-PRIORI corrispondence of motifs of 5,6,7,8,9,10 nucleotides to miRNA binding sites

ORTHOLOGY and STRAND-ASYMMETRY
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We need an advanced 
retrival system  to 
automatically download all 
the 3’-UTR region of a given 
genome (human / mouse ...), 
and the corresponding 
annotations.   

Direct query the EnsEMBL 
mySQL via perl API.

EXON

5’UTR           coding         3’UTR

245215 human exons

29248 human exons with 
3’UTR 43



We expect a lot of 
redundancy  into human / 
mouse DNA sequences.

We use BLAST to list all the 
pairs of nearly identical
3’UTR sequences (Blast P-
value less than 10e-40). 
Then we used these results 
to form clusters of nearly 
Identical 3’UTR regions. 
Finally, we retained for 
further analysis only one  
gene per group, chosen at 
random.

24283 non-redundant 3’UTR 
sequences, mapped into 15988
unique ENSG gene ids.

44



> 3’ UTR sequence
ACTTTTTTACCCTCGTGTGTT
GCAGACTTTTTGCCACTTTTA
AAACGCTGACAATTCGACCC
TTTCCAATCTCTCAAAAGTTT
CGACGAGCTGTACAACCCCC
CCCCC ……………………..

For each word S of 5, 6, 7, 
8, 9, 10 nucleotides we 
construct the set of all 
genes in whose 3’UTR
region the word S is 
overrepresented.

null hypothesis: a 
random binomial 
distribution always 
separating a word from
its reverse complement.
discard overlapping
motifs  ( ATTTT vs
TTTTG) 
separated strands

Binomial 
P-value
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Human sets were then compared to their mouse orthologs with respect
to two properties: we selected the DNA motifs showing in the 3’-utr region:

- conserved overrepresentation

- preferential strand asymmetry

The DNA motifs thus selected were further investigated through the analysis
of the sets of genes in whose 3’-utr region they are overrepresented, using
the Gene Ontology and the mouse phenotype annotation system.
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conserved overrepresentation

We select for further analysis only the sets that shown a number
of common orthologues paired genes greater than expected by chance
according an hypergeometric pvalue evaluation.

The hypergeometric pvalue for each set F (M, m, N, n) was defined, focusing on a

certain sets:

M = num tot of human genes with an orthologue

m = num of human genes in the considered set with an orthologue

N = num of human genes in the considered set with an orthologue in the corresponding

mouse set

n = num the intersection of m and N
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preferential strand asymmetry

We studied the distribution of the variable:

δN = N+(w)−N−(w)

being N+(w) the number of occurency of the word w on the + strand
and N−(w) the number of occurency of the word w on the - strand.

In a pure random case, the variable δN√
N

is a gaussian with mean 1 and

variance 1.
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example of results

num. tot. words num. words num. words
(sets dim) cons. overr. asymm. +9 σ

L=5 1024 362 / 173 197 / 100
L=6 4096 512 / 119 374 / 85
L=7 16384 604 / 75 369 / 30
L=8 65533 1964 / 83 199 / 4
L=9 260542 6285 / 90 37 / 0
L=10 973139 12382 / 69 9 / 0

In red: number of words validated with a known miRNA present in the
microRNA-Registry (total 328 known miRNA).
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num. tot. words num. words cons. overr.
(sets dim) and asymm. +9 σ

L=5 1024 362 / 121
L=6 4096 512 / 155
L=7 16384 604 / 98
L=8 65533 1964 / 64
L=9 260542 6285 / 14
L=10 973139 12382 / 2

In red intersection between words conserved-overrepresented and with
strand asymmetry +9 σ.
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Graph theory approach to fragile sites characterization

Fragile sites are regions of the human chromosomes which are particularly
prone to genomic instability: breakage, sister chromatide exchange and
recombination...

Common fragile sites are present in all individuals, they are conserved
between man and mice thus they are expected to have a functional role.

In normal situations they are not dangerous for the organism but they
seem to be particularly expressed in cancer cells.

Their functional role and their biology is poorly understood. also their
connection with cancerogenesis is still an open issue.
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Our proposal

Look for anomalous correlations in the pattern of CFS’s expression.

Organize these correlations in a network and extract (if they exist)
connected components and/or communities.

Analyze the gene content of correlated CFS using Gene-Ontology looking
for functional signatures

A.Re, D. Cora’, A. Puliti, M.Caselle and I.Sbrana

Correlated fragile site expression allows the identification of candidate
fragile genes involved in immunity and associated with carcinogenesis

Submitted to BMC Bioinformatics
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Main results

• Impressive correlations indeed exist in the pattern of individual expression
of CFS: if a CFS is expressed in a given patient one could predict which
other CFS are simulatneously expressed witha good degree of confidence.

• The network of these correlated CFS has various connecetd components,
among them a ”percolating” one. These components have a very small
probability to appear in a random graph and thus may denote some
hidden functional relationship among CFS.

• The GO analysis of the gene content of these connected CFS shows a
remarkable enrichment of terms related to the immune response and of
genes involved in the replication process.
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A possible interpretation of this result is that breakage at fragile sites could
be protective against cancer.

According to this picture breaks would represent a signature of replication
stress and would activate the DNA damage check points, leading to cell-
cycle arrest or apoptosis to ensure genomic integrity

At the same time it has been recently realized that there is a strong
connection between the immune response and processes that regulate
genome integrity. DNA damage rensponse, besides arresting the cell cycle
and triggering apoptosis may partecipate in alerting the immune system
to the presence of potentially dangerous cells, thus triggering an immune
response against them.

56


