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It is pointed out that near a phase transition the string action requires an extra term to control the fluctuations and it is
shown that the associated coupling constant, which is dimensionless, is asymptotically free in the ultraviolet. Attention is
drawn to previous studies of the same term in biophysical membranes and microemulsions.

The physics of strings is governed by the string tension m2 =(27a’)~1, a quantity of the order of the squared
Planck mass. Gravity is obtained in the limit of infinite tension m2 corresponding to the zero-slope (¢’ — 0) limit
of the particle trajectories. The higher excited states carry masses of the order of m?2 and will be unobservable in
the foreseeable future. :

In this note we would like to draw attention to the opposite limit of very small string tension, i.e. the infinite-
slope (' = ©°) limit. In this limit the Nambu—Goto action [1]**

Ang =—m?2 [ d2%v/"g = —m? [d2 [~ det(d,x#dyx,)] /2 (1)

loses control over the space—time surface swept out by the string, the surface becomes wrinkled and acquires a
higher Hansdorff dimension. A higher-gradient action is necessary to prevent a catastrophy.

In euclidean space, this phenomenon is well known. Microemulsions form when surfactants remove the sur-
face tension between oil and water [2]. In biomembranes, the surface tension is absent due to the incompressibil-
ity of the molecules within the membrane [3,4] ¥+ This absence leads to gigantic fluctuations which for red
blood cells have been seen as early as 1890 in an ordinary light microscope **. They prevent the cells from stick-
ing to each other [10,11], in spite of their attractive van der Waals forces [12]. Similar phenomena occur in various lat-
tice models of phase transitions. In U(1) lattice gauge theories in four dimensions, the surfaces of the strong-
coupling expansion become prolific and wrinkled for §>> .. The same thing happens to the domain walls in the
three-dimensional Ising model.

In all these cases, the fluctuations at vanishing m?2 are controlled by what we shall call membrane action

Ay=-7% [a%+/~g D2, Dk - 5 [¢26v/=g(D?x,D2x# — D, Dyx, DUDAxH) . ©)

* Supported in part by Deutsche Forschungsgemeinschaft under Grant No. K1 256 and by UCSD/DOE contract DEAT-03-

81ER40029.

1 On sabbatical leave from: Institut fur Theorie der Elementarteilchen, FU Berlin, Arnimallee 14, 1 Berlin 33, Fed. Rep. Germany.
*1 Our notation: xM(o, 7) = xM(£%) parametrizes the string in D space—time dimensions with the metric n,, = diag(1, -1, -1,
—1, ...). The string itself has the metric gog = aax“agx“. The slope of the Regge trajectory is ' = 1/2am?2.

*2 See ref. [5] for a phenomenological calculation of surface tensions.
*3 It is the same mechanism that has recently been proposed in ref. [6] to explain the absence of the cosmological constant in
gravity.

*4 In human erythrocytes they have been recorded as early as 1890 by Browicz [7], and interpreted first as a manifestation of

life. See ref. [8]. For a recent discussion see ref. [9].
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The membrane action plays a similar role with respect to the Nambu—Goto action as the Einstein—Cartan action
does with respect to the Einstein action. Due to the higher gradients of x, this action brings about additional
ghost states which are hard to interprete. Since the conventional string theory had to live with ghost states for a
long time and finally resolved this problem in certain critical dimensions, it may well be that we shall eventually
learn to deal also with the additional ghost states of the membrane action. For this reason, we shall ignore the
ghost problem for the time being and study the new action Ayg tAymina purely perturbative way.

First of all, let us observe that the membrane action (2) carries only dimensionless coupling constants implying
that the theory is renormalizable by power counting. In fact, the k term plays a similar role for strings at small
m? as the gyp* term does for the ¢4 theory at small mass. Contrary to that theory, however, the new coupling in
the extended string action turns out to be asymptotically free in the ultraviolet, a fact, which will be a major
result of this note. At present, we are unable to answer the question of an infrared stable fixed point. Just as in
quantum chromodynamics, such a point can probably be located only by Monte Carlo techniques. Its properties
would be crucial for the understanding of microemulsions. In the membrane action (2), the symbols D, are the
covariant derivatives 8, — I', and I, is the connection. The second term depends only on the boundary and is
locally irrelevant. It measures the genus of the surface. Another way to rewrite this action is by introducing the
D — 2 orthogonal normal vectors of the surface N4, n =3, ..., D, and observing that the covariant derivatives of
the tangent vectors D x* can be spanned by the normal vectors as follows 5 [13]

DaDﬂx“ = CZBN;; . 3)

The D — 2 2 X 2 matrices CZB =NﬁDﬁDﬂx“ = —DQNZDﬁx" are known as extrinsic curvature and satisfy the
Gauss—Codazzi relations [13]

Rap=CopCy— Ca"Chgs  Dally =DpChy )

where R ; is the intrinsic Ricci tensor of the surface whose trace R = Ry, is the scalar curvature. Introducing also
the quantities C" = cy " (=D - 2 times the mean curvatures) we arrive at the form

Ay = -5 [a2%vgonen % (a2 3R, )

where the pure boundary character of the second term is the content of the Gauss—Bonnet theorem (=—4nk(1 —h)
with A = number of handles). What has been studied in membranes [14,15] is the effect of quadratic normal fluc-
tuations

dxk=p Nt , (6)
upon this action. These change the metric by
A, =88, ng‘i = [D,6x,Dgx# + (af)] + D,5x ,Dgdx#

=—20,Cqgt (Dyv,, Dgv, + Co CYv ) @)
and the area element by
AV=-g =-v,C"+3(Dy,)? +3(CrC™M — Cg"C,‘;‘m)Vn Vpy + ooy ®

such that the Nambu—Goto action has the quadratic fluctuations

2
824NG =~ 75 [42N/=g[(Dv,)2 + RM™y,p,,] ©

*3 Since NXNy,, = 6nm the n, m part of the metric is 6 .
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where R"™ is the (D — 2) X (D —2) matrix C"C™ — CJ" C,‘;‘m whose trace is the scalar curvature R. The connec-
tion has the variation

5% = D%6x, D% + D2x DeSx# + .= C"D2p, — D*CMy, — 2C8"D g, +0(?) . (10)

Calculating further

D25x,D28x# = (D2,)2 —2C8"cg™y, D2y + 4CY"CTMD v, Dy, + CHFCT CRCT v,
+(DC™)(DC™)v, vy, —4CHH(D C™ ), Dby, (11)

we find the second-order change in the membrane part of the action

824y = =5 [4%/=g[(D%,)? - 2CE"C2™y, D2y, +4C2NCTPMD y, Dy, — C"C™Dy, D,
+4C]"C*M D, Dgv,y, —4C5"CVPM D, Dgv,y, +4CENCE™y, D2y, +4CY"CH¥™My, D Dy,
+7CMYDY, )2 - 2C"CMD p, Dyv,, —2C"CMy, Dy, ..] . (12)

The omitted terms contain fewer than two derivatives in v, and are irrelevant in the ultraviolet.
Short-wavelength fluctuations are dominated by (Dzvn)2. They have the correlations

(Do Dgvpy) = (1/K)8 466,y L + finite terms , (13)

where L = [d2k/(2m)%k2 = (1/2n) log(k ax /K mmin)- Thus, integrating out the v, fields leads to the additional
one-loop action

Aereloop = —(D — 2 trlog(D?) — [d2/=g(6m?+ 8k C"2 + 1 8RR) (14)
where
dm2=m?[(D —2)/2k]L, ék=—3DL, 8k=2L, (15a,b,¢)

and trlog (D2) is the usual conformal anomaly [16]. In the conformal gauge where 8ap = e?8 4 it takes the local
form [17]

- [4% V=50 + (1/481) (0,9] — & [ 4%/ R, (16)

with Q = [d2k/(2m)? giving a further, quadratically divergent, contribution to 5m?2 (which vanishes in dimension-
al regularization). The last term of which is missed in (14) because of the method used there (see ref. [15] for a
simple derivation) renormalizes and changes eq. (15¢) into

§k=[2—(D-2)/3]L . (15¢")

The negative sign in 5k shows that the fluctuations soften the membrane implying asymptotic freedom of the
coupling constant k, just as announced in the beginning of this note.

Concerning the infrared behavior, the only information comes from Monte Carlo simulations. The critical beha-
vior of the D =4 U(1) Villain lattice gauge theory and the D = 3 Ising model teaches us that in these models there
exists a stable fixed point also in the infrared at which the system becomes critical.

Notice that in the usual cosine form, the U(1) lattice gauge theory seems to be close to tricritical #¢ implying

€ This point is elaborated in ref. [18], see also ref. [19].
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that, there, even the curvature terms k are close to zero such that also the gradients in Cgﬁ (of sixth order in k)
will eventually have to be considered.

The author is grateful to Professor N. Kroll and Professor J. Kuti for their kind hospitality extended to him at
UCSD and to J.H. Schwarz for showing him, after completion of this work, a preprint by Polyakov [20] who, by
a different motivation and method, obtained also our egs. (15a), (15b). Due to a different treatment of the
fluctuations, however, he is unable to obtain the renormalization of the gaussian coupling constant (15c). He also
does not find the anomaly (16).
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