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Abstract

Based on the Landau-De Gennes expansion of the free energy in powers of a symmetric traceless
order parameter we discuss the energetics of various phases as a function of temperature and cho-

lestericity.

1. Introduction

The blue phase, which appears in many liquid crystals within a narrow - temperabure
interval between normal and cholesteric phase, has recently attracted increasing interest
bot on the experlmental and theoretical side.

An excellent survey is available [I] which describes the data accumulated over the
years since the first observation by REINITZER in 1888. It also discusses the successes and
failures of existing model calculations which all have difficulties in explaining the observed
facts. At present, the most attractive candidate for the blue phase seems to be a body
centered cubic texture which was recently sugested by HorNrREICH and SHTRIKMAN [2]
(H.S.) in a generalization of an observation by Brazovskii: This author noticed that,
within the Landau-De Gennes free energy expansion, a superposition of plane waves
with the momenta formmg triangles enhances the cubic term. This leads to a phase
transition before the onset of the cholesteric phase. At lower temperatures, however, the
order parameter increases and the cubic piece looses importance. Ultimately, the cho-
lesteric phase does have the lowest energy because of its optimal ratio between quartic
and quadratic terms.

Due to their precocious onset, such triangular textures could, in fact, be good candidates
for the blue phase. The simplest Ansatz [3], however, in which only a single triangle of
momenta is assumed, corresponding to a planar hexagonal texture, is not capable of
explaining the experimentally observed optical isotropy [I]. Moreover, it is known from
mean-field cosiderations of liquid solid transitions [4] that a body centered cubic (bcc)
structure in space in which the momenta form a tetrahedron is favored energetically more
than a single triangle. This led HS to propose the bbe texture for the blue phase of
cholesteric liquid crystals. The optical isotropy would then be a direct consequence of
the cubic symmetry as will be seen below in more detail.

The main defect of the work of HS is that the formalism employed is quite cumbersome.
This is reflected in the complete change of most of their numbers in the free energy from

1) 1 Berlin (West) 33, Arnimallee 3
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the first to the second edition of their preprint. Moreover, the existence of two blue phases
was not manifest at the time of their calculation. We therefore found it worthwile to
investigate systematically different possible non-uniform textures and to discuss their
physical properties. Employing the Landau-De Gennes free energy in the same way as
Refs. [3] we calculate a phase diagram for cholesteric, planar hexagonal, hexagonal close-
packed, bece, distorted bee, and icosahedraltextures. The relevant physical parameters are
two: The reduced temperature r measured from the point of local instability and the para-
meter o with v 4+ 2o determining the stability of the nematic component in the order para-
meter. The quantity « may be called cholesteric strength, or cholestericity, of the liquid
crystal. Due to the analytic complexity we cannot give definite conclusions over the
whole range of parameters v and «. However, our analysis in some asymptotic regions,
7 —> —o0 (low temperature) or « — oo (strongly cholesteric limit), makes distorted hce
and hexagonal close-packed textures quite unlikely. We do not find any range of « where
two optically isotropic phases follow each other shortly before the onset of the cholesteric
phase. Thus the recently observed second blue phase remains unexplained [7]. So does
the experimental fact a Grandjean-Cano lines are found for the blue just as for the
cholesteric phase between that convex lens and a plane plate [I]. If glass faces orient
the helix orthogonal to it, it is hard to conceive how a bee structure can exist between
two faces only a few pitches apart. In addition, no Bragg reflexes have been seen [1]
which would correspond to the b other momentum direction in the reciprocal lattice of
the bee structure.?)

It should be noted that the treatment of the Landau-De Gennes free energy & la Ref. [3]
does not have room for the temperature dependence of the wave length of the circularly
polarized light norfor the volume change at the phase transition [7]. The first defect can
be removed in principle by considering higher harmonics, i.e. by allowing for multiples
of the momenta in the standing waves, the second by including an order parameter for
the stress tensor of the liquid.

For the sake of completeness we give a translation of our methods based on Ref. [3] to
those of HS. This should facilitate comparison of the results.

II. Theoretical Framework

The basis of cur discussion will be the Landau-De Gennes expansion of the free energy.
This consists of a quadratic piece

1
F, = Efdax[a/(.?fﬁ + b(2Q,4)? + ¢ 0,Q,, 6505, — 2de,3,Q0s 8,055] (2.1)
with cubic and quartic interactions
A »
Fy = ‘;4! Iy = 3' j P25 ye (2.2)
A Z
F4x4—4'1 = 4 (). (2.3)

As usual, the coefficient a of ¢?; contains a factor —(1 — 7/7) causing a instability at a
critical temperature 7',.

The last term in ¥, violates parity and is responsible for the formation of a helical ground
state.

2} This situation has changed recently: See the note added in proof at the end of the paper.
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The order parameter ¢, is a traceless symmetric tensor field. For this reason (2.3) is the
only quartic invariant. The other independent way of contracting the eight indices tr (¢4),
turns out to be proportional to (2.2):3)

2 tr (Q8) = (tr Q¥)2. (2.4)
Tn order to see this one only has to diagonalize @ via a rotation and finds

—2tr @t (tr QN = —2(Q4 + Qb + Q) + (@ + @ + )
= (@1 + Qoo + Qss) (—Q11 + Qaz + @s3) (@11 — Goo + @s3)
X (@11 + Qap — Qg3) = 0. (2.5)

For small oscillations above the phase transition, correlation functions

(@upl) Qucy)) = 37 Z e 9@ VGE5(q) (2.6)

are obtained by inverting the functional matrix in the quadratic form F,: In momentum
space

Was() I/V 2 € Q4(q) (2.7)
one may write
% "(q) 85°Q,6(q) (2.8)
with
t7(q) = (@ + bg®) 8.7 + cgug” + 2dS.7q (2.9)
where
(80)s? = — 26, (2.10)

is the spin matrix for the tensor field @,;. More symmetrically, £,70;* can be replaced by

1
Ty = T (705" + t570,° + 8,0 87 + £5°6.7)
1 d 1 & é ' 1 T &
g (g ) 30— () b o B0 (2.11)

The inversion problem therefore reduces to the solution of
7i(q) Gota) = 17 (2.12)

where I7; is the unit matrix in the space of symmetric traceless tensors:

1
7= _2. (8:505° =+ 8.787) — = 8,0 (2.18)

Tt is most convenient to construet ¢ from polarization tensors e2(¢) which diagonalize
T23(q) &3(q) = 7" (g) e84 (2.14)

3) The same statement would be true for a purely antisymmetric .

3*
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The labels m may be chosen to measure the helicity of the spin-two excitations, i.e. the
polarization along the momentum direction ¢ = q/q:

(Sq) e5(G) = meZHq). (2.15)

The solution of (2.15) is straight-forward in terms of a local orthonormal triplet of vec-
tors oriented along §:

M (@), 9(Q), p®(G) = §.
The spherical unit vectors
PG) =UG) = (¢ + ip®)[)2
e(G) = I*(q) = (p™ — ip™)[}/2 (2.16)
eO(G) = ¢®(§) = ¢

are a natural representation of helicity -1, 0, respectively. The coupling of two of these
tensors (2.15) is then trivial:

e (@) = Vg = Ll = 5@

A 1 1 A —_ A
(@) = % (@ s -+ uOggt)) = el (L + Bpds) = (@ (2.17)

. 3/, 1
Ei%)(q) ] (pa‘o)(pﬂ(o) = V—é—- (gaq,ﬁ -— géaﬂ).
By construction, these tensors are orthonormal
tr (e(@) £™2*(@)) = S (2.18)

and automatically diagonalize (2.14).
In fact, applying (2.9) we see

©+(g) = a + bg* + 2dg
TE0(g) = a 4 (b 4 ¢/2) ¢* £ 2dg (2.19)

1O(q) = a + (b + -z-c) g.

The correlation function G(g) can now immediately be written down as

2 g(m) ¥ (my( &4\ %¥
G:g(q) —_ ):v af (Q) Syé (Q)

m=-—2 7™{(g) (2.20)

The eigenvalues 7(™(g) are directly measurable by the angular dependence of light
scattering: If a photon of momentum % and polarization e, absorbs an oscillation quan-
tum of momentum ¢ and reemerges with polarization &,’, the cross section is given by

do 1
dQ 3273

KAGIN(qQ) .28, ¥es™* (2.21)
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Let the initial beam be polarized porthogonal to the scattering plane. If 8 and ¢ denote
angle and polarization direction of the scattered beam, respectively, the cross section
becomes

do 1 {1 1 6
_— e — 2 — (@& (-2)~ — gin2 in2[—
d_Q_32n3[6T cos (p+4(r + T (1 sin? ¢ sin (2))

-+ 7}- (zO7 — D7) gin? ¢ cos? (%)] . (2.22)

The dominant contribution to light scattering is given by the mode of largest fluctuations,
i.e. of smallest 7™(g). The minima of (2.19) are found by quadratic completion

2 2
r{qi)g’za %—i— d (d’/b:l: 1) =aq — A +A(2)( (2)i 1)

(2.23)

d2 dZ q 2 q 2

1) =g — |1} (1) [ 22—
T e o (d/(b+c/2> = 1) @ A (qm * 1)
where
d d
) — — 1) —

-5 = 2.24)

are the wave vectors at the minima and 4® = d?/b, A® = d?/(b + ¢/2) determine the
size of fluctuations at these points, respectively.

From an analysis of the experiments [6] one may conclude that close to the critical
region 7£2(g), 7®(0) carry the dominant fluctnations. Thus, the field may be decompo-
sed approximately as

Qus(®) &~ 3 eOm,) ;0 Z( @)(dy;) ;Pei® L h. c) (2.25)

ny

Here ¢; are several vectors of length ¢ [2] and different directions while n; are some unit
vectors. Notice that we may always assume @2 to be real by choosing appropriate di-
rections for ¢U(§), p@(¢). The components ¢;(® determine the optical unisotropy.
The components ¢;® are measurable via the Bragg reflection of circularly polarized
light.

IIL. Free Energies of Most Impertant Phases

1. Cholesteric Phase

The cholesteric phase is characterized by the presence of one component ¢® for optical
unisotropy and another component ¢ accounting for the selective reflection of circu-
larly polarized light. The quadratic free energy is easily calculated:

1 q2
Fy = 5 [700) ¢ + v(g®) 29'] = 2 g0 + (a - 3) g (30
In the cubic invariant I; we have one contribution

Iy: O tr (e0) = @07 ?%_ (3.2)
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and six of the type
Iy g0 tx () () e 2(G)) = ¢ Vp ]/-2— (|ln|2 - %) (3.3)

such that

A L1 L. 1/3 1
Fy = 3—:", [w‘“’ V—E + ¢V 6 1/5 (lln\?‘ — g)] (3.4)

The quartic invariant I, contains two parts: one in which each factor tr ¢* conserves
momenta separately:

I, : [ tr (e@(n) e®()) + @ tr (e@(q) e2(q) + hoc)]P = (O 4- 2¢%)° (3.5)

which is, of course, just the square of the quadratic invariant [, = f dx tr (§?) accom-
panying the coefficient a/2 in (3.1). The other consists of pieces where only the sum over
all four momenta vanishes with each ¢? factor having non-zero momentum which are
eight combinations of the type

3 s 3
I: @%@ tr (e@(n) e@(Q)) tr (0(n) e70(§)) = g ¢™" = ln|*. (3.6)
Thus we have

F, = % (9@ + 2¢@%)® 4 7121/ (3.7)

In order to simplify calculations it is convenient to introduce dimensionless guantities

07(0)5_2_3@« ¢(2>Ei§£i
2¥6 A 276 44 V2
(3.8)
T “Ag? A2 )42
(LE(LO(T;—l)E&i(r—F%c), a—;gé—lt.
Then, after dividing out a common factor, the free energy may be written as
Fchol 1
fenor = ENCE (v + 2x) 2® + 7y + T x® + 2y*(3 [In|* — 1)
3
64 1,2
1
+ g L@+ 9207 | Gaty? (I (3.9)

The discussion of this expression can follow [3]. For t large enough, the minimum at
x = 0, = 0 is stable. As v decreases, the asymmetric fluctuations in x due to ay?® tend
to destabilize this minimum. The lowest energy can be achieved by maximizing the
coefficient of the cubic minimizing that of the quartic term. Both is true for?)

niq, l-n=0 (3.10)
Non-trivial extrema are found at

2—1—a)z+71=0 (3.11)

4) The second statement follows form the first. Notice that for || n, |In|* = 1/2 such that the
coefficient of zy? is only 1/2 as large, apart from the opposite sign.
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Le.

. —_ 2
Tyg = 2 -+ ]/Lfl»— r (3.12)

and ‘
y? = 3a? + 4oz, (3.13)

At the extremum, the energy is

X
o= 227 —
fext (.’E'L‘ 3

=2 [—12+%r(1—a)—§(-§1—%o‘—)2——r)(1"2‘“iV(l—zﬁi—r)} (3.15)

from which we conclude the 4 sign to have the lower energy. This energy may vanish
before © reaches zero with x and y jumping to non-zero values, such that the system
undergoes a first order transition. Setting (3.14) equal to zero together with (3.11) one
finds once (eliminating the lowest powers of x)

3

+ octx) (3.14)

.2
st E—a (3.16)

RE
*T 3

and once (eliminating the highest powers)

xr = —

Lrs)
o b —
3 (3.17)

(1)

Ty

from which one obtains the boundary for a first order transition between normal and
cholesteric phase with z 4= 0, y == 0 as

912 + 292 — 1) 7 — 3ax(t — x)2 = 0. (3.18)

For » < 1, this happens precociously at v << 0 while for & > 1 the helical state is
reached continously at the second order transition line 7 = 0.

In the limit of large cholestericity « — oo, the field component z is frozen and the energy
becomes simply

1
fenor = Ty + E‘ y4- (3.19)
This is minimal at y* = —47r with

fin = —272. (3.20)

The same behaviour is observed in the low-temperature limit at any « as can be seen
from (3.9): For © — —oc, the cubic term can be dropped and the energy is, to leading order
in 7, symmetric in « and y

1
f—r@® 4y + Y (x® 4+ y?)%. (3.21)
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Notice that if we had started out with several components ¢;®, the energy (3.9) would
have turned each n; vector parallel to ¢ such that, effectively, only a single field ¢ sur-
vives,

It should be mentioned that the whole discussion based on truncating the free energy
after the quartic term is consistent only for sufficiently small 4,

2
2 Lay (3.22)
N

in which case the transition is almost of second order. For, congider some left-cut terms
of fifth and higher order in the free energy:

F, = % [ g tr Q%) + .- = f da tr (Q*) + - (3.23)

5 !
They would contribute, in the dimensionless form,

A5l ,1 z n—4

fom G o+ P RE (3.24)

Since 4, will, in general, be of the order of ay~"~%/24, such higher terms can be neglected
only under the condition (3.22). Experimentally (3.22) does seem to be true since in the
transitions are very weakly of first order with all observed latent heats being extremely
small compared to the condensation energy away from the transition point. The lines

1 energies chol
- ————fex

T=reduced femperafure

x =cholestericity

Fig.1
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of equal energy as a function of «, 7 and are shown in Fig. 1. Since ¢‘® and ¢ determine
optical anisotropy and reflection of circularly polarized light, respectively, we have also
displayed the corresponding contour plots for z and y (see Figs. 2 and 3).

X vaiues

T=reduced femperzture

ce=chorestericity

Fig. 2

2. Hexagonal Phase

This phase is characterized by the presence of one ¢(®(n) and three components p2(§;)
with the momentum vectors q,, g, ¢; forming a single triangle. In order to calculate the
different contributions to the free energy we choose the directions

¢ =

. ]/g“ 3.25
qQ‘— —é—+ 2y (' )
; & 13

(13——“5——2*?!-

I, = — (§ + 1) einl2 (3.26)
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A v values
chol

T=reduced femperature

_2 1 T 12 T T [ T ¥ T T 1 i 1 T T T T T 1
a0 7.0 20
o= cholestericity
Fig. 3

1 3. 1, L\,
bzﬁ(‘%$—§y+”%wz

(B, 1)
lgﬂl/—é(?fif*gy+12)ey2.

Note that the chirality of all vectors has to be the sameie. I' = Rel, I' = Im I, and ¢
have to form a positively oriented triped.
The quadratic energy now reads

o 9 dZ 3 3
F2 - ()9(0) + e — — 975(2) . (3.27)
2 b 1

=

Tn the cubic invariant there is again the term (3.2) plus six terms (3.3), one for each
momentum

3 1
A:V%WWZ¢W%WML—§y (3.29

In addition, there may be the six triangular contributions

I3: @@, P, tr (e(qy) £®(q,) e®(g;) + c.c.)
= 991(2)‘]92(2)(193(2)[“1!2) (Lls) (1) + c.c.] (3.29)
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coming from 3! permutations and a total reversal of all momentum lines. Let n have
the components

n = (ny, n, n,) = sin 6 (cos g + sin gi)) + cos 62. (3.30)

For symmetry reasons we shall assume all ¢;® to be the same. Then the sum over ¢ in
(3.28) can be performed

,‘?f (tiniz — %) = % (n,* + ny® + 2n,%) — 1 = ué— — z- sin? 6. (3.31)
For the evaluation of (3.29) we notice that
(L) = —; ¢iriers)i2 (3.32)
such that (3.29) becomes
_¢p(2)3 6 (;)3 2.cos(y; + va + vs)- (3.33)

Consider now the quartic invariant I,. There is again the square of /,:
It = (9% + 2 X gi®) > [0 + 6p7). (3.34)

The eight'combinations (3.6) have to be taken now for each momentum §; resulting in

L: g 3 i 2 (m)e. (3.35)
i
Inserting the I; vectors we find
- 13 LR 2, 2 2, 2
_y,llzni :Z"_i’z(nxny “}‘ny n, +nzn:¢')
3 1 . 1 . .
=7 -+ T sin® 0 5 sin® 2¢ sin® 6 - cos? 0. (3.36)

Contrary to the cholesteric phase there may now be contributions linear in ¢® and cubic
in ¢ with the three momenta forming a triangle. They are of the form

1y pOpPp,@g®tr (e (n) @(§y)) tr (e(§s) e®(§s)) + c.c. + 2 eyclic permutations].
(3.37)

There are eight of them corresponding to the 24 = 4! permutation of the four polari-
zation tensors, apart from the complex conjugate. Inserting the explicit forms we see that

tr (6©(n) £®(q;)) ]/— In)? e'r:

tr( @(q;) (2)(qk)) (L) eilvrtm)

With the symmetric Ansatz of all ¢;(® being equal, (3.37) leads to

3
g (21 / ( ) (n,2 + m2 — 2m.2) - 2cos (yy + 2 +75)  (3.38)
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The last contribution to I, comes from two different momenta appearing twice, ie.

Ii: @i, @%tr (e®(d;) e@(q)) tr (e@(@:) £2(;))
+ tr (e®(q;) e D(G)) tr (e0(Gs) £®()))]
= ;@%@ (L[t 4 (L)), (3.39)

With the symmetric ansatz g; = ¢* the sum can be found as
Collecting all terms gives

4 3\* 1\*
@ .3 [(Z) + (Z) ] (3.40)
d?

@ 2 2, A3 5 1 26 3 [ 1 3 .
= e pl0) — | 3p® 3 p0® — (®)y(2) — — = gin?
Frey R4 —|—(a b)3<p —}-3![tp VE—I—qo @ 3]/6(2 481116

@319 (2 ’
— ¢®712 T cos (v1 -+ v -+ va)

3 [(¢<°>2 T 67 | g 2 B (1 — 3 sint0)

1 1
+ g’ (% + T sin? 0 (-2— sin? 2¢ sin% ) + cos? 6)) + i——g—} ¢ } (3.41)

In terms of reduced variables this reads

frex = (7 - 2o) @ + 3ry?

1 3 3 27 =
—}——-—x3—{—E:vyz(l——?sinzﬂ)—-_—]/?;?fcos(yl+y2—{—y3)

3
-+ % 2t 4 % %> (1 4+ —sin?p (-1- sin® 2¢ sin? 0 + cos? 9))
699 = 3 .
+ s ¥ § V?’ zy? (1 ) sin? 6) cos (y1 -+ 72 + 73)- (3.42)

The xy® term is maximized by choosing § = 0, i.e. n vertical to the triangle formed by
Q1> G2, qs- This drives 2 to negative values. Similarly, the 3 term becomes strongest
by choosing cos (y; 4 y2 + y3) +1. Then y takes positive values. Since for the same
choices the quartic pieces xy® and a2y also become smallest we can be sure to have
minimized the energy with respect to the direction of n.

Let us now study the behaviour of this final expression in the limit of large cholesteri-
city. Then z is again frozen and we remain with

2
f == 3ry? —————]/3y - ‘3‘3 ‘;J4. (3.43)

This is of the generic form
f=ary® + by® + cy? (3.44)

3b 32ac
y=—o (1 + 1/1 — o r) (3.45)

which is minimal at
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with
b
fmin = —4° (E + cy)- (3.46)

The onset of the first order phase transition is at

b
Yo= "5, (3.47)
or
h2
To — 4_001. (3.48)
In the hexagonal case these values are
72 =
hex . A
Y = e V3 ~ 535 (3.49)
1 35
hex — — —— v .130. .
T = & 5am 130 (3.50)

Thus for large «, the phase transition takes place into the hexagonal configuration before
reaching the cholesteric phase at 7, ~ .130. For low temperatures, however, the hexa-
gonal energy decreases slower than the cholesteric. The energies become equal at

Thex«»chol ¥ —28.5.
K> — 0

The reason, why ultimately the cholesteric phase falls lower is the following: Asymp-

totically, by* can be neglected and
2

a
o o2
/ P (3.51)

such that in the hexagonal phase

3.8

fhex —> ‘—m Tz A~ —1.64872,

The quartic coefficient always contains the square of the quadratic contribution plus
additional possible combinations from (3.38). With the normalization (3.8) this amounts
to

a?

‘=%

1%

(3.52)

with the equality sign only for a single momentum ¢ such that all other quartic contri-
bution vanish. The full contour plots of f,.; are shown in Fig. 1. For their calculation
we have taken the extremal conditions

of _ of _
== =0
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brought them to the forms

. 27 = - 16-8-233 (27 + = + &7
y‘“”é’s‘:iv?’(“w)[“rl/l 277-3 (2 tap }

14 9 = 355 7 9 = 9 =
— x — 2) 2 i 1 — 2
V(r+3cx ]6V3y+3_43y) 2y(1+321/3y)( 16V3y)}
and iterated from (z, y) = (—.281, —.376) a few times. The result can be inserted into
(3.42) at 6 = 0 and yields the minimal free energy (see Figs. 1—3).

3. The Body Centered Cubic Phase

Here we assume

6
p@) = ¢ 3 (e@)(q;) €2 + c.c.) (3.54)
i—1

)

where g; are the six vectors in the reciprocal lattice of a body centered cubic crystal.
Due to the absence of ¢(®, this phase is optically isotropic. The reason why ¢{® may be
dropped is the decoupling from ¢! in the pieces linear in ¢®), i.e. p0p®2, gOER3 gre
all absent in the free energy. This will be seen in detail in the next section. The momenta

N
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may be chosen along the face diagonals of a cubus. The polarisation vectors are assigned
according to the following list (see Fig. 4).

(& — @) Iy =

h=— = #) L= (td) g
Q3”—V§ 3_'2 _Véy
(3.55)

*—L(f"FA) l_l(ﬁ_f)_.._i*:
q4 V? y 4 2 J V-z-
1 1 7

s A"]—é’ ls = — A—é'—'*“—_—i'
1 1 T
:—':é QA'/'\ l:*—-"%—-ﬂ"f——:h

where we have dropped the phase factors ¢7:/2 of [;, for brevity. The resulting scalar
products are given in Table 1.
Notice that the sealar products (3.29) in each of the four triangles

123, 165, 264, 354 (3.56)

have the maximal norm 3/4. This is important for the precocious onset of this phase.
The bars on top of the numbers account for the fact that for these momenta the complex
conjugate piece in the expansion (3.54) is required to close the triangle.

Consider now the different contributions to the free energy. Since there are six lines, the

quadratic energy is
2

Po= 5 00 (= ) g (3.5

where we have assumed all ¢;® to be equal, for symmetry reasons. For the cubic in-
variant (3.29) we form the scalar products (I,l,) (I.l;) (Il,) for each of the triangles
(3.56)

3\
123: W) (L) (k) — (74—) oo
_ 3 3 3 .
165: (1) (1¥1s) (1) = (—Z) (7—) (z) s
(3.58)
- 3 3 3 )
%4 W) (621 4 = 3 (= ) (~ ) e

- 3 3\ 3 .
354 : (lsls*) (Is*1) (L) = (_Z) (_Z) Te¢o
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The scalar products ((I;l;). The lower numbers stand for ({;l;*). The matrix is symmetric for the
upper and hermitian for the lower elements. The angle « is given by « = arc cos (1/3).

L1
(L) 2 3 4 5 6
L)
1 § ele _3_ glo 1 .?.’. et - .1;
4 4 2 4 4
1 1 1 | 1 3 .
- = —= - —=-e
4 4 2 4
2 0 ?. eia J— 1 1 § e—i“
: 4 4 2 4
1 l - § el — ..1_. 1
4 4 2 4
. o | 3. |t 1
4 4 2
1 1 - E e—ia _ 1
4 4 2
4 o |1 1
4 4
1 —_— e-—iﬁ —_ § e'l.a
4
5 o |-1
4
1 _§ et
4
6 0
1

Hence (3.33) becomes

3 3
99(2)3 6 (Z) 2[cos (3x + y; + vy + v3)

The angle « is given by

x = arctan 22 = arc cos

4 cos (—3x 4+ v + ¥5 — V)
4+ cos (3x — s + Y1 — Vo)
+ o8 (=3 + y3 -+ ya — v5)]-

3

x = 70 . 529°.

(3.59)

(3.60)
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The quartic invariant consists again of the square of the quadratic piece
(1222, (3.61)

Next there are the contributions of pairs of different momenta of the type (3.39). A
short look at Table 1 shows that these are

3\t 1\¢ 1\¢ 1\¢ 135
(2)4 —_— R pR— —_— = — (2)4 .
T ey
the first 12 coming from adjacent, the last three from non-adjacent pairs of momenta in
the tetrahedron (see Fig. 1).
Finally there are new contributions which were absent before: They come from closed

quadrangles the momenta of which add up to zero: (1643), (2356), (4512). They enter
the quartic invariant as

) tr {e®)(qy) £®(gs))
(4s)) tr (e®(§s) e®(Gs))

¢1) e (@) tr (£02(qe) e (§s)) + c.c.]

2 (LL)? + (L)% (L) -+ (L) (I*))? + cc].  (3.63)

Alltogether there are 24 combinations for each quadrangle apart from the total reversal
of all momenta. Inserting the vectors from Table 1 we see the square bracket to become

I 4 1 4
(1643) -(—i—-) 6—4':“ + (—2—) e4i°‘ —]— (%) :I e“?’ﬁ?a"’)’l“?o) —IT" c.C.
(2356): _ E ' et | .?_). 43—4ia + 1 ! einr=rstrd | g.c (3.64)
[\ 4 4 2 e ’
(4512): (%)4 e is | (%)4 elis | (_;_)4 ei-n—ntrr) L co.

such that for all equal @;(¥" s:

81
I,: @9‘2’4(1 + 5 08 406) [cos (1 + v3 + V4 + V)

+ cos (Y3 + ¥s — V5 T Vs)
4 cos (—y1 ~ y2 + ¥4 — Vsl (3.65)

Because of (3.60) we may calculate cos 2« = 2 cos? & — 1 = —7/9, cos 4a = 17/81

81 25
(1 -+ 5 °o8 404) =g (3.66)

The six phase angles in (3.59) and (3.65) are not independent. If we call the three combi-
nations in (3.65) successively 2y, 2y,, 2x,, then the bracket (3.59) simplifies to

fcos (B 4 1 + x2 + 23) + €08 (B — x1 + 22 — X3)
+ cos (Bx + 1 — x2 — x3) + 08 Bx — 13 — x2 + 23)]. (3.67)

4 Zeitschrift ,Fortschritte der Physik®, Bd. 29, Heft 5
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In the normalization (3.8), the final energy has the form:

foce = b1 + 2 P2 o0 (B + 7+ 12 + 70)
+ cos (3x + 1 — X2 — X3)
+ €08 (3 — y1 -+ %2 — 1a)
-+ cos (3o — 1 — %2 — X3)l

y? 135 25 )
+ 3 [36 -+ 16 + 23 (cos 2y, + cos 2y, + cos 2y3) | . (3.68)

The quartic terms can be collected to

. .
1—1"65 [1422 + 25(cos 2y + cos 2y, + cos 24)]. (3.69)
The most precocious onset of this phase is reached for the maximum of the first bracket
which lies at y; = y, = 3 = 7 with the value

23
—4cos 30 =4 o7 ™ 3.41 (3.70)

which is quite close to the upper bound 4. We therefore take this choice of angles such
that

499 - 3

23 =
fuee 0 6192 + VB + — ey (3.71)
This phase sets in at (see (3.48))
1 232
bee 7~ . .
%" = = 159 177 (3.72)
with
23 - 16 -
bee — ~~ .426. .
Yo 3199 V3 ~ 426 (3.73)
Asymptotically it behaves as
a? 41.3
—_ 72 = 2 A2 — 1.9 2. . 4
fbcc m‘} 10 T 199 T 1.5397 (3 7 )

Thus, ultimately, it falls off slower than the hexagonal energy. This behaviour is, how-
ever, academic since the transition to the cholesteric phase takes place much before this
can become relevant:

Thee+>chol & —21. (375)

Actually, as far as the low temperature limit is concerned, the phase choice y; = x is
not optimal. If one uses y; = 7/2, the asymptotic energy (3.74) can be lowered by a
factor (see (3.69))

1422 4175

il NP ) 3.
tam > (3.76)
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i.e. by 11%. The total energy reads

10 449 -3
fbce ~ 67?/ + V— 162 ?14 (377)

such that, indeed,

4.3
Foco 5= — g © ~ — LTl (3.78)

This form would have a phase transition only at v = 0.74 its energy being larger than
(3.71) for small r. It would intersect the cholesteric phase at v &~ 24.5, i.e. after the first
version has made the transition. Thus this second form cannot be realized in the labora-
tory?®).

The contour plots, in the bee phase, for energy (3.71} and for the parameter y of reflec-
tion of circularly polarized light are given in Figs. 1 and 3.

The optical isotropy makes the bee phase a possible candidate for the blue phase. There
is, however, a serious quantitative problem: By comparing the three calculated energies
we see that only for « = 1.3, bee is the only phase between normal and cholesteric. This
value corresponds to a rather narrow pitch much smaller than that of the experimental
samples. Moreover, the second blue phase which is see experimentally does not appear
in this calculation. The ansatz (3.54) will need some refinement®) in order to accommodate

nermal bee N

rex =N
chol=N

oce

T=reduced lemperature
1

1 prase aragram

-2 B S AR B s e w s s NN M R s e e s S
o0 7.0 20
o=cholestericity '
Fig.5

5) Otherwise it would have explained the existence of two blue phases.
%) See Ref. [7].

4*
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both facts. With the bee phase setting in before in hexagonal at larger o (compare (3.50)
and (3.72)) we may wonder whether for small « the latter can move up to higher tem-
perature such that it is reached before the bee phase. The additional degree of freedom
in z certainly helps to lower the energy. For large 7 + 2x, x is small of the order
1/(z 4 2x) and we may approximate the energy (3.42) by

2 27 = 699 9
A —_— Fr? 4 = 3 | oY% o4 __ v
free & (r + 20) (cv i@t 2o y) +3ty" + 55 V3® + o Y 16(T+2“)y4
(3.79)
such that we can use formula (3.48) for the onset of this phase
b? 1 27 r
™ Zac 4 (237 699 9 (3.80)
8  16(r + 2)
or
3.337 5.105\2 [ 54\ |
o= —% T {gTeay T V(“ BETE 233) T (2‘-32) ' (3:81)

For x a .7, this becomes equal to 7,"¢¢ such that below this value the hexagonal phase
is reached before bee. The full numerie calculation moves this « value somewhat to the
left (— x ~ .4) as can be seen on the diagrams of Figs. 1, 5.

1IV. Candidates for Second Blue Phase

In this section we shall investigate three textures which have an a priori chance of being
related to the second blue phase. The first and algebraically simplest one consists in
giving the bec texture the freedom of becoming asymmetric in the amplitudes of the six
momenta. This phase would be an interpolation between hexagonal and bee and might
appear where these phases meet, i.e. around &« ~ 0.6, v &~ 0.1. If such an Ansatz fails
to provide for a lower energy it serves as a useful check for the stability of the symmetric
bee texture. Certainly, the optical anisotropy of any distorted bee texture would be
non-zero. But when cooling the sample, the second blue phase is passed so rapidly that
it may well be possible that the short temperature interval of optical unisotropy has been
missed.

The second option is a further study of other isotropic momentum configurations. Apart
from the tetrahedron the only other Platonic solids with equilateral triangles are the
octahedron and the icosahedron. The momenta associated with the first coincide exactly
with those of the tetrahedron such that no new texture is obtained. The second appears,
at first sight, quite promising and we shall study its free energy in detail.

For completeness we also investigate the properties of a phase interpolating between
cholesteric and hexagonal. It consists of a triangle of momenta plus a forth momentum
vertical to it. Obviously these are the reciprocal lattice vectors of a three dimensional
hexagonal close-packed texture which could, in principle, be observable in a certain
range of temperature and cholestericity. Before going to the calculations it is useful to
give a summary of all energy terms which contribute to an arbitrary momentum con-
figuration:

d2
Fy = 5 9" + (“ - 3) X oot (4.1)

)
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1
F, = %{w(m TR A (1t —5)
R (AN c.c.]}, (4.2)
Ay
Py = (0 + 2. 5O + 1200 5 0 il

-+ 4]/6 pt® ):‘ @i BN, A[(In)? (I1,)? + 3 cyclic permutations + c.c.]

+ 8 5 gi® g @ L[t 4 ¥

i>j
+ 8 3 i P Do AL (L) + (L) () + ) WL + 0-0-]} (4.3)
a)
with the normalization (3.8) this may be written as

f=r+ 202 47Xy
x? . 1 _
T ((lm)ﬂ — ) V3 5 hl ) Q1) 0 e
+ ; (# + 3wy +—x2fyﬁ|ln;4

stf vyl lim) (L) -+ cyel. + ec.c.] + X gyl (LG4

i>j

+ Z LDV_: Yy [ (L) + @) (L) 4 () G4)? + e.c.]. (4.4)

1. Asymmetric BCC Texture

We shall assume a limited asymmetry by putting the direction n orthogonal to the 123
triangle, i.e.

1 N
e L R (4.5)
and assigning to the sides 123 and 456 a different amplitudes y and 2, respectlvely The
quadratic energy is then

Fy = (v + 2x) 2% + 3r(y® + 2%). (4.6)
For the cubic energy we have to evaluate
3z [gﬂ P (|l,-n\2— l—) + 22 ¥ (]l,-n|2~ —1—)] . (4.7)
i=1.2,3 3 i=1.5.6 3
Using (3.55) we find
1 1 1 3
Y e M = 2 — 2 .
3x[y3(2 3) z‘%(G 3)] 2.%(y 2%) (4.8)

which vanishes for the symmetric bee texture, as it should.
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In the triangular parts we have to distinguish between one triangle 123 and the three
others (165), (642), (354) which give
g\
2 (Z) V3 {y® cos Bx + 1 + 72 + 73)
+ y2’[cos (—3a + y1 + ¥s — V)
+ €08 (3% — s + ¥4 — Vo)

+ cos (=3 + v + ya — ¥} (4.9)
Thus the cubic terms together are
1 3
— —2® (g — 22

+ % V3 yly? cos B + 11 =+ 22 + 13
+ 22 cos Bx — 71+ y2 — 23
+ 22 cos (3 + 1 — %2 — 2a)
+ 22 cos (3x — x1 — 22+ 2l (4.10)

which may be compared with (3.68) in the symmetric case. Consider now the quartic
pieces. First there is 1/8(x%> - 3y* + 32%)%. For the next term we find

3 3 3 3 x?
Sl Y qmpt 42 3 mf] =l ) = 202y, (@1
T k2 i = (23 +25) 15 @+ G

Then we evaluate the triangular contributions. For the triangle (123) we find
aof3V 1 ..
— XY 3 Z E’ Biatilyityatys) + c.c. (4:12)

while the triangles (165), (642), (354) give

/3 3\2 1 iy
JZ_ 233 (Z) E [e—3m+z(y1+r5—m + c.c.
< g3toti{=patyi—7e) + c.c.
_|_ e*3i0&+i(;)3+7471’5) -+ C.C.] (413)

such that together
9 -
61 V3 ay[3y? cos (B + 11 + 12 + 25)
— 22 cos B — 1 + %2 — Xa)
— 22 cos (3o + y1 — X2 — X3)
— 22008 (B — 1 — x2 + 23)]- (4.14)

The pairs of momenta give simply

oo [ 4] e G 20+ 58 + )

- % [41(y% -+ 24) | 98y22]. (4.15)
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In the quadrangles one always has two sides of type y and 2, respectively. Apart from
this the terms are the same as in the symmetric case:
Collecting all quartic terms we have the free energy

1 21 13
—_— o 29,2 o p2s2
fo=g @+ 15 o + 5 ©7

+ % ]/§ 2yl 3y? cos (Bx + x1 + %2 + ¥3)
— 22 cos (Bx — 1 + 73 — ¥3)
— 2 cos (Bx + 41 — ¥2 — Xa)
—2%2co8 (B — y1 — y2 + ¥3)]

699 | y? - 22
3 (¥* + 24 + 5 [1446 + 50(cos 2y, + cos 2y, -+ cos 2y,)]. (4.16)

3

_.!_

The agreement with the symmetric bec phase was noted along the way. As an additional
check wesee thatfor 2 = 0 and y; + x5 + x3 = @ —3x wereobtain the hexagonal energy
(3.42). With this expression interpolating between hexagonal and bee textures there is a
chance of finding a lower energy in a region close to their respective phase transition
line. Since the general expression is hard to handle analytically, let us try for a configu-
ration close to bee by setting ¥, = y, = y3 = #. Then the energy is

s 3 23 -
f=(r 4282+ Bely? + )+ o+l — P+ 55 By 39

1 1 13
+ =t =2+ 1—639222 + %?%]@xy(y? — 2%

699 399 -4
3

(g* + 2% + 2. (4.17)

In the limit of large & we may freeze 2 — 0. In order to] see the deviations from bce
let us set

2 =yt + d2, (4.18)
Then the energy reads
499 . 3 23 = 3, 699
[ = foce + 3td® + ( 162 y* - 5 V3 - Z.y) d? + = d*. (4.19)

But due to the extremality of bee, the d? term vanishes. There remains only the quartic
term in d which is positive definite. Thus for & — oo, the distortion of the bce phase
leads to an increase in energy. If is easy to see that this conclusion remains unaltered
by taking the next leading corrections 0{1/(r -+ 2x)) into account. Keeping terms in «
and z, the energy has a slightly reduced coefficient of d*:

699 9 i 23 \2

— Y 4

$ 16 7 13 (1 tTog? ) 4 (£20)
T + 20 + 5 y2+—16d2

which at the level of this approximation is far from changing sign. There is however a
tendency towards destabilization such that a numerical search for smaller x seems in-
dicated. Similarly we may discuss the neighbourhood of the hexagonal phase. There we



242 H. KreinerT and K. Maxk:

can write for large v - 2«

. 699 ay 974
w .3

where z &~ —(3/4) y*/(tr + 2x) is the asymptotic form of z in the hexagonal phase.
Consider the point a ~ 0.7, 7 ~ 0.177 where, in this approximation, y ~ —0.723,
x ~ 0.248 meets with the onset of the bee phase. There the coefficient of 2% is

0.37 — 0.67 4 1.3

3 =
=~ fnes — xz2 ;1;% V3 yz? — y22? (4.21)

73

which is stable but goes in the direction of destabilization due to the negative y term.
We have performed a detailed numerical search for minima of the asymmetric bee phase
but found none which lies lower than bee or planar hexagonal as shown in our phase
diagram.

3. The Tsocahedral Texture

There are fiften independent vectors. Because of cubic symmetry we may take the order

parameter without ¢(©:
15

Qup(x) = Y e3(§;) e + c.c. (4.22)

._.

Aligning the coordinates as shown in Fig. 6 we have with £ = 1,2, ..., 5

(jkza,(cos(Zk— 1)oc:ﬁ—|—sin(2k——1)ocg)—bé’

§si = —sin 2k & + cos 2ka g (4.23)
G = bcos 2k — 2) x & + sin 2(k — 2) « ) — ad
where
e 1 1 5415
TR YT, 3 Zsina "V o~ 08807
10
(4.24)
S S N _l/ —15 _
b=)1—a 2a,sm10w2008n =g = T 0,5257.
10
The polarization vectors associated with these momenta may be chosen as
L. = T/l—é- [b(cos (2k — Yo ® + sin (2k — 1) & §) + a2
+ i(sin (2k — 1) a & — cos (2k — 1) « §)]
my = ——1: [cos 2k & -+ sin 2kx G — 2] (4.25)

V2

n, = [ (cos (2k — 1) x & + sin (2k — 1)« §j) — b2

V2

+ d(sin (2k — 1) & & — cos (2k — 1) & §)].
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The quadratic energy is simply

fo = (v + 2a) 2 + 167y°. (4.26)
In the cubic term we have to form (see (4.4))

fs =13y L) MGl L) + o (4.27)

with a sum over all triangles. There are 10 of these (see ¥ig. 6) with polarization vectors
Lym,l* ~+ b cyclic terms

mynsns* -+ B cyclic terms.

Using the scalar products of Table 2 we find

(tymy) (mols*®) (I*) =

—

i)’_ ¢35
4

3\ .
(mln3) (n3n5*) (ns*ml) = (Z) 318

(4.28)

where

5 715 79
572 €08 4 = TR (4.29)

2
—, cosf} = —%, cos 38 = —

V5

For symmetry reasons, we allow only for a common additional phase for each group of
vectors [, m, and =, respectively, such that (4.27) becomes

p = arc tan

— 3
= —1/3 %5 (%) 2 [cos (3x -+ ) + cos (3x — ppu)]
- 3
= —‘V3 ¥*5 (-;) 4 cos 3x COS Yy, - (4.30)

The most precocious onset of this phase is obtained by choosing y,, = 0 where f; is
maximal:

fo = V3 y320( ) — 15 ~ 84Ty3. (4.31)
The quartic energy contains again the square of the quadratic piece
1 2)2
5 (1542)2 ~ 28.13. (4.32)
Next, there is the sum (see (4.4})

1, .
=yt X (LG 1 LR, (4.33)

i<j



Table 2

The sealar products between the polarisation vectors of the icosahedral texture (see Fig. ). The
lower elements in sach box correspond to the column vector being complex conjugate. The indices
can he any number from 1 te § modulo 5. The square brackets in the exponent are a short form for

the funotion arotan.

(i::f] - b 1 o, My ey,
I, 0 /4 e ilal¥3] iz
1/4
fisa 1/4 1/4 {5 — ¥5)/8 g2l
54 o215 a4 eil2l13] —{3 + ¥B)8
. (3 + ¥3)s —(8 — ¥5)/a (3 — ¥5)/s
—(5 — ¥5)8 £l (6 + ¥5)/8 #it2d —(5 + V&) /5 2!
lita (3 +V5)/s Fif2 —(3 —¥5)/8
(5 - ]‘E}f‘ﬂ- afl2] (5 + }5)f8 iin
[ 1/4 (5 -+ V5)/B e —(5 — ¥5)/R e-ilm
34 e~ /Y5] —(3— 155 (3 + V58
- a4 ¢ 2115 0 (5 — Y58 12
1/4 (3 -+ ¥5)/8
. (5 + ¥5)/8 &-ie —(5 — J5)/8 ol ~1j4
(3 —V5)/s (3 + ¥5)/s —3/4 £l2/V5]
isg —if2 —(5 + V5)f8 e +if2
(3 —15)/s
4 -[3 - ]-"EHH (5 + ¥5}/R T2 34 #H2V5]
{5 + 15)/8 el (3 —15)/8 —1/4
Miisq 14 —(5 — 15)/8 <5 (3 + ¥5)/s
3/4 e~ i8] (3 + ys)fs (5 — 15)/8 it
B; +if2 (5 — ¥5)/8 e-iltl b
—(2 + ¥5)/2
Wi (5 — ¥5)/8 -2l (2 + ¥E)8 —(3 — y&)s
(3 - ¥5)8 —(5 — ¥5)/8 #A31 (5 + ¥5) /5 erlel
s —(3 — 15)/8 /4 o/[2/75] 14
(5 + VB8 et 14 — 34 e 1/VE]
vy (3 —13)/s i/2 —1/4
—(5 + 18)f8 1t — 34 L2115
Wit (5 — 15)/8 «i121 —1/4 (8 —18)s

(% + ¥5)/8

gy ¢~ eV

(5 4+ ﬁ:”'g p-ilE]
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This may be calculated as follows

o sfped) ol )
03+ ) 0 (55 (550)
o ol g) o ) (T )

o )

such that (4.33) becomes

prft s (50 (51 (51 (1)

-72-35— ¥t~ 9.375y8. | (4.35)

It remains to evaluate the quadrangle contributions
y Z [@L)? (L) + (L) h)? + (Tile)? (L)?] (4.36)

where [ stands collectively for I, m, or n vectors in each of the b different quadrangles.
These may be grouped into three different combinations together with their cyclic
permutations

Lingny*L* + 4 cyclic

li*mglym, + 4 eyclic (4.37)

mgnymqong + 4 cyclic.

Only the first in each group has to be calculated separately. We see

— /_ 2
(l1n5)2 — (5 v5) eziarctanz

2
(ny*1,*)2 = ( 3 ) e2iarctand (4.38)



Lattice Textures in Cholesteric Liquid Crystals 247

E\2
(lln3*)2 p— (5 —t;]/5) ¢—Ziarctan2

2
(n5l2*) — (5 —;Vg) e 2iarctan?
(4.38)

3\2 i -
®) — —2aarctan2/l/5
(Lis™*) (4) €

(n—n3*)2 == (E)2 e—2iarcta.n2/]/§
’ 4
such that the first five quadrangles give
. 3\'79 ({5 —V5\' (5 +VB\Y 7
Za.5.9| (2Y 22 ki
£f 52[ (4)81 (( 8 )*( g ) 5| (4.39)

Fortunately, our final phase choice is symmetric enough to give the same result also for
the second group

(I *my)2 = (%)2 ¢—2iarctana/y3

(myly)? = 3)2 e—zzarctam/[/E

2
(ll*m4)2 — 3 ) ¢ 2tarctan?
(4.40)
=\ 2
(m5l4)2 —_ (5 _ZV5) g—2iarctan?
=\ 2
(ll*l4)2 —_ (5 _81/5) e2arctan2
=\ 2
(m5m4)2 —_ (5 _81/5) pliarctan
as well as the third group of quadrangles
=\ 2
(m4n4)2 — (5 —_8V5) e¢—2iarctan?
=\ 2
(m2n3*)2 — (5 _8V5) e~ 2tarctan?
2
(m4m2)2 — (5 _;VB) e2iarctan?
2
(n4n3*)2 — (5 _gl/g) eEial‘Ctan2 (441)
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(myng®)? = (72_)2 eiarctan2/V5

(4.41)
(mgmy)? — (2_)2 J—
Thus the quartic terms add up to |
fa= (2—? + % — %) ¥t (4.42)
such that the full icosahedral energy reads
f= 15+ 2 yTE s+ 22, (4.43)

We now see that this phase has no chance of being realized in nature. Its onset temperature
would be

75
2.3

To

~ 035 (4.44)

such that at moderate 7 the system prefers to be in the bce phase. Asymptotically, the
energy falls off faster, namely with

22 (4.45)

but before the two phases can become equal, which would happen at around
Thee—icos & —44.7, (4.46)

the system has already made its transition into the cholesteric phase. One may wonder
wether there exists an intelligent choice of polarization phases which could succeed in
pressing the icosahedral texture energetically below the bee phase. It is, however, easy
to see that this cannot be true.

For suppose we would succeed in increasing the angular factor in the cubic term to unity
and simultaneously give all quadrangular contributions (4.38), (4.40), (4.41) a negative
phase (—1), then (4.39) would double. This procedure would decrease the energy to

2710 , 1
< ¥+

23 -
frv. = 15y - = V3 53 1 = (15° + 15) (4.47)

where we have written the coefficients in such a way as to permit a fast comparison
with the bee expression (3.68) (with the numbers 15, 10 counting the number of lines
and triangles as compared to 6 and 4 in the bee phase). Even this lower bound would, at
moderate 7, lie above the bee phase since the onset temperature would be

35
Tg — Hz—ih]-.- ~ 119 (4.48)

i.e. below 7,°¢ and the two energies would not intersect after the cholesteric phase has
been reached.
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4. The Hexagonal Close-Packet Texture

With many liquids crystallizing into a hexagonal close-packed texture we find it worth-
while to investigate the free energy also for this texture. In real space, this is generated by
in the x, y plane by the primitive translation vectors

a, = L Vg:fc
1= Ey—l—?

azzag

(4.49)

just as in the planar hexagonal case. The vertical array follows from multiples of the
third vector

a; — c2 (4.50)

plus a shift by d = a,/2 + a,/2 + a4/3. The reciprocal lattice concists of

bl :—_‘.2—@
]/3a
2 & 13,
b, —E(—E + 5 y) (4.51)
b3:“—1—2
c

such that there is again a triangle of momentum vectors ¢, , 3 as in (3.25) plus a forth
momentum orthogonal to it

3a,
qs = 1/2_Ca g. (4.52)

For the particular ratio ]/§/ 2 a = c¢ (not ideally packed) this is of the same length as the
others and contributes to the ground state energy.
The order parameter is now taken as

4
Qus = ¢ Wem) + 3 ¢,Meli(ds) (4.53)
i=1

with ¥, = 1/ ]/2 (@ + 7g) and the reduced amplitudes =z, 7, 5 3, 2. For symmetry reasons
we shall assume all y’s to be the same.
Obviously, such an ansatz interpolates between the cholesteric and simple hexagonal
phase and may give a lower energy in the boundary region between them. The quadratic
energy can directly be taken from (4.4)

fo = {v + 20) 22 + (3 + 23?). (4.54)
For the cubic term we have the hexagonal contribution (3.42) plus the cholesteric piece

1 1 1 1 1
2 2 — 32— (n.2 2y ) = 3402 [ in2
3z (|l4ni ‘3) 3wz (2 (n,2 + n,?) ‘3) Sz (2 sin? § 3) (4.55)
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such that
23

3 3 . 27
f3=-§-—i—m( y—22)(1—§s1n20)~§§]/3y3c08(y5+y2+y3)- (4.56)

In the quartic energy, the following new pieces have to be added to the hexagonal ex-
pression (3.42):

1.) From I,2 = (22 + 32 + 22)2
there is an additional
fa: % (22%2 + By%2* + 24) (4.57)
2.) Since L]t = sin® 6
there is a term
fa: % 2222 sin% 0 (4.58)
3.) Using
T 7
(l4l1) - —2_, (l4*l1) pouset _-HE
(4.59)
i . -
LI\ = it ﬂ:mrctanl/l/:} = —(L*1
() =7z (1t
one has

3
Z ; (1LL1* + %) y322 (4.60)

Alltogether, the quartic energy becomes

1 21 | B | .
f4=§x4 -}-E:ﬁ [1 +—s1n20(-2—sm22¢p smzﬂ—i—cos20)]
699 3
-+—;w—~—Vhw(L—EaMQmmwr+n+wg
1 1 27 3
e 22 T 2e2 1 D 2.2 i 4.
+8z+4xz+32yz—}—4x281n6 (4.61)

The cubic energies are maximized by setting v; = x, 6 = 0 such that we can restrict
our attention to the expression

3 —
fmmu+%w+uw+ﬂ+i+4%w—ﬂ+ﬂmw

1 21 699 1

27
Y. e 2 2 — 4 2.2 92,2
+8x+16x + 3y+ ]/3xy—}— P 4xz+32yz.
(4.62)
There is one observation which can be made immediately:
For large «, fu.p, has the asymptotic form
699 27
fnep — t(3y? + 2%) ]/3 ¥ A — —|— — 24 -+ 35 Y22, (4.63)
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With respect to z, there are two minima: z = 0 which is the hexagonal phase, and
= —47 — — 4.64)
gV (4.64)

which is the candidate for the hep phase if y == 0. This solution can exist only for suffi-
ciently negative = << —27/32y% But inserting (4.64) into (4.63) we find only y = 0 as a
possible minimum of f,., which corresponds to the cholesteric phase. Thus only the
influence of x gives a chance to stabilize an intermediate hep phase with y and 2 5= 0. A
computer search for minima, however, eliminates also this possibility.

V. Comparison with the Bilocal Field Formalism

The approach used in this work took advantage of the simple decomposition (2.17) of
the spin 2 polarization tensors £(){(g),; into polarization vectors {. This gives a consider-
able calculational advantage over the method of HS which employed an expansion in
spherical harmonics and had to rely on Clebsch-Gordan coefficients of angular momentum
I = 2. For completeness, it may be useful to give the translation between the two me-
thods. For this we multiply our tensor fields (),; by an arbitrary unit vector and intro-
duce the bilocal super-field

d(n,x) = 1/815 N Qs (2 ): I/— n.npe (§;) 9% + c.c. (5.1)

Instead of the polarization tensors there are now bilocal polarization functions

Y,"™(n, §) = V— n,npel(q) . (5.2)

These can depend only on the polar coordinates 6 and ¢ of n in the § dependent frame
U, Ui, ¢. If these axes are rotated into &, §, £ directions such that

n = (sin 6 cos ¢, sin 0 sin @, cos 0) = (=, y, 2) (6.3)

we see from (2.17) that ¥, reduce to spherical harmonics:

Y,®(0, ¢) l/ 15 1 (@ -+ 7)? = Y,00(0, p)*

15
Y000, ) = |/ o= (@ + 1y)' = Y006, 9)* (5.4)
51
Y,® = |/ — = (322 —
0, 9) = |/ =5 B2 — 1)
in the normalization
f d cos Ode Y ,\™ (8, @) Y™ (6, ¢) = 0ppe- (5.5)
This can also be verified directly by using the angular average relation
dn @ _ 1
1—;[— n gy ity — 4 = 15 (6“ﬁ6y5 —!— 5a655v + Bay(‘)'ﬁ,;) (5.6)
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and calculating

[ dn¥,™(n, §) ¥, (n, §)

15 dn X . . o
— 7 [fz; nanﬂnyn6:| 8&?)(q) ngg) (q) — tr (£(M)(q) 8(”3) (q)) — 6mm, (5.7)

due to the orthonormality relation (2.18).

The super-field &(n, ¥) can now be employed to construct the free energy (2.1)—(2.3).
Let us start with the invariants I, I,, I;. Then, certainly,

fdxfdn@z(n, x) = fdacg t$8)5@us @y :fdx (tr Q2 - % (tr Q)Z) =1,. (5.8)

The cubic energy can be obtained from

[ dz dn @%(n, x)

3/2
:fdx l;/\g"?3 Ry, n%) 47 (1_5) QalazQag%Qasae
47 8n

1
— (4) [ (4) 4) I 4 (4}
fdx 7 [6“10‘2t°‘3ﬂ155°‘e 6“1aat"‘2“4“5°‘o aal“at“zﬂs%“e §a1a5tm,gx,a4ae aalaat“zasar’ﬂs]

1532
W 4 (—) szlagQasuQ“sao
87

= f dx t2..,, 4n (3-5—)3/2 Qa0 @ae @
= ay ey 8 Aoy Wagds Tosxg
T

15\32 1 15\32 8

Similarly, the quartic energy follows from

f dz dn @*(n, x)

dn 15\?
=fdx [fz—y; My na!] 47 (8_.76-) Qalaz' e 'mexs

= dx__l_[a 8 A 8, B ]4n 1_5.2Q coee e Q)
9 Rpg iy oy A3&gleg oty 87[ X102 &g

15\2 1
X [48 tr (@4) + 32 tr (@%) trQ -+ 12 (tr @22 + 12 tr (Q2) (tr @) + (tr Q)*]

15\2 36

where we have taken advantage of the identity (2.5). The derivative terms can be ob-
tained along the same lines: The ¢ term is directly

[ dn 2P 2% = 8,Q5, 8,05, (5.11)
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For the remaining two pieces we introduce the spin operator in the n representation
S = —mx d,. (5.12)
Then the d term is found as
—z'f dn®S 0D = —2¢,5,Q4s 0,85 - (5.13)
Finally, by using S@ twice we obtain
[ dn(So®)? = 4(8,05, 2.8p, — 68.95, 95Q.,) (5.14)

which combines b and ¢ terms. Thus we arrive at the following alternative way of writing
our free energy (2.1)—(2.3) in terms of the super-field

F,— f de dn (% 2 + 1’4“2—2“/% (90) — —1% (S o) — dDS 9«1)) (5.15)
5 105 2 /g .
hy 945 2 S \
which, may be compared with HS.

% _—— (5.18)

A 5 1 -
5 ]/;7/305 B Y6 (5.19)

W15

=g =7 (5.20)

In principle, the calculation of the free energy in terms of @ fields should, of course, give
the same results as ours. But it proceeds along somewhat different intermediate steps.
For example, the cubic contribution of ¢ involves the integral

[ dnY,®(n, 1) Yo® (0, §5) YoB(n, §). (5.21)

If D%,.(1, q) denotes the rotation matrix from &, §, 2 to the ¢ dependent frame I', I, §,
this can be written as

U dnY,™(n) ¥,"(n) Yzm“(")] D2, o(ly, §1) Dfo(ls, §a) D7 (s, ) (5.22)

The remaining angular average over ordinary spherical harmonics leads to 3j symbols:

5 /2 22\/2 2 2
2 ~ 2 . 2 A
]/475 (0 0 O) (m1 My ma) Dy, (, §y) Dm,2(lz9 q,) Dms2(la’ qs). (5.23)

This is the expression which has to be evaluated in HS for each triangle instead of our
simple scalar products of polarization vectors (3.29). A certain simplification may be
reached by a common rotation which brings I3, into the &, §, £ direction. However, we

5*
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have foun1 it extremely hard to keep track of all relative phases. Since HS do not report
any details of their calculations while changing results as time proceeds it appears that
they have had the same difficulty. The direct assignment of polarization vectors as in our
Fig. 3, however, is quite simple and takes care of all relative phases when inserted into
(3.29). We leave it up to the reader to identify the correct terms in HS’s free energy.

VI. Summary

We have performed an systematic investigation of the free energies of several lattice
textures in cholesteric liquid crystals. The phase diagram shows that for large cholesteri-
city «, the system passes through a region of bec texture before éntering the cholesteric
phase. For lower «, an interval of planar hexagonal texture appears inserted into the
bee phase which should be observables via its optical unisotropy. Finally, for even
smaller & < 0.3, it is the hexagonal texture which sets in first and from which the system
passes directly into the cholesteric phase without intermediate bee. The appearence of
the hexagonal phase for low cholestericity would be an important confirmation of this
type of calculation.

No theoretical indication has been found for a second optically isotropic phase. Thus, the
experimentally observed transition within the blue phase remains unexplained at this
level of approximation.

A second fact which the present calculation cannot account for is the temperature depen-
dence of the wavelength in the reflection of circularly polarized light [ 1].

The inclusion of higher harmonics will be necessary in order to accomodate either of
these phenomena [7].

1t is hoped that this work may supply a useful technical framework for other more de-
taited considerations.

Note added in proof: After completion of this work a paper appeared by D. L. Johnson,
J. H. Flack and P. V. Crooker with very beautiful Bragg reflexes of the bee type for both
blue phases as well as more details on the temperature dependence of the textural
lattice [8].
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Appendix

Scalar Products for Icosahedral Polarization Vectors

From the vectors (4.25) we obtain
Lival; = Lyl = —;— {b3[cos (2n + 1) x cos & + sin (2r + 1) & sin «]

+ @ Fsin(2n + 1) x sina F cos(2h—}— 1) xcos o + 2 (2b + b)
—¥+b — b) [sin(2n 4+ 1) x cos &« — cos (2n + 1) & sin «]}

1 0
— 2 2
=3 (0% cos 2n + a® F cos 2nx) -+ {z’b sin me}
a? 0
T 9 (1 — cos 2nx) + {cos 2nx -+ 1b sin 2mx} (a.1)

where here and in the following equations the lower alternative refers to the right hand
factor (here I;) being complex conjugate. Using

a? = V5 +_1, cos 20 = Vi:—-l-, o8 Bx = —cosS & = —]/5 + 1,
2715 4
(A.2)
cos 6x = —cos &, cos 8x = cos 2«
we see directly forn = 0,1, ..., 4:
1 = - 1
Lodi =0, -, (3 +15)/8, 3--75)/8, <. (A.3)
1If I; is complex conjugate, a little more work is necessary. With
_ 4, —_— 4 ,— e
b2 — V5__1, sin 26 = V—5 l/VO - 1, sin 4 = sin & = E I/V5_— 1!
2 ]/5 2 2 2 2
' (A.4)
sin 6x = —sin « sin 8x — —sin 2«
we evaluate:
Li* =1
a? 1 {1 Y5—1
gk P . _ 11 )
Ll 3 {1 — cos 2x) + cos 2& + ¢b sin 2x 5 (2 + 3 + z)
—_ _Z_ eiarctan E/VE
a? _y 1 {3+Y5 V5+1  J5—1
Lk _ — —
liiol; 5 (1 4+ cos &) — cos o - 2b sin « 3 ( 1 3 41 5
— VS —1 Vg g—iarctan? (A5)

8
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2
Lili* — 32- (1 - cos o) — cos o — ibsin o = (lli*)*

(A.5)
2
L ;¥ = % (1 — cos 2x) 4 cos 200 — @b sin 20 = (I;4,0;*)*.
The scalar products among m vectors are very simple:
1
Myl = My = 5 (cos 2na I 1)
% 5—)5 5415 5475 5—J5)
! 8 8 8 8
={ , B i (A.6)
. 3+15 3—15 3—15 3+1/5|
8 8 8 8 )

For the n vectors we can take the same forraulas as for the I’s, except that we have to
substitute b — a and @ —> —b. Therefore

2

b 0
Risnlti = 5 (1 — cos 2na) + {oos 2nx + 1a sin 2n(x}' (A7)

The upper elements are simply b%*/a? = (‘3 — ]/5)/ 2 times the corresponding ;. ,l;, i.e.

3—75 11 3—75

Ripntt; = 0, 3 s Z Z’ _8— (A-S)
The lower parts need some calculation:
nini* =1
b2 1{3—15 V5—1 _1/5+1)
¥ o (] — 1 Si - |
N7 5 ((1 — cos 2x) -} cos2ax - ia sin 2«) 3 ( i + g — ti—
54+1 - .
— V ;_ V5 ezarctanz
b2 1 {1 B41 4
ni+2n,-*:5-(1-{—cosa)——cosa—{—z'a,sinfxz-2—(§—]/ 2+ —1—-%—)
3 . -
. ~——zarctan2/l/5 Ag
1 (A.9)

Nisahi ¥ = (n,~+2n,-*)*
Nig* = ()%,

Let us now turn to the mixed products.

Livam; = lymy = -;— [6cos (2n — 1) x F @a + v sin (2rn — 1) «]. (A.10)
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Here we use

a = 1 = (_BOS(X, cos3a=cos7a=—cos2a#—V5—1,cos5cx=—1,
2sinx  sin 2x 4
(A.11)
: : : V5 :
sin 3x = —8in 7x = gin 2a = 3 a, sindx =0
and find
1 . .
lim; =3 (b cos & -F 14 — 1 8In &)
1 . ; sinx 4 a
— — VP2 cos® 2 — it Sl
=3 Vb2 cos® & - (@ + sin «) exp( 7 arctan v )
1 ) ) 2sin? x + 1
=5 (1 4 asin &) exp (~z arctan W)
o 1F
1 exp | —7 arctan V5)
1 1 1 — 4 — 2cos2x|\ 4 2
=3 :|:§- exp | —? arctan — 9 008 2 = o 1/5_1
1 &P (z arctan 3 )
(A.12)
1 . _
Ly = 5 (b cos « F fa + ©sin &) = ([;n;*)*
1 . .
lisom; = 5 (—b cos 26 + 1a + 7 sin 2«)
1 - ) sin 2o + @
— — — VB2 cos? 2 )2 — -
=—3 b2 cos? 2& + (@ F sin? «) exp( 1 arctan B cos 0n )
1 ) . sin? 2x T cos «
=7 (1 F @ sin 2x) exp (—z arctan 2 P )
3—15 . V5—1
[ ——g exp (——1 arctan —2—)
=3 _ -
5
_5__}‘_]/_59)(1;) —17 arctan _—1/_5‘)__+—H
8 2
1 . 1 { . V541
lam; = 5 (—b F ia) = — 5 eXp (iz arctan 3 )
1 : .. :
liym; = -2—(——6 cos 2x F ta — 7 8in 2ux) = (I %)*.
By changing -+ a and a — —b we recover
1 ,
Nipg; = = [acos (2n — 1) x4+ @b + ¢8in (2rn — 1) o] (A.13)

2
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such that
nm; = -:—l— (1 & b sin &) exp (—-i arctan sm(x—:Fb)
2 @ COS &
[5 ;V5 exp (—i arctan il/é;—-l—)
3 - =
i + 15 exp (—z' arctan I3+ 1)
i 8 2
niam; = (ngn*)*
{ .
njotty = —— (1 4 b sin 2x) exp | —7 arctan w
2 a cos 2
3 : 9+ 15
Y exp (—z arctan 5 )
— ~ (A.14)
—1 arctan V5 +1
— eXp|—tar 3
1 . 1 . V5 —1
il = = (—a + 7b) = —3 exp (:Fz arctan 3 )
Nipgt = (Rpsgmi™®)*.
Finally, we may calculate
1
Livanty = Lyt = 5 {ba[cos (2n -+ 1) x cos & + sin (2n + 1) « sin «]
—ba F [sin (2n + 1) a sin x + cos (2n + 1) x cos «]
+ 2(a F b) [sin (2n + 1) x cos x — co8 (2n -+ 1) x sin «}} {A.15)

such that we find, with

2 1
b= e — ., ba(cosa 4 1) —cosa, (@ --b)ysina = cosx, (A.16)
sin o V5
the scalar products between ! and n:
1
lznv — ZFE

li+1ni =

[ba (cos 26 — 1) T cos 2 —+ #(a F b) sin 2x]

po| = ro| —

[—b sin &« F cos 2x -+ z'(cos o I %—)]

' 2 5—1 -
—co8 20 4 2 M [ _V_S_.__. ]/5 ¢—tarctanl/a

2
= ) (A.17)
Z_cosa—l—l/.‘l [Z_3_|_1/5

I

2 )
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lisoli = % [ba(— cos & — 1) + cos & + 2(a F b) sin «]
; . .3—15
5 (@ — b) sin o -
—cos & | -;— (a + b) sinx _ 5+ V5 g—iarctanl/2
8

Liyam; = —;—[ba(—— cosx — 1) 4 cos o« — 2{a F b) sin &] = ({;.om;)*

1
Livan; = > [ba(cos 2x — 1) F cos 2x — #(a F b) sin 2x] = (l;.n:)*.

The results can be brought to a more symmetric form by multiplying all m vectors with a
phase factor

B —
m; — Mm; exp (z arctan V 3 1) (A.18)
and by changing all » vectors according to

This has the effect of making all real parts of the polarisation vectors point in radial
direction out of the icosahedron. The final form of all scalar products are shown onTable 2.
The simplification follows from these phase relations:

]/5 — 1 ]/§ +1 =
arctan 5 -+ arctan 5 =g
5—1 Y5 —11 =a
arctan —y arctan — g Ty arctan 2,
~ _ (A.20)
arctan V5 ; 1 — arctan ) _;V5 = ——;E + arctan ]/_25’

5Y5 + 11
2

5—1
arctan ]-/———— -+ arctan = 7 — arctan 2.

2
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Erratum

Polarization Phenomena in Elastic Electron-Proton Scattering: by M. KopavasHi, Fortschritte
der Physik 27 (1979) 463)

The signs of K'¥x with ¢ = 1, 2 should be minus instead of plus in Egs. (28) and (29). Corresponding
to this correction, Fig. 10 should be replaced by the new one the paragraph (c) at the end of Sub-
section E of Section 3 should be replaced by the following:

“The other types of polarization transfer in the scattering plane are smaller than one percent at s
higher than 2 GeV?, except 4, and R;’® with involve the longitudinal polarization of electrons in
the initial and final states respectively. 4, and R,/ are significant at medium angles (6 = 60°
~ 120°) and is as large as 0.1 ~ 0.2 at high energies.” :

The author would like to thank Drs. C. E. Carlson and F. L. Gross of The College of William and
Mary for pointing-out an erroneous feature in Fig. 10, which has led the author to correct in the
above error.

—. L,__‘l-l_—_':i‘:"—
O T T rr-1—a=-== - ,Dg 100 7
—_— % [
._’/ q / d -\{ 10 // 4
_;0' q- . . Y 7 B
s ¢ '/ P e
F— \(3 / - SN e |
% ) N a. -
-9 : Xy 4 *0’5 A A
N4 an 2
-05+ 7 ~ N i
) WA N
i N i ) .
Vol . L A
24 " A{-{?}
4 Y - 4
/'/// Af ! - -1 T (N U SN W VS U B |
-1 A

R

cos @ -1 0 1
' cos @

Fig. 10. Polarization transfer parameters referred to the laboratory system and evalpated in the one photon ex-
change approximation. 4,, 4, and R,”. 6: the CMS scattering angle.



