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Abstract

The quantum mechanical Coulomb problem in two and three dimensions is solved completely
in terms of path integrals. We derive the integral representations for the Green’s functions in
configuration space and recover the wave functions from factorized residues.

1. Introduction

In recent years, the path integral formulation of quantum theory has found increasing
applications in field theories of both elementary particles as well as of many-body sys-
tems [1]. Its main advantage is that different non-perturbative summations of Feynman
diagrams can be systematized without the danger of double counting by merely per-
forming changes of integration variables. Also, contraints can be enforced in a much more
straightforward fashion than in Dirac’s original Hamiltonian approach [2]. In these
applications, the path integral formula is used to manipulate the action to different
forms. The new forms are then used to derive alternative sets of Feynman diagrams for
the same theory with particle lines and vertices differing from the original ones. Another
range of applications lies in the study of quasiclassical tunneling phenomena [3] and the
related question of analyticity of field theories in the complex coupling constant plane
[4].

The basic difficulty in dealing with path integrals lies in the fact that only & few rather
trivial examples can be handled analytically [5]. Most of the standard problems solved in
every textbook of quantum mechanics via Schrédinger’s differential equation have now
up to remained inaccessible to an explicit summation of all fluctuating paths. This is one
of the main reasons why the path formulation has not succeeded in entering basic courses
quantum mechanics in spite of the great conceptual attractiveness as compared with
the operator formulation.

A program of solving the well-known quantum mechanical problems via path integrals
has therefore two purposes: One is to gain exercise in handling this somewhat involved
mathematical technique with the possibility of using it in field theoretic applications. The

1 Zeitachrift ,,Fortschritte der Physik*, Bd. 30, Heft 8
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other is to lay the groundwork for an alternative complete treatment of quantum me-
chanies from the point of view of fluctuating paths.

It is the purpose of this paper to present a complete quantum mechanical treatment of
one of the most important quantum mechanical systems, the hydrogen atom. Our final
result, the full Green’s function in configuration space, has been communicated before in
a letter [6]. Here we shall extend the discussion and derive also the wave functions of
the system. Moreover, since the basic technical procedure can most easily be explained in
two dimensions, we start out with a discussion in this reduced space which, we hope, will
lead to an improved appreciation of the simplicity and elegance of the approach.

II. A More Flexible Path Integral Formula

The problem to be solved consists in finding the Green’s function (or propagator) which
is the probability amplitude of a particle to travel from a position z, at time ¢, to x, at
time ¢, directly from Feynman’s formula [5]

&y

K(mxy, ty; @4, ;) =f@a: exp if t(% &2 — V(w)) (1)
2, 4

in a Coulomb potential V(x) = e*/|a|. Here, f Zx denotes the sum over all fluctuating
paths connecting the end points. An alternative definition involves phase space and reads

iy

. _ b Ip . . p?
K(xy, by xg, 1) _f,@azf(zn)g exp zfdt (pa: o V(ac)) (2)

-3

which generally reduces to (1) upon integrating out the momentum variables.
Actually, there are cases where (1) and (2) are not the same, for example, if the mass pa-
rameter m were not a constant but a function m(2). Then (2) is the correct formula rather
than (1) apart from ambiguities in defining the path integration, a fact which is related
to the ordering problem in the operator formulation. In our case there is no such difficul-
ty. For our purpose it will be useful to generalize formula (2) by parametrizing the paths
a(t) not in terms of the physical time but use a new parameter s. In general, this may
be connected with ¢ via some s dependent functional of the path

t = t*[x]. (3)

We shall focus on a special class of such functionals in which all s dependence comes from
a simple differential relation involving a local function of position

d
o= 1) = f{a(s)
@)
o) =t Hsa) =l

In this case, f(a:(s)) modifies the Hamiltonian H(p, ®) = p*/2m + V(=) in a multipli-
cation fashion and formula (2) becomes

3p

9
K@ by % la) = f Ga(s) (2135)? exp 1i f ds {p(s) /() — f(x() H{p(s), 2(&))}1- (5)

Sa
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Notice thatit is the initial and final times of the path ¢, and ¢, which are fixed. Therefore,

the parameters s,, s, are path dependent quantities. We can display explicitly this de-
pendence by incorporating the constraint

ty — t, = j b dsf(a(s)) (6)

into the integral as follows

K(ay, ty; @4 ba) = f() f dsyd (tb — 1ty — fbds /(:c(s)))

Xy 8y
g .
X f@azf# exp zfds(pa:’ ~— f(a) H(p, )); . (7)
Ty 8o
Upon a Fourier representation of the d-function this becomes
& d
K(ay, ty; @5, tg) = f(203) f o e_zE(t"-t")f dspH E( @y, Sy Ty Sa) (8)
7
o o
where
Ty 8,
AE ] — | oz Zp |4 " PE(p. 9
(X, S5 ; By, $5) = JLW exp q¢ | ds(px’ — (P, &) (9)
Zg Sa

is the propagator of an auxiliary quantum problem which is governed by an £ dependent
pseudo Hamiltonian

HE(p, x) = f(x) (H(p, x) — E) (10)

with motion taking place along a pseudo timess. Inother words, #°F is the operator con-
jugate to the parameter s and generates infinitesimal translations of the system along
the s axis,

The energy intergration in equ. (8) suggests continuing the diseussion in terms of the
Fourier transformed Green’s function.

K(wba Ly { E) = f dtbeiE(tb-t“)K(mb: by Xg, t‘a) = f(wb) ‘%E(mbr Ly i O) (11)
¢

a

Up to the trivial factor f(ax;), this coincides with the Fourier transformed propagator of
the pseudo Hamiltonian #2:

HE@y, X, | £) = [ dsyet S DA B (@, 535 %ss 84) (12)

Sa

evaluated at zero pseudo energy ¢ = 0. Notice that in this way we have transmuted
the original problem at any energy E to a novel form in which the pseudo energy e
vanishes. All dependence of K(x,, ®, | £) on the physical energy ¥ is due to the explicit £
dependence of the auxiliary Hamiltonian (10).

Seen from the Schrédinger point of view this correspondence reflects the simple fact that
instead of solving the time independence equation

Hyu({x) = Eypp()
1*
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we may determine the wave functions from the zero-eigenstates of J#%:
HPpg(a) = f(ae) (H — E) ye(x) = 0.

Actually, equ. (5) may be considered as a special case of an even more general path in-
tegral formula

z ts
[} Dpgls
9{(1’1); Ly Sp; Xgy bgy Sq) — f .@‘.13(8) I:i‘;a) f@t(s) §;§3)
Ty ta,

(2 (

X exp {z f bds[p(s) x'(5) — pols) t'(s) — flaels)) (H(pls), x(s)) — 199(8))]} (13)

in which also time and energy are conjugate fluctuating variables which depend on the
parameter s. Equ. (5) results after integrating out &t which enforces energy conservation
Po(s) = const == K along the path such that all Zp, integrals can be performed and one
obtains

Sy
J{‘(a}b: tb, Sy 3 Ly, Las Sa) =0 (tb — it — f f(ﬁU(S)) dé‘) K(wb’ ty; &g, ta) .
&g
Therefore, we see that

K(‘rb: tb; L, ta) - f(xb) f d‘gb“}{/v(wb’ ‘tb: 8p; Lgs taa Sa) (14)

Sq

a connection which generalizes (11).
Notice that the Hamiltonian equations of the auxiliary dynamical problem described by
(13) are, with

J‘f(p, x; Pos t) = f(JJ) [H(p, 13) _ pO]!

dp  e#  oll
ds  ox ox

dae _ oA cH

ds  ép  op
(15)
dpy, ox
ds A
dt o
F P ——a—ﬁ;:f(fl)

and give the correct equations of motion for x(¢), p(f). Similarly, the Schrodinger equa-
tion associated with the auxiliary Hamiltonian % (p, x, p,, {)

fe) (H — ©8,) p(a, t; 8) =1 0.p(x, t; ) (16)

leads to the correct wave functions y(a, ¢; s) if the zero pseudo-energy projection (12) is
incorporated by requiring

T Op(x, t;8) = 0.
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IIE. The Two-Dimensional H-Atom

Consider now the Hamiltonian of the H-Atom in two dimensions

p2 62 N
H:%—-—?, Evmz.

The canonieal transformation

1
Xy = Uy? — Uy? P = e (U1 Py, + UeDu,)

(17)
1
Ty = 2y D2 = St (—UaPu, + w1 Pu,)
of 2, o, P1.2 tO Uq,95 Pu,,, [7] brings the Hamiltonian to the form
1/{1
L BN s S
H_”2 (8mp“ e). (18)

This form suggests going over to the Hamiltonian #%(p,, u) by choosing in (10) the
function

fl@) = |z} = u? (19)
In fact,
HEp,uw) =uH — E) = é—;puz — Fu® — €2, (20)

Due to this, the propagator A B(x,, s,; ¥4 S;) becomes simply that of a harmonic os-

cillator with a trivial phase factor
£i€8(8,8,)

which is the only place where the charge of the H-Atom occurs.
Consider now the transformation of the path integral from a, p to u, p, variables. With

d = 2( e '““’-)m

—Uy U
(21)
1 wy Uy
AP|y=tixea = GRE) (—u2 ul) dpu
one has
i 1
8y — A2 — ]2
PP = i TP = T VP
(22)
d*x = hd*u = 4 [x| d*u
such that
d*p d*py
2 — 2
d?x e d?u 2n)? (23)

reflecting the canonical property of the transformation (17). The path integrals in (5) is
defined on a grated s axis s, = s, + (8, — 8;) #/(¥ -+ 1) as the product of individual
integrals over d%x, d?p,, one for every s = s,, except for a single integral over
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dpy., which is not accompanied by a d?xy.,,, since ®y,; = @, is the fixed coordinate of
the end point. Therefore, the functional measure does not simply transform like (23) but
satisfies.

9p 1 Dp,

9x = Zu ;
(2m)2  4|aya] (27)?

(24)

It is gratifying to note that the factor 1/|xy,| is exactly cancelled by f(a,) = |[#y.:] in
the expression (11) such that we may write directly:

K(;L’b, L, I E) = debe(ub, Sy, Uy, Sa) (25)
where '

1 ., r Ip, ] ’ 2
HE(wy, sp; Uy, 8g) = Ze” (sb‘sa)f@uf(zgz exp zfds (pu’ — (12); —Euz)) .

- (26)

As far as counting the paths is concerned, there is a subtlety due to the fact that the
mapping (17) is of the square root type:

(xy + 125) = (g + u,)2. (27)

Thus, if one considers all paths in the complex # = #, + %z, plane from x, to x, they
will be mapped into two different classes of paths in the u-plane: Those which go from

| N,
c, b ¢

.y €
-u
b
¢z
Fig. 1. The correspondence between paths in the z plane from %, to z» and those in the u plane. Depending on whether
the z path passes an even or odd number of times through the branch cut to the left, the final value up is +V:c¢,

or —l/za

u, to u, and those going from u,to —u,. In the cut complex x-plane for the function

% = ]/:E? these are the paths passing an even or odd number of times through the square
root cut from x = 0 to0 # = —oo (see Fig. 1). We may choose the u, corresponding to
the initial 2, to lie on the first sheet (i.e. in the right half u-plane). The final w, can be in
the right as well as the left half plane and all paths on the 2-plane go over into all paths
from w, to u, and those from w, to —u,. Thus for given the integrand (26) becomes

1 .
I e:wl(sba-sa)(KE(ub’ Sb; uﬂ’ ,S‘a) + KE(—ub, Sb; ua’ Sa)) (28)
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where K7Z is the usual oscillator Green’s function in %(s) space with mass g = 4m and
frequency w? = —2E/u = —E/2m
L
po?

2

KE(uy, sy; u,, sg) f.@u @ )2 exp zfds (puu' — %“; + < u2) . (29)
This is a Gaussian functional integral which can be performed in the usual fashion with
the result [5] (S = sp — $,)

KE(ub: Sp; Uy, Sa) = £0 { ki

I - 2 2 _
Smisin ol P | Tem@p Lb" T a7 cos oS 2“”““]}'

Inserting this into (28) and (25) we find

[=+]

K(xy, 2, | B) = % deei”stz(S) exp {—nF%8) (ry, + 74) cos w8} cos 2xFES) upu, (30)
0

where we have used the abbreviation

_ Hw
F(5) = ]/271@' sin @S (31)

for the fluctuation factor of the one-dimensional oscillator. We now observe the identity

1
UpUy = l/? (g + 7p74)

and introduce
—2{ws

g=2¢
sucht hat
2
aF¥(S) = o 5 ]@9 (32)
] ~(»—(1/2))
gesp(s) — 2P0 8
n 1—p
where p, stands for
po = V—2mE = 2maw zﬁzﬂ (33)
62
Y — %. (34)

Then the propagator becomes, after a rotation of the contour of integration in the § plane,
such that it runs along the positiveimaginary axisand ¢ = ¢~%«5 covers the unit interval :

1
m 0 (v+(1/2)

K(wb, T, J E) = —— d; 1= ( pO I/‘,Bbma 4+ TpTy ) e Polratr)(L+e)/(1-¢) |
n L%

0

(35)

This integral representation of the Coulomb Green’s function in configuration space can
be used to determine all wave functions of the system. Rather than doing this, however,
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we find it more convenient to begin with a special decomposition of the oscillator Green’s
function (30) and use the resulting expansion in formulas (25), (26). For this we recall
the well-known summation formula [8] for Hermite polynomials.

[, n 1
2_: I H,,(x) H”(y) — 6_(1/f1”z‘))(x’+ﬂ’-—2zyz) (36)
n=0 mni

[/1—22

o T

with the identification
Tz = Vﬁ%l,z y = ]/Eubm 2z = ¢S (37)

(1 and 2 refers to the two components of u vector) we can write (29) in the form, valid
for £ < 0:

KBy, 855 Ug, Sa) = X W n,(Up) 5 5 (Ug) €t marD)so—50) (38)
ny, Ny =0
where
w 1 2
V(W) = £ —— " lzﬂnl([f M ul) Hng(l' Hw uz) (39)

7 2(n1+n,)/2]/n1 ! ny!

are the oscillator wave functions. The symmetrization has the effect of eliminating odd
values of n, + n,, such that we can introduce the principal quantum number » = 0, 1,
2, ... with n; 4+ n, = 2n. Performing now the integral in (25) for < 0, the propagator
becomes

1 = Py
K(xy, x, | B) = 5 nZ; E_ (@ Do Ve Up) Wi, (Ug) (40)
m ® i
AT T Tl e ) D
1— - T 2(% + —2—)
Ty

Here we used again

Po = ]/—ZmE = 2mow = -M—;»

_ e met
Y= T °F

The mapping of energy into the complex v plane is displayed in Fig. 2. Notice that the
oscillator wave functions multiplied by the factor ]/po/(2n + 1)

and introduced, in addition,

wgn.(w) - V%L‘(;_l ’Pmna(“) (42)

are orthonormal under the scalar product | d?x = f drr de. This follows from the virial
theorem according to which uw?u?/2 = pu?w has expectation values o(n 4 1/2) and

therefore
Do % __ 2 Dot 2
d’rr d(p 2n + 1 Wmnz(u)] - d u 1 |wﬂ1"a(u)| 1 (43)
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where it should be remembered that the full x space integral transforms by (17) only
into half of the  space integral.

1t is now curious to observe in which way the linearly rising oscillator spectrum is con-
verted into the spectrum of the H atom. Looking at (41) we see that the Green’s function
has poles at the energies

4
E:mz__ﬂ%j, (44)
-1
In the neighborhood of these poles, the factor —i—?%- QR 1 behaves as
Do n+ 5

t/E — E, such that the factorized residues X, = Vpo/2n + 1 y,,,, represent the pro-
perly normalized wave functions of the H atom.

These correspond to the solution of the Schrdédinger equation for the bound two-di-
mensional H-atom. They can be brought to a more familiar form by using a wellknown

2meé

1
/2 n=0 me 4
Fig. 2. The correspondence between » and E planes (v = V—me‘/2E)4 The imaginary axis in the v plane is mapped into
the branch cut of the E plane. The left half plane IT goes over into the full second sheet of the E plape. The strip I,

maps into the physical sheet except for the “‘cardioid” region of [E| < 2me* sin® (¢/2) which includes all bound
states. Finally, the right-hand part of the » plane, Re » > 1/2 has its image ingide the cardioid

identity between Hermite and Languerre polynomials (see App. A)

€’ H,, (]/&_) cos —g—) H,, (Vé sin %)

22V (m + ! (n — 1!

- < tMan 7 (Tb*—lM“' —pptl
< () Y By o 2o )
= |V e L)

g Mz Jn 7 i 0 o si ?
— i, (_'2‘) oo (VE o 7) Ho (VQ o 5) 0
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where I = (n, — n,)/2 and d3,(f) are the usual representation functions of rotations.
Thus we can express again the residue in the form:

”

2 Vnuns(Us) Yron,(Us) Z "PnM (@) Yna(2s) (47)

R+ ne=2n

with spherical wave functions

o , @
aela) = = Rualr) = ]/ L ]/EZ e S L ). (49
n [—
2

If we Fourier transform the result, the Green’s function can also be written as

Kpppa| B) = —— % -——wnM(pb) Vi Pa) (49)

OnM
1 —

n—|—1
2

where the momentum space wave functions have the form

00
elM [

pulp) == f drrd y(on) Roelr) = (—i)™

0

23/219 2
T poe Y narlf) (50)

in which Y,(£) are the spherical harmonics evaluated on the three-dimensional unit
sphere defined by Fock’s stereographic projection

P+ pe* _p2 -+ po?’

2 2
60 — p pl - 2pp0 gz — 1. (51)

Therefore the Green’s function has the alternative representation

m 2854
Kb Pa | B) = =5 o (oo L 80 52
with
P ) = 5 e FoulEs) Fhull) (53)
M.M 1 o v
1

being the analogue of the Green’s function of the potential equation employed by
ScEWINGER [9] in the case of the three-dimensional H atom [10]. It is useful to remove
those parts of (53) which are singular for £, = &, by expanding

(54)
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and taking into account the completeness relation

2;{ You(&e) Yaulbs) = 0(& — &o) (55)
and the well-known summation formula
S o 3 Valf) Vi) = o o (56)
R0 % s, MTY T mMica 2n V(‘Sb_fa)z.

Then I" may be rewritten as

v
A TN (57)
P s A

I'(&y, &) = 06 — &a) +

with

I"(Eb’ Ea) =% ) 1 1 Z”' YnM(Eb) Y;M(éa)
n=0 M=-—n
e [

T—‘“i“’“" g' _—‘“'“‘“'Pn(fb ' fa)' (58)

2
T O'n—}—§~v

This expression has the advantage of converging for all
cosy=§&,-& ¢ (—1,1) (69)

as long as » avoids the poles. This integral may be viewed as a degenerate form of the
standard ‘‘Lehmann ellipse” of partial wave expansions [12] whose area shrinks to
zero due to the long range of the Coulomb force.

The angle y in Fock space depends on initial and final momenta p,, p, and the energy
as follows:

_ 2p,*
(Po® + Po®) (Pa® + Po®)
E (Ps — Pa)®

—1
TP\ [ B ™
2m 2mn

We have gone to expression (58) since it is the convenient starting point for a calcula-
tion of the continuum wave functions. Before doing this, let us first clarify the mapping
from the energy plane to the complex cos y plane. For E > 0, cos y can become > 1
or << 1. For definiteness, suppose that p,2 > p,% > p,® > 0. Then, as £ is continued
from negative values to above the continuum cut, cos y passes the point cos y = 1.
At 2mE = pg?, cos y becomes positive infinite. For p,2 < 2mE < p,?% cos y comes in
from — oo, runs up to a maximum value

cosy =&+ & =1

(pb - pa)z

(60)

COS Ymax = —1 — Spaps sinz-—q— < —1 (61)

(12| — |Pal)? 2

where 0 is the true two-dimensional scattering angle defined by:

Pa Po = ©08 0 [ Ps] | Psl (62)
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and then turns back to —oc. For £ > p,2, finally, the curve returns from oo to cos X
= 1 (see Fig. 3). Due to the asymptotic behaviour, as Re n — oo [11],

1
| P,(cos y)| < F gltmnReztRenlmzl floog ) (63)
n

the representation (58) does not converge as K runs along this contour. This can be
improved by performing a Sommerfeld-Watson transformation on the sum

p2 dn

1
471 sin in 1
2

I"(&, &) = — Py(—cos y) (64)

c

where the contour € in the complex n plane comes in from oo — ¢ runs along the
real axis to the left, passing underneath all bound state poles at n =0, 1,2, ..., and
returns again to oo + 7z above the real axis. Since the integral behaves for Re y € (0, )

£-plane
% |
I I : T z r
|
. | |
—7] T =
2z
p?/2m p%/2m
cos X-plane
| !
(cos X ) max : | T
! —
\ ! I } I
P —h
TS —=
: | -1 +1
bil
X - plane
m
- 1
) I | (Im X)mgy
o .
Ir
| |

Fig. 3. The movement of the scattering angle y as a function of the energy variable E for Pa? < P2, say. As ¥ is con-
tinued from —oo to co along the portions I — VI of the real axis, cos x and x itself move as shown in the layer
parts of the figure. The “Lehmann ellipse’” consists of the interval —1 < cos y < 1
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as [12]
Pt _ — 08 1 e[—*l/2[mx+(ﬂ—R€x)1]
=) 11) — e f(cos x) (65)
sin 7 (z'ﬂ — —2-) l/ﬁ — 5
1 .
the contour may be opened up to run along n = — 5 + il + e A€(—o0, o0):
, p? di 1
I'(&, &) = Z;f chmdihi—vte Pil—(1/2)(_cos %) (66)

— 00

the circle at infinity can be neglected, and the final integral is convergent. (see again
Fig. 3 for the range of y).

We can now determine the continuum wave functions by factorizing the residues
into the separate functions of & and &,. For this it is convenient to introduce

o = ipy = |2mE (67)
as well as the analytically continued version of the Fock coordinates:

£ P? + B’ z 2ppo £ £

5 = —, E = —_—> E 2 52 = 1 68
PPt — By P — B ° (%5
which now lie on a unit hyperboloid instead of a sphere. Both branches of the hyper-
boloid are needed ; the upper for p? > 5,? and the lower for p? << p,2.

In terms of p, we have

2 2
Bo — (Po — Pa)? (69)

OOSx:&‘éb:1—1—(1%2“:502)(1%2_%)

such that the parts II, IV of the cos y region in Fig. 3 correspond to £,, &, lying on
the same branch, while for I11 they lie on opposite branches of the hyperboloid. Con-
sidering these different possibilities, we can expand P;;_,,5(—cos y} and rewrite 1"(&, &)
as (see App. C)

fv2 dl e*‘nl o

F(i;t — M + -%—)
F’(Ebs Sa) EE M

(—1)

chaitd —» y = F(z'l—LMJrl)
' 2

X eMeed(PY_ o (Eg) B(Eg) + (— 1M PH_15)(Ep) 0(—E0p))
X (P15 o) 0(Ea) + (— 1M Pia_qijoyEva) 0(—Ega))* (70)

where the 6 functions select the proper branches on the unit hyperboloids. Using (58)
and (50) we can now identify the continuum wave functions in momentum space:

g2 Yhe 2
?;Uu—(uz)(P) = (pg - 2—%2)3/2 7T

F(iﬂ—M+%)

X €M Pis_qpzy(Eo) 0(0) + (=DM Pi_apn(&o) 0(—E9)]. (1)
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In a-space, these take the well-known form (see App. D) [10]

. 1
' (@) — (—2)" @ 1 —i(x)2)(53-(1/2)) F(M T 5)‘
Yii-a2).ul®) = 7 "ﬁe T2M + 1)

2
Misn (2”.”‘3 lwl) (72)

when expressed in terms of Whittaker functions M;;, 4 ().

For completeness, we note that there is certainly the analogue of ScEWINGER’s [9]
integral representation of the expansion (53) which can be obtained from the well-
known formula

D4 ei,Mcp

1 1 oo @n
o Youu(£e) Y parl(£a)- 73
2n V(l — 0 + o(& — &,)° né‘on_i_ %%' m(p) Y an(£a) (73)
Inserting this into equ. (53) one finds
1
v 1 p? 1
— — - - i —»—(1/2)
o) =60 g g g [ e e
0
1
_ v L4 gl
R 5;[ i e o

0

From this it is easy to derive the scattering amplitude (see App. E):

2

e~ v108(4P*/ (Bp?- 1M | (75)
|y — Pl

T(pbs Pa) =

IV. The Three-Dimensional H-Atom

Consider now the three-dimensional problem. Just as before, we can write the Fourier
transformed amplitude as
o0

K@y, it | B) = |2y [ dsy By, 3y Xay 82) (76)

Sa

where ¥ is the auxiliary propagator given by the path integral

Sp

. Zp . rp?
B . —— pie*(8,—8,) 4 _ ]
A E(2y,, 8y Xgy Sg) = € f@a} @) exp 3¢ fds (pw 5 rE’) (T7)

Sa

Again we shall transform the exponent into Gaussian form. For this we need a gene-
ralization of the change of variables (17) to ‘‘square root coordinates”. A transforma-
tion of this type does indeed exist: It has been used a long time ago in astronomy [13]
for the purpose of regularizing the Kepler problem. There one chooses new variables
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Uy, Uy Ug, Uy LO satisfy
xy = 2(uruy + Usty)

Xy = —2(Uytty — UgUy) (78)
oy = —u® 4 up? + u? — ul

thereby embedding the three-dimensional physical space into a four-dimensional
auxiliary space. Because of

r=u? = u® + u® + ug® + u,’ (79)

the transformation maps spherical shells of z space into those of w space. We now
see an important difference with respect to the two dimensional case: There the map-
ping of points inx space into those in u space was ambiguous only as far as the sign of

the image # = :l:]/[ml # was concerned. Here we have a whole continuous set of possible
image points. The freedom in this mapping may be parametrized by using an angular
variable « ¢ [0, 4n) in addition to the polar coordinates (r, 8, ¢) of (, z,, 23) and
writing

ulzv;sin—g—cosaztp
- 6  x—
Uy =]/7‘ cos—2— sin —5 Li
(80)
~ 0 x— @
Uy _]/r cos E-cos 5
- . 0 . x+
Uy = Jr s1n§ sin 3 <p.

If we use this mapping of points to transform paths in x space into paths in u space
we have the freedom of choosing an arbitrary angle «(s) for every point along the
path. Thus the mapping can be made unique only by specifying a whole path in the
redundant angle «x(s):

x(s) > u(x(s) a(s)). (81)

At the initial pseudo time we may choose «(s;) = &, = 0, for simplicity. The variable
«(s) is eyclic such that it remains in the strip «(s) € [0, 4x). Since the point 0 is identi-
cal with 47 there may be » jumps down from 4= to zero or 7 jumps in the opposite
direction at arbitrary intermediate places (see Fig. 4). Instead of distinguishing the
paths x(s) according to their jumps, it is more economical to picture them continuously
in an extended zone scheme (see Fig.4) in which the final «(s) is not &, but «
4n(n — 7) with arbitrary integers n, %. In this way the mapping of paths can be made
unique by adding such a continuous path «(s) in the extended zone scheme as a func-
tional label

%(s) —* u(%(s))- (82)
We are now confronted with the problem in rewriting the path integral in 2 space
into one in % space in such a way that the freedom in the choice of x(s) becomes ir-
relevant. Let us recall that a very similar problem arises in path integrals of gauge
fields. Also there the description in terms of potentials 4, is ambiguous up to an arbit-
rary function of a space-time. Paths in the functional space of fields map into those
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of potentials with the-same type of ambiguity. Due to this, there are infinitely many
ways of rewriting the path integral of gauge fields, depending on what dynamics one
chooses to attribute to the physically irrelevant content in 4,.

For the problem at hand we choose to take advantage of the same freedom. We shall
introduce some trivial dynamics depending on the movement along the irrelevant
path «(s). Actually, this angle is not the most symmetric variable to express the addi-

ot f(3-1)4m
8” \\\\//\\
! |
| |
! |
: |
l
I |
I |
b ' '
N
| |
| |
Up i !
l |
! !
i |
| | %,
0

3y Sl Sy

Fig. 4. A curve with 3 jumps from 4= to zero (at Sil . 3) and 1 jump from 0 to 4x (at Sil) can be drawn as a smooth curve

5{1'

in the extended zone scheme arriving at as(m™) = ap 4+ (g — 7) 4z where # and # count the mumbers of jumps
down and up, respectively

tional dynamics. A better way is based on a ficticious dummy fourth component z,
in addition to the three space components & to describe a(s). In fact, due to the four-
component nature of u, there exists quite a natural choice also for such a fourth com-
ponent for x.

Consider the differential change of dx as « proceeds along an arbitrary path. From
(78) we find

du,
dx; Ug Uy Uy Uy p (83)
dey | =211 —uy —uy uy  us .
dug
daxg —Uy Uy Uy —Uy ’
4

For symmetry reasons this equation calls for a completion by means of a fourth row.

doy = 2(uy —ug wy —uy) . (81
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This permits a unique definition of the dummy coordinate x, as

8
T4(s) = 2 f ds(uguy” — uzuy’ + ugus’ — wu,) (85)
sﬂ
where we have chosen x,(s;) = 0 for the initial point of the path. The relation with
x(s) can be obtained by inserting (80) as

Z,(8) = ——fads((x’ — cos O¢") 7(s). (86)

In this way we have established a one to one correspondence between paths in  space
and those in u space. The freedom in «(s) may now be characterized by the motion
of the path along the fourth axis in x space.

We now have to search for some trivial dynamics for this additional motion in such
a way that the path integral remains unchanged and becomes soluble. Since we work
in the phase space formulation, we shall search for convenient path integrals involving
also a momentum variable p; associated with x,. If there is no dynamics at all, the
basic canonical relation is expressed by

Za(8,)
8

Gp, ifdspxy
Doy = 8(ey(35) — @4(8a))- (87)

Z4(8,)

This corresponds to the propagator of a particle moving through the dummy phase
space x,, py with vanishing Hamiltonian. One may integrate in z,(s,) and obtain the
identity

o0 x4(8p)

3
G ifdspaxy
fdx4(sb)f@x4 (2::; s = 1. (88)

- 00 ryls,)

Certainly, such a factor can be multiplied with formula (77) thereby expressing again
the original dynamical problem in the extended z,, p, phase space. Actually, there
exists a great variety of such extensions. For example, we may use a free particle
Hamiltonian

ext — p;‘z

H 9 (89)

In this case the integral

8y
, ifds(pxs —tp.t/2m))

f Dz, (9;5 ‘; P (90)

becomes the propagator
1 6(5/2)(7”/(85—Sa))(ng—rag)z (91)

]/27115&(8,, — 8g)/m

such that (88) holds again with px,’” — H®* in the exponent. Moreover, we can multiply
with He¢*t an arbitrary s dependent factor o(s) and still find

(%) z4(5p) 8
2 . , 2
fdx4(sb)f.@x4 (25'; exp zfds (p4x4 — o(8) %) =1. (92)
—o0 Ta(8,) 3a

9 Zeitschrift ,,Forlschrifte der Physik*, Bd. 30, Heft 8
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This can easily be seen by going to the grated version (thereby dropping the inessential
subscript 4 and using ¢ = (8, — 8,)/(N + 1):

o0 0 [=2]

. ¥ dp, Xt Pt
fde-*-l Il dz, 11 - 1 exP 10 X | Da(Tn — Tu1) — 0(84) 5] - (93)
n=1 n=1 2n n=1 2m
-0 —o0 — o0
Performing successively the integrals over f dx, and then over dp,/2n gives

N4-1 dp” N+1 2
f o [ f 11 20— ) pmstus s xp | 5 o) B}

N+1
= de_H pNﬂ eiPrnlEnn—2) exp 3 —1 a (8x) pN” =1. (94)
p 0 om

The basic idea which renders the path integral (77) soluble consists in taking the last-
1dent1ty (92) as the additional dynamics in the extended part of phase space z,, p.(u = 1,
., 4). This yields the new representation for the Green’s function

o0 z
3.
.x/E(wbs 8y &y, Sa) = fdx4(8b) eie'(sb‘ a)f@w@x‘tf(fng _(_g_;_f%;_
8 . .
X exp it f ds (pw’ + paxs — % —9—-——(82) nf - rE) . (95)

8a

Here the function g(s) is completely arbitrary. In particular it may depend explicitly on
the spatial coordinates x(s) which were not involved in formula (92). It is this freedom
which allows for an immediate transformation to the four-dimensional oscillator form.
All we have to do is choose p(s) = 7(s).

Let us see that this really achieves our goal. Consider the matrix of (83), (84):

Uy Uy Uy Us

— Uy —WUy U U
4=2 2 1 4 3 . (96)
—=U Uy Uy —Uy

Uy —Ug Uy — U
It is obvious that 4 is orthogonal up to a factor

1
e p—— = — 4T
At = AT 4TA (97)

such that we obtain directly

det A = Vdet A - det AT = ]/det 4r — 16¢2

and
dx = 16r’d*u. (98)
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We now introeduce momenta canonical to the coordinate u by

1
P =4_TA’pu'

It can be verified that the transformation z — u, p — p, is really canomical. With
the volume elements in momentum space being related as

d'p 1 dp,

PR —_—

(27-"')‘1 #=const —16_7'2. (23'5)4

we verify the measure in the phase space to remain invariant.

d*p dip,
4 — 4
dx(2 ) —-du——(2 ) (99)

as it should. Also, p - ®' - p,x,” goes over into p,_ - u,;' and

1 1
P* + Pf = 1o P AT Ap, 1 Do

We now see that formula (95) with o(s) = r(s) does indeed turn into the Green’s
function of a harmonic oscillator.

8y

AE . — 1 "d fe3(8,—8,) b@ @pﬂ . d ’ puz 2R
('rb: 8 T, Sa) = W ﬂ?4(8b) e @ w (27{)4 exp,t S| pyt — .8_’m’. —
—00 u,

8a

(100)

where the factor in front has its origin in there being one more p, than u integration,
just as in the derivation of equ. (24). Inserting (100) into (76) we obtain

o0 [ ]

1_6-’;_ dsbe“’(sb_%) fdxl(sb) K(ub(wb’ ‘xb)’ 8o ua(wm 0‘0)9 80') (101)
b

&g —o0

K(xy, @, | E) =

with

8,

K ; _ [ gu 2P N as(par — 2= + Lozl (102
(ub(xbfxb)) 8 Wal@ata), Sa) = u (2m)" eXp 3t S|Pt — *2"‘; + 3@ sy (102)

8a

where z and o? are defined as before: u = 4m, w?* = | —E/2m.

Notice that this expression is not yet identical with the usual Green’s function K(uy, sp;
uq8;) of the four dimensional harmonic oscillator due to the explicit occurrence of the
cyclic variable «. As discussed before, for a given final point w,(x,, «,) there are in-
finitely many final angles &), modulo 4= which have to be summed in order to account
for all paths, with any number of jumps, going from u, to u,. Consequently, when
expressed in terms of the angular variable x the oscillator Green’s function eonsists
of an infinite sum of amplitudes (102)

o0

K(up, 8y gy 86) = ) K(ub(xb: oy + 4an), 8y; Ue(Zsy Xg), Sa)' (103)

fi=—00

A
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If we now remember the relation (86) we see that dz,(s;) in (101) can be rewritten as
an integral over «,:

d oo
f dxds) _ f docy. (104)
r T =fixed
. -0 —o0
If we split this according to
oo i
fdocb = f xy Q) (105)
— 00 Q ay—>ay,-2nn
we find the final result
oo 1 2n 1
K(xy, x, | E) = f dsyei®'(so=3a) T f doxy Z‘(K(ubs 855 Uas Sa) + K(—up, 8y U, 4))
0 £ ‘
(106)

where we have used the fact that the shift &, — & + 27 amounts to a reflection in
up. In this way we have reached a symmetrized form thereby establishing the closest
possible connection with the two-dimensional formulas (25), (26), (28).
The explicit form of the four-dimensional oscillator Green’s function is

K(uy, 835 gy 8g) = FH3s) exp { —7F2(S) [cos oS{up? + u.?) — 2uy - u,]) (107)

where F(S) denotes again the fluctuation factor (31).
Therefore (106) becomes

o0 4n
SN | 1
K(.’I?b, x, | E) :fdlgem’s _/__1_ F4(S) g~ 7F(8)coswS(rytr,) ? f dabehF’(S)ub-ua. (108)
0 0

The integral over dux, can be done by observing that

Upthg — I/% (yeg + 77,) €OS (0 — axy — P)/2

where § depends only on 8, 8,, g, @, *) such that
in

1
,%.fd“beznf'z(s)ﬂb-ua _— 27‘510 (2731;’2(8) VE (mbma + rb/ra)).
0

We now proceed just as in the two dimensional case: We rotate the contour of inte-
gration to run from § =0 to 8§ = 7 00, let g = e725 ¢ (0, 1) and use (32) to find

1
K a1 1) = =722 [ s 1o 12 Ve, ) s
4]

(109)

as the integral prepresentation of the Green’s function of the three dimensional Coulomb
problem.

g, — 0 — 1 1/2
*) cos g = cos ( b 5 ﬂ) cos (%q—"l)/[-é- (1 + cos 8 cos B, + sin 6, sin 6, cos (pp — %))]
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For the explicit determination of the wave functions we shall again resort to the direct
expansion of the oscillator Green’s functions which reads for w? > 0, £ < 0:

2

1 ., . ,
A L f A% 3 Y () Y0, (tt) € oM mr N0 (110)

M NigNaliy Nala Nala
0

where vy ,, are the 4 dimensional oscillator wave functions
nyn,y
1

g g pet’/2 1 .
"Pmnz(u’) - _n—— Q(rn,)/2 ‘,Q W H"« (“‘m) ui)' (111)

Raly

Due to the final symmetrization in u;, only states with an even total number of oscillator
quanta contribute. We may therefore introduce a principal quantum number n = 1, 2,
3,...a8

n + Ny + ng + 1y = 2(n — 1). (112)
Such that (106) becomes
2n
1 = 1
K(xy, 2, | B) = — 2 Z Aoy Wn,n,{ts) V’:m,(ua) (113)
8 n=>0 - 2n(0 Iny=2{n—1) N3t Ranty
n—1.2.3,...
PE
m *® T Po
= —— ) — dx (W *,fu, . 114
_’poz 11‘:1 1 v Zm=%('n—1) 8n bw::n.( b) w::':u( a) ( )
- — n=123,...
N
0

This from diplays poles at £, of the form

E— E,, a0 x)f d{xbl/s Vot ")VS Vot (115)

The residues are the atomic bound state wave functions with unconventional quantum
numbers. In order to establish contact with standard forms we use py|poe = me?/n to
rewrite the residue as (see App. F)

n—1 n—|m|
Z--—‘O go Wﬂx'nz’m(mb) W:;’n,'m(ma) (116)
B Ny anln?——lml 1
where
ny' 1 my'! . )
rym () = —— - e'™e(p,r sin §)iml
L2 TS ]/po ]/(n _|_ ]ml)z (”/2 N |m|)‘ (Po )
—por T, Iml 2 0 |m] i3 0
— e P 2pgr cos > LW | 2pyr sin > (11D

are the parabolic wave functions used on the description of the Stark effect. For fixed m,
the quantum numbers n,’, n,’ take all integers from o to n — {m| subject to the condition

n]_' + Tt2' + ’m] + 1 = N. (118)
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These wave functions in parabolic coordinates are related to the spherical wave functions
by Clebsch-Gordon coefficients [16] (see App. G)

n—1 n—1

l
2
m\L — 1y l’
Yanm(®) = Z( b 2m —n+ 20, +1 n— 20’ — 1
2 ) "
X "Pnlm(ry 6, W) . (119)
Then the residue (116) can be written as
—1 na—{m| n—1 !
2 2 Paingm(®) Y¥arnem(@a) = X X Patm @) Yaim(%a) (120
tm=1 5,0 l=m m=-1
where (%) are the usual spherical wave functions of H atom:
@+l —|m)lr—-1-1! v
e ____'I/ mg P m
y)nlm w) ]/ l‘+" iml)' (n + l)' 4 i (OOS B)
X (22907‘) e P LI (2pgr). (121)

For the continuum states (i.e. for £ > 0) the sum (120) diverges and a resummation is
necessary which can be continued analytically, just as in the two-dimensional case. For
this purpose let us again Fourier transform the Green’s function of (116). The wave
functions (120) become (normalized to [ d3 [y(x)|® = 1):

n 1/(2 + 1)(l—|m|)'(n—l—1)'

2lpl \* )
2
X 6P (008 0) ———2 S | mem| — ] 02
ET\E I
Do’ Po Po

where T',*(«) are Gegenbauer polynomials (see App. B). They can be written in terms of
the spherical harmonies evaluated on the four dimensional unit sphere [16]:

5/2
PunlP) = T nl) (123)

with £ being defined by Fock’s stereographic projection:
P2 — p° 2pp,
bp =", f=———, &=1. (124)
° P+ po® P — P’
Thus the Green’s function has the form
m 24p,°

— (&, &, 125
Po? (Ps? + Pod) (P? 1 Po?) o &a) (129)

K(pb’ Pa l E) = -

where

Y aim(&) Y nim(Ea) (126)

F(fb’ &) = Z

nlm 1 o
n
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is the Green’s function of the four dimensional potential equation of SCHWINGER [§&].
Using again the expression (53), the completeness relation analogous to (65) and the sum

rule
1

® 1
né; g 1,%' Yﬂlm(gb) Y:lm(&-ﬂ) = 27[2(Eb . Ea)2 (127)
we find
‘p r
T(&, &) = 86 — &) + gor—py "0 &) (128)
with
2 1 1
o0 =00 5 ) 8 ) it = o5 5 S B

which converges for all real y € (0, =). The angle y is defined as before (see (59)). We can
now perform a Sommerfeld-Watson transform of (129) and obtain

22 da 1 shiy
’ s nd
(& &) = (2m)2 fsh 2" A—sin ' (130)

This representation converges for all complex » to the left of the line Re» = 1.

The continuum wave functions may be obtained by factorizing the 1ntegrand into se-
parate functions of ,, £, which are defined in four dimensions just as in (68) Setting
¥ = 17 we can use a well-known addition relation for “hyperbolic harmonics”

sh Ay 1 d(cos A}) Dn2
siny 4 dchg A Z Hijln (&) Hifin(Ea)* (131)

If &, &, lie on opposite branches of the hyperboloid. For &, > 1, the H® functions are
given explicitly as [10]

Hu(d) :{ V2 T 00 (7)o ze} i)
JZshnz I+ 32+ 1) dchf

1 d I+1
G (sh §)! (m) cos A0 Y. (§)  (132)

- ]/? VRE )

where we have decomposed the four vector § as

-

E=(ch6,Eshf), cho=E, Esho=E
such that the four dimensional scattering angle is directly
X = Bb — 63.

For & < —1 we replace [10] H{{).(Eq, &) — e H& (—&;, £). The continuum wave func-
tions in momentum space can then be 1dent1f1ed from (129) and (131) as:

4?‘505/2 einl/Z

P e {00y Hifln(Eo E) — 0(—Eo) e H D, (—&p, &)} (183)

Yir,m(P) = (
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The x space wave functions are then obtained by Fourier transforming (133) (see App. H):

(— 1y - BT 1) (0 — )] I+ i3 + 1)
T g 1
X e‘"“"P,"‘(cos 6) 632/2M_,';¢'1+”2(2230T) . (134)

Yiun(®) =

Both bound and continuous wave functions are included in a single integral represen-
tation which is obtained by summing up the Green’s function (126) via the relation [9]

1 1 _ ) ”_1_1— .
P T ¥l — & w=? win e Vil (135)

and employing the trivial identity

dpp~"o" 1, v < 1. (136)

Equ. (126) can be written as
1

d 0

P('fb: §a) = 6(§b - Ea) + ‘2";%"/‘ 00~" dQ (1 + Q(Eb — fa)a (137)
0

Then, after inserting the values of §,, §; vectors in terms of p,, p,, the Green’s function
(125) becomes

K(pb’ Pa I E)
) e? ]
= (3) - e
E—T 0 (pb pa) 222 B — Tb

1

4 0 T (138)
X dpp FCT.

d
C (=Pt o— 5z (B — Ty} (B —To) (1~ ¢)

0

with B = 9,%/2m and T' = p*/2m. In order to find the scattering amplitude, we look at
the asymptotic form of (138) which is determined from the neighborhood of the energy
shell

E—-T,~0, E—-T,~0

as well as the ¢ ~ 0 part of the integral. Thus (138) becomes

1
K(ps: Pa | B) ~ G(pa | B) = T(Pr; Po | B) G°(Pa | H) (139)

where G%(p | EY's are the free particle Green’s functions modified by the longe-range
Coulomb interaction:

GYp | E) =

~»In(E—T/4E)
(e )

— (140)
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and 7(py, ps | E) is the scattering amplitude

2me?
(pb - pa)2

Thus the Coulomb problem in three dimensions has been solved completely.

TPy, Pul B) = e-rlou(4B B2, (141)

Y. Conclusion

On the basis of a few simple manipulations it has been possible to bring the path integral
for a Coulomb potential to a gaussian form. We hope that our methods developed along
the way may be applicable in other circumstances permitting a transformation of com-
plicated looking problems into simple ones.

The H atom has fascinated researchers for many years due to the great beauty and high
symmetry [16] of its dynamics. It is interesting to discover while performing the sum
over its fluctuating paths that it also furnishes a simple example of a gauge theory in u
space which becomes soluble by choosing a specific gauge in which the dynamics re-
duces to that of a four-dimensional harmonic oscillator.
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Appendix A: Laguerre versus Hermite Polynomials

Since H,,l(]/E cos (p/2) Hzn_,,l(]/E sin q9/2) and LMl (o) are independent polynomials of
n*? order, there is certainly an expansion

H, (V2 08 9/2) Honn (V2 sin 9/2) = 3 L2H],(0) e45(20) By, (A1)

e
Collecting on both sides coefficients of the same power in ¢ gives
o n 2n — n
ny _ 1{ 2\ RV SN R 1
By = (n — M) (— 3 () (k)(n_M_k). (A2)

This result can be derived more algebraically by noticing that H,(u,) can be generated by

o \* . "
(ul — 57;1—) e~w'2 — Hn(ul) ¢’z (A‘3)
while
oMMy L2IML (4?) ariges from
(A.4)
1 (u, + Ty 0 )'”'MI
Yoo + MDY (v + [MDT\ )2 B(uy + iu5) Y2
< (ul — Tty _ 0 _)"_IMI e~ (P +us®}/2
V2 B(uy + 1u5)[)2 '
—_ (u2)|Ml e'MWngﬁul(Quz) e-(“-:l""”':.)/z.
But
u1+?:’u2 a —-—];—-'(u__a)_l_i(u —__a_)—
V2 Au, —iw)[y2 Y2 I\ Ou P Ouy )
(A5)

s g2
Vé 3(u1—{—z'u2)/]/§_]/§ | ! duy * ouy _.

Hence, the expansion of functions {(A.4) into produets of Hermite polynomials is equi-
valent to exponding

1 1 ((111+ _|_ ia2+)n+|M| (a1+ _ ia2+)""M' (A 6)
Voo — MDY+ [MDE\ 12 y2
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in powers of 1 / ]/(n1! ny 1) @™ —1a,* ). But this is exactly what defines the rotation
matrices of angular momentum j = n:

JT
d?ﬂr-ﬂ:f?-).M (E) *

V%ﬁ‘:;‘; L3 () e¥e(2u2)or
1

= X e Hoy(ur) Hp () (—)" Aty (-;5) (A7)

mtna=2m 2% ;! my!

This relation can be inverted such that

Hence

o . e om v 1/(n — | M)}
By" = dM.(nl—'ngIZ) (—%) (—1)" 2 ]/”1 n,! iwﬂli;, (A.8)

In fact, putting § = —=/2, m' = n; — n,/2, n = n; + n,/2 into

My (n — M)! ! — m' .
dﬁ,m,(ﬂ):]/(w“ pie 2 E(n s k)(” km)(—l)"“’“"

(m+mH(n—m) 5

2k—m'—m 2n—2k+m”
X (cos E) " (sin E)” o (A.9)

2 2

and using the symmetry relations of d-functions:

T

7T
drM|-(ﬂ1—nzf2) (——- 5) == (——1)M“(ﬂ1—ﬂl/2) diIMI'(ﬂz—-nl’2) (__2")

_1/(n— M) (n 4 [M])! n,y 9 —m \ (—1)m
- e () ) S

(A.10)
Together with (A.8) we recover (A.2).
Appendix B: Fourier Transform of the Bound State Wave Functions
Consider first the bound states v, (%) of (48). Their Fourier transform
2n 00
1 .
Yau{p) = o fd?’ f drre” Ty, (1) (B.1)
0 0

involves, after the angular integral,

27
1 , . A
% f dpe™ivroostoy-p)hibo — MgiMni ], (pr), (B.2)
0
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the following expression

o 1 (n — ]M|)' Ime? \ M+(1/2) 1
y)nM(p) = MgiMey V ——
Vom ¥ (n+ 12D +% V2r 41
= 2
> 2me dﬂ_|M|+1e—-(ma=/n+(1/2))rJM(p,r) L:-’:EM 2mel r\. (B.3)

Using the integral

00 1 1 - (2w)M w?— 1
fduuMﬂe—uIzJM (—2— uw) LM (u) = 8 (’n + E‘) (w? ‘(l“ 1))M+3/2 Tl (w2 + 1)

0

where 7T,,"(z) are the Gegenbauer polynomials which can be expressed terms of Legendre

polynomials as
1

Toulx) = A=

P(z) (B.4)

the integral (B.3) reduces to equ. (50) of the text. (see Ref. [8] p. 1680, p. 738, and equ.
(b. 3. 38)).

Appendix C: Decomposition of Pj; _ 1/2)(—cos 6)

Consider

Pii_qay(—cos ) = Pu—u/z)(_'éoéo' 4+ V&2 — 1 V&2 — 1cos y) (C.1)

where y is the angle between E ,E'. We distinguish four different cases:
ForRe &y > 0, Re sy < 0

Pu—(lle)(_ cos 0) = Pil—(1/2)(‘§0(—'§0’) - Véoz —1 V(—éo')z — Lleos(y + 75)) (C.2)

using the addition theorem we obtain

1
F(M — M+ )
PY 10)(Eo) Py —E) eMloomos) . (C.3)

Pm_(m)(—cos 0) :;"2 1
=T I"'(il + M -+ —)
2

For Re £, < 0, Re E:o’ > 0 we obtain the same formula with o< &y
For Re £, > 0, Re &’ > 0 choosing &, = &, — 10, &’ = &' — 10 and making use of

Pp(—2) = e P rz) — %e”"’”‘ sin (v + p) @,%(2)
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we get

Pii-jg)(—cos B)

= ei"(“—(llz)) Pix_(lllz)(éogo' - Véoz —1 ]/Eolz — 1 cos ‘lp)

1 sz z =
)Qu—mm(sofo' — V& — 1 V& — 1 cosy)

2 . .
—;sm:w(zil—é—

-~

. 1 -
(&) — po sin 7 ('M - E) Q%—(uz)(fo)}

1
r (2'2 — M+ E)
N {ein(iz—(l/Z)) Pﬂ{_um)

= 3 (-1 .
M= r(z';.+M+ 5
(C.4)

X PH_1j2)(Ep) €M w05,
Similarly for Re £, < 0, Re &’ < 0 we get
. r (7:/1 M %)
Pii_qjg(—cos ) = 3/ (—1)¥ 1
M=—oo r (i). + M+
wy = 2
. {eﬁmm—(uz)) Pl s —&o) — P sin (

) 1 -
1A — —2—) Q?f—mz)(*fo)}

(C.5)

X PH 0 —&g) eM@om0s).
When these expansions are put into (66), terms with @}, do not contribute since

they are multiplied by sin #(vA — 1/2), such that we obtain (70).

Appendix D: Fourier Transform of the Continuum State Wave Function ; ;31(x)

4

Xethppfdrrl/zJM(pT) Mil,M( 7

0
To calculate the radial integral, we use the integral representation for the Whittaker

Fourier transform of the continuum wave function of (65) is
2n o0
1 .
viLu(P) = 5 fd‘??fdf”e—””"‘ﬁu,m(w)- (D.1)
0 0
After calculating the angular integral
, 1 .
(—)¥ < /me® 1 P(M+"2"+M)
y)il,.\f(p) — — eﬁl(n12)(t1—(1/2))
1/ v ﬁ reMm 1
2
2me r). (D.2)

(2me2

M+(1/2)
i )

function M;; ,, [10]:
2me? rem + 1

1
M:‘i,M(“’?"’“ 7') = oo
¢ 2 r (M + % 1 ul)‘

(D.3)

n

2i4
4 TM+(1/2) f di e—(meﬂjiz)rcost(sin t)2M (COS ?)

0
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Then we have

3 sl
vinu(p) = Nf dt (sin £)2M (cot %) fdrrM“e‘("'“"/“”‘c"S‘JM(pr) (D.4)
0

where N collects all the numerical factors. If we add a small imaginary part —iz(s > 0)
to ¢ we obtain for the radial integral [8]

o0
f dryM+1g—(me*/id)cos(t—ie) JM(PT)
(1]

2 oy
_ 226__1: cos (t — 1¢) (D.5)
A ]/ﬂ;

o MA@

—_—)2 cos? (t — 1g) + p2]

@p) T (M + %) [ (
2

After performing a variable change and using the integral representation for the Le-
gendre functions

. M(] — g?)diz M1 (3
PH_ () = 2¥ ch mi(— 1M £ =t
A (1[2)( 0) ( ) j‘[lll/ﬁ .gg 2

X foodx e'*? sh 2[g*(1 — ch (z — 2e)) + (1 + ch (x — we))|"¥-%2  (D.6)

—co
with
3 1+ ¢ p _ me?
we obtain y{(p):
g M+(1/2) 2112?302 _ _
Pir-qja,u(P) = T GE— pn VA e-miizgite,

] 1 - - - .
X F(’M — M+ ?)l {PY_12)(E) O(&g) + (—1)M PY (&) 0(—E&p)).

(D.7)

Appendix E: Derivation of the Scattering Amplitude

The asymptotic form of (74) is dominated by g ~ 0, (& — &,)2> 1

1
d 91/2

doo~ =
S s

T(6 &) = 86 — &) + o f

0

» : Q—v—lfz
~ 6(5{3 - Eﬂ) + E:Ef 2(1 + Q(Eb _ 50)2)31‘2
0
2 1 ')

[(& — &)*T~2, (E.1)

~ & — &) + —
2Yr cos F(r + %)
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Using the value of
(6* — &) = 4po® (P — Po)|[(De* + 2o®) (P + Pa?)]

we obtain for the asymptotic form of K(p,, p,):

7:6 - a . ?’.
K(py, pa) ~ (pr__ﬁ Tp) _zE_T
a a
X J »I(v) ¢~*In(E=T,/4E) ¢ e~rIn(45e @ ~pa"))
chm)]’(v-}-%) 2]/;(1%_1’“)
" - v I'(v) : ¢~ In{E~T ,/4E) i (E.2)
ch:wF(v—i—E) E -1

where T' = p?/2m and E = py%/2m. Here we identify the long-range Coulomb propagator

vI'(v)

)
G(p) ~
£ - Tl/chnvf(v—{—%)

and the scattering amplitude

e—wll’l(E-—-TME)

e

e—VlOE(‘lﬁna/('pb"pa)’) . (E.?’)
|pb - pal

TPy, Pa) =

Appendix F: Derivation of Wave Functions of the Three Dimensional
H-Atom in Parabolic Coordinates

We first express the products
H nx(V;&; '"’1) H nc(]/:;;;’_ u4) =H nx(l’ 2p, ul) H u.(l/:‘%- ’“/4)
=H, (V2p0r sin-g— cos = —;— (P) H,,‘(V2por sin % sin = ; (P)

via formula (45) as

e—p.,rcos'ﬂm

2mnd/2 Y T,

Hm(]/ﬂE u;) JH;;.(V.‘E u4)

11+ 1.f2 T
. pX dmna2 _a
= "M 14, R1—Ng /2

Mg =—ny-+nyf2

. , 6 {1myal . 0
X etmulerpnlgmparcosi2( gpr)imd (S‘n2? Ll oma | 2007 sin® | (F.2)



432 1. H. Durvu and H. KLEINERT

and write the product
y: 4 na(m us-) Hni(l/l‘_w 'uz)

in a simular way in terms of Laguerre functions by replacing (n, — n;, n, — n, and
cos 0/2 <> sin 0/2). The the full wave function (111) becomes:

ﬂ1+ﬂ¢,2 na+n,,‘2
.2._?1 eimu(““‘?’*-")eimn(“"’ﬁ”)

L
7 M= —n;+Naf2 M3z = —n3-t nyf2

7y + My — || ! Ny + Ny — |mgg| !

2 2 z;ﬂ;qm" 2 (_i) dns- naf2 o ____i
n —|— n n + 7 14,1 —1y 9 Mgz, N 3—Ng
(g + i?nml)!( L+ !

2

2 2
@ \2Imas g \ 2wl
X €7 PT( 2pgr) Mastt [Mas] (cos -Q-) (sin §)
., 0 6
X Lﬁ'ﬂ'hﬂl/z—mnl (21907' sin? ?) L:zz!,'zhi;.llz—lmul (21’0" cos? ‘é‘) . (F.3)
The integral over da, in (110) from zero to 27 enforces m,; = —m,; and gives a factor 2.

The wave functions become:

4p0 Z eZim“qJ

M4
n 4+ n Ny + N
( - ) : — |m14|)!( 2 5 2 — |m32|)!
dﬂr*ﬂd?

el — T dn,«'rnzm el — o
yR—m 2 —it1y, N3N
Ny + Ny Ny + Ny s 2 2
( 5 + fmlsl)!( 3 + Mg )!

. .. B L0
X e7PT(pyr sin §)2™ml L;",'l”f;;j 12—l (2p07' sin? E-) szl’f;‘,La 12| (Zpor cos? ?) (F.4)

where m,, runs from the minimum of (—n,; -+ 7n4/2, —n3 + n,/2) to the opposite value.
At the residue (116) the d-functions occur on the form

d"“ na4/2 __2 dre tRef2 __f_.
mi .0, — naf2 P) MY Ry 2 9

dnla-an‘.! __E_ dns+ml2 _E
m;4.n;—n,/2 9 -m'l’4,na—nal2 2

with the indices (n, — n,)/2 running for every fixed (n, + n,)/2 from —n, + n,/2 to
n; + ny/2 (similarly for (ng — n,)/2).

Due to the onthogonality of the d-functions we obtain Om?,m,Ome, mt,» Thus the residue
takes the form of (116). The quantum number n, + n,/2 — |m,| is always integer and
may be denoted by

(E.5)

N, +n
n' = — 4—|m14i

2
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and similarly we have the integer

thus we have
' + 1y =n — 2|my,

with m = 2 || always being integer.

Appendix G: Relation Between the Parabolic and Spherical Wave Functions

Here we will caleulate the coefficients C%" defined in the following way (n = n,” + n,’
+ lm] + 1)

n—-1

Q,Ufm’n-;'.m(a;) ZI_Z C:?twntm(w) (Gl)

where s, i8 the parabolic wave functions and y,;, is the spherical wave functions of
H-Atom given by (117) and (121), respectively. Using the power series representation for
the Laguerre polynomials

L) = l(—ﬂ(”*“)” (G.2)

oo n — ml) m!
(G.1) becomes:

nS' n-m’ —|ml—1 __1\p+4q LY —_ . —
2 Z, B( 1) (n1 I]m})( n—n 1 )

p=0 —0 plg! ' —pf\n—n'—|m —qg—1
. G\ -
— mi+p+q
e )
n—d-1 n—1 1 n+1
— A R L+t !-:
3 aom g reeosn(, _TE) ) (G
where
1/t~ — m| — 1)!
*Mm+mmm~m—n! (G4)
and

A:V(21+1)(1—|m|‘)!(n—-t—1)! (.5

( + [m)! (n + D!

and o = 2p,r. Equating the coefficients of the highest powers of g in (G.3) which occur
forp n/,¢g=mn—mn'—{ml —1landt=n —1— 1 we obtain:

e n,’ ) 0 n—n,"~|m -1 )
B (cos2 -é-) (31112 —2-) sinl™l
_(_l\n ‘mi--1

lmi ' n/t(n —n' — |m} — 1!
n--1 1

_IZT;AC,M P Ty P (cosb). (G.6)

3 Zeitschrift ,,Fortschritte der Physik®, Bd. 30, Helt 3




434 I. H, Durv and H. KLEINERT

Muitiplying both sides by sin 6P,™(cos 8), and integrating over 8 € (0, 2x) and using the
orthogonality of the polynomials P, C7™ can be expressed as (x = cos 6)

o _ (—1)+i-imi~1 @+ DA+ |m) (n+ D) (n—1— 1)
w2 (n + [mH(n—mn' — DI — [mP!nt (n —n — |m| — 1)!
1
i—|m|
X fd’x(l — g)rmoimi=l (] gy };LW (1 — 2! (1 + 2)). (G.7)

-1

From this last expression we can see that C%, is equal to the Clebsch-Gordon coefficients
up to a phase [15]:

n—1 n—1
2 2 :
Oy = (—1ym’=Iml (1™ Y21 + 1
e = (—1) (—1) + 2im| —n+2n' +1 n—2n —1
—m
Appendix H: Fourier Transform of 1 ;m(p)
Fourier transform of (133) is
2n k] o0
1 . ;
Pium(®) = oL f de, f dfp sin G, f App*e P ;im(P) (H.1)
0 0 0

from which we obtain after taking the angular integrals and changing the variable p
to g = [pl/Po

?:i -1/2
"Piilm(:t) - T =
V=

f,osla.[_,;i (1 _ e—2ml) /12(,12 + 12) (12 + Zz)]

@E+DHT—m! .,
d7(l + m)! !

(cos B) eime
m o1

A 2 d 41
25 (5 {
X f dq9*j1(Borq) (1 — qz) (sh 6.) ( Ton 9_) ch 0_

0

oo

L 1 2 d +1
— e“ijdqqzjt(pOTQ) (-]—.-—_?) (Sh 0¢)l (m) ch ZB_,_ (H.2)
o+
1

where th (6_/2) = ¢ for ¢ ¢ (0, 1) and th (0,/2) = 1/g for ¢ € (1, oo). To handle the sin-

gularity at ¢ = 1, following reference {10], we introduce

1 d \'*! cos 20
sh #Z \d ch @ sh 6

F[(}., 6) -

and

Fie,0) = f diei*t Fy(4, 0) = 3

— 00

shi(—1) (I + 1)!
(ch ¢ + ch ¢)+2
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Then we get

P oime 1/ 2L+ 1) —m)!
Vium(®) = “-7; e 'PV prTm—— P (cos 6)

Y
X Ppdl? [2 (1 — e~274) 22(42 4 12) ... (A2 4 lg)] 1/2

X %(—1) (I + 1)!2'+1fdte‘“‘ sh ¢

— 00

[e.o]

o q 1+2
« | daiton (q2[1 ey | NCE)

Then using the relation between j;(z) and the Hankel functions

1
ji(?) = 5 (i) (2) — b (2))

we obtain [10]

| (= 1 eime - @+ 1) (I — m)!
y)ll,l!lﬂ(m) - Vn V2 0 2p0/r V— 4n(l + m)!
. (L + @i + 1) .

3*



