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I. KOSTERLITZ’S RENORMALIZATION GROUP EQUATIONS FOR THE d-DIMENSIONAL
COULOMB GAS

We start by deriving Eqs. (6) and (7) of our paper [1], corresponding to the renormalization group (RG) equations for
the three-dimensional Coulomb gas of magnetic monopoles. We will consider here the general case of a d-dimensional
Coulomb gas, whose RG equations were first obtained by Kosterlitz [2]. In our paper [1] the only dimensionful
parameter available is e2

0, which has dimension of inverse length in three dimensions. Instead of working with this
quantity, we shall introduce another bare parameter, K0, having dimension of length to the power d− 2. For d = 3,
which is the case of interest in our paper, we will set K0 ≡ 1/e2

0.
The RG equations for d-dimensional Coulomb gas were originally derived by Kosterlitz [2] using the so called

poorman scaling approach. Here we will use a method due to Young [3], which is physically appealing, since it
just amounts to perform a scale-dependent Debye-Hückel theory, and leads to exactly the same results. Although
Young applied the method to derive the RG equations associated to the Kosterlitz-Thouless (KT) phase transition,
it generalizes easily to the d-dimensional case. We have used this method previously [4] to derive the RG equations
for anomalous Coulomb gases in d-dimensions. Here we concentrate on the ordinary d-dimensional Coulomb gas and
try to keep the discussion self-contained and, hopefully, pedagogic.

The bare Coulomb interaction is given by

U0(r) = −4π2K0V (r), (1)

where

V (r) =
a2−d

4πd/2
Γ

(
d

2
− 1

) [( r

a

)2−d

− 1
]

. (2)

In the above equation a is a short distance cutoff, which for d = 3 will be set to a = 1/e2
0. From Eq. (1) we obtain

the bare electric field:

E0(r) = −4π2c(d)
K0

rd−1
, (3)

where

c(d) =
d− 2
4πd/2

Γ
(

d

2
− 1

)
. (4)

Next, in the spirit of the Debye-Hückel theory, we introduce an effective medium via a scale-dependent dielectric
constant ε(r). This gives the renormalized electric field,
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E(r) = −4π2c(d)
K0

ε(r)rd−1
. (5)

The dielectric constant is given by

ε(r) = 1 + Sdχ(r), (6)

where Sd = 2πd/2/Γ(d/2) is the surface of the d-dimensional unit sphere, and the susceptibility is given by

χ(r) = Sd

∫ r

a

dssd−1α(s)n(s). (7)

In Eq. (7) α(r) is the polarizability, which for small separation of a dipole pair is given approximately by

α(r) ≈ 4π2K0r
2

d
. (8)

The average number of dipole pairs is approximately given by

n(r) ≈ z2
0e−U(r), (9)

where z0 is the bare fugacity and U(r) is the renormalized potential obtained by integrating the renormalized electric
field (5),

U(r) = U(a) + 4π2c(d)K0

∫ r

a

ds

sd−1ε(s)
. (10)

The renormalized counterpart of K0 is given by

1
K(l)

=
ε(ael)
K0

e(d−2)l, (11)

where l = ln(r/a). Differentiation of Eq. (10) with respect to l gives

dU

dl
=

4π2c(d)
ad−2

K(l), (12)

where we have used Eq. (11). Next we differentiate Eq. (11) with respect to l to obtain

dK−1

dl
=

8π2S2
dz2

0ad+2

d
e2dl−U(ael) + (d− 2)K−1. (13)

Now we define

z2(l) =
2S2

dz2
0

d
e2dl−U(ael), (14)

such that Eq. (13) becomes

dK−1

dl
= 4π2ad+2z2 + (d− 2)K−1. (15)

From Eq. (14) we derive the RG equation for the effective fugacity:



3

dz

dl
=

[
d− 2π2c(d)K

ad−2

]
z. (16)

It is convenient to introduce the dimensionless couplings κ ≡ a2−dK and y ≡ adz to rewrite Eqs. (15) and (16) as

dκ−1

dl
= 4π2y2 + (d− 2)κ−1, (17)

dy

dl
=

[
d− 2π2c(d)κ

]
y. (18)

For d = 2 the above RG equations govern the scaling behavior of the KT transition, while for d > 2 there is no fixed
point, implying that the d-dimensional Coulomb gas is always in the metallic phase [2].

In the context of compact Maxwell theory in d = 3, we set K0 = a = 1/e2
0 and define the dimensionless gauge

coupling f ≡ K0/K = 1/κ = e2/e2
0. In this way we obtain from Eqs. (17) and (18) the RG equations for compact

Maxwell theory in three space-time dimensions:

df

dl
= 4π2y2 + f, (19)

dy

dl
=

(
3− π3

f

)
y. (20)

II. COUPLING TO FERMIONIC MATTER FIELDS: THE RG EQUATIONS FOR COMPACT QED3

For d = 3 and in the absence of matter, Eq. (11) gives the renormalization of the bare charge due to the magnetic
monopoles, as can be more easily seen after bringing it to the form

e2(l) = ε(ael)ele2
0. (21)

In the non-compact case, the bare charge is renormalized by the wave function renormalization of the gauge field, ZA(l),
which is calculated from the vacuum polarization. Thus, for non-compact QED3 we have simply e2(l) = ZA(l)ele2

0.
In order to account for the effects of matter fields we have to consider in the compact case the renormalization due
to the vacuum polarization. In such a case Eq. (21) is modified to

e2(l) = ZA(l)ε(ael)ele2
0. (22)

Differentiation of Eq. (22) with respect to l yields

de2

dl
=

128π4z2
0

3(e2
0)5

ZA(l)e6l−U(el/e2
0) + (1− γA)e2(l), (23)

where

γA ≡ −
d lnZA

dl
. (24)

From Eq. (23) we see that the quantity z2 also gets modified by the gauge field wave function renormalization. Note
that in all equations of Section I the “dielectric” constant is multiplied by ZA(l). After defining the dimensionless
fugacity

y2 =
32π2z2

0

3(e2
0)6

ZA(l)e6l−U(el/e2
0), (25)
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and setting f = e2/e2
0 we obtain the RG equation for the dimensionless gauge coupling,

df

dl
= 4π2y2 + (1− γA)f. (26)

Finally, differentiation of Eq. (25) with respect to l leads to the RG equation

dy

dl
=

(
3− π3

f
− γA

2

)
y. (27)

It is straightforward to calculate γA at one-loop order,

γA =
Nf

8
. (28)
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