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Description 

• clean & well isolated from environment 
 
• universal contact interactions  

 
• taylorable and controllable, also during experiment 

 
 

• additional “features” possible  
 fermions, spin, dissipation, disorder, …, 
 artificial magnetic fields, … 

Spinless bosons: 



Optical Lattices 
standing light wave  

clean periodic potential 

Deep lattices 



Optical Lattices 

Deep lattices 

Ratio 𝑈/𝐽 tunable via laser power:  
 from weak to strong coupling regime 

Described by Hubbard models 
Jaksch et al., PRL (1998)  

bosons 

J 



Optical Lattices 

Different lattice geometries / reduction to1D or 2D  

Ratio 𝑈/𝐽 tunable via laser power:  
 from weak to strong coupling regime 

Described by Hubbard models 
Jaksch et al., PRL (1998)  

bosons 

J 



Cold-atom lattice systems 
• clean & tunable realizations of minimal many-body models 
• strong interactions possible   
• well isolated from environment 
• time-dependent parameter control 
• few-particle correlations directly measurable (single-site resolution) 
 
=> quantum engineering of many-body systems 
• push boundaries of human control over quantum behavior 
• study exotic equilibrium physics 
• study coherent many-body quantum dynamics 
• … 

 
today:  
• time-periodically driven optical lattices   
• how to effectively create artificial gauge fields for neutral atoms 

J 



External fields in tight-binding lattices 
Vector potential          represented by Peierls phases   
    
Scalar potential            represented by on-site energies 

Magnetic flux through a lattice plaquette P 

2 1 

4 3 

𝑒𝑖Θ21 

𝑒𝑖Θ32 

𝑒𝑖Θ43 

𝑒𝑖Θ14 
Flux quantum Φ0 = 2𝜋 

Invariant under gauge transformations 

Constant vector potential: 



• Complete the toolbox for mimicking charged particles 
 

• Reach Quantum Hall regime 
  # magnetic flux quanta  ~ # particles 

 

• Intriguing interplay between lattice and gauge field  
– strong-field regime (fractal Hofstadter butterfly spectrum relevant) 

      # magnetic flux quanta ~ # lattice cells 

– Chern/topological insulators  

  gauge-field changes on length scale of the lattice   

  → Bloch bands with quantized (spin) Hall conductivity (like Landau level) 

• Intriguing interplay with interactions 

– Fractional Quantum Hall effect / Fractional Chern insulators  

– Mimic quantum antiferromagnetism with hard-core bosons 

Why artificial gauge fields in optical lattices? 
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Using internal atomic structure 
 
State-dependent lattices 
+ Laser-assisted tunneling 
• Jaksch & Zoller, NJP 2003 
• Mueller, PRA 2004 
• Gerbier & Dalibard, NJP 2010 
 
Optical Flux lattice 
Lattice and gauge field created on same footing 
• Cooper PRL 2011 
• Dalibard & Cooper,  EPL 2011 
• Cooper & Moessner, PRL 2012 
• Juzeliūnas & Spielman, NJP 2012  
• Dalibard & Cooper, PRL 2013 

 
Proposals for non-abelian gauge fields  
• Osterloh et al. PRL 2005 
• … more … 
Experiment: tunable1D gauge potential 
   Jiménez-García et al PRL 2012 (Spielman) 
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Dynamically w/o internal structure 
 
Lattice shaking (kHz-regime)   
• EPL 89, 10010 (2010) 

π-flux triangular lattice 
• PRL 108, 225304  (2012 )  

tunable magnetic fields 
• PRL 109, 145301 (2012) 

Chern/topological insulators,  
non-abelian gauge fields  
 

Moving superlattice  
• Kolovsky EPL (2011)   

(tuanble) magnetic fields 
 

Stirring potentials 
• Lim, Morais Smith & Hemmerich PRL (2008) 

tunable stagered square lattice 
• Kitagawa et al. PRB (2010) 

topological insulatior on hexagonal lattice 
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Moving superlattice  
• Kolovsky EPL (2011)   

(tuanble) magnetic fields 
 

Stirring potentials 
• Lim, Morais Smith & Hemmerich PRL (2008) 

tunable stagered square lattice 
• Kitagawa et al. PRB (2010) 

topological insulatior on hexagonal lattice 

First experiments: 

𝜋 𝜋 𝜋 𝜋 

𝜋 𝜋 𝜋 𝜋 
Science 333, 996 (2011) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to create artificial gauge fields in optical lattices? 

Nature Phys. (2013) 
doi:10.1038/nphys2750 

Φ Φ 

Φ Φ −Φ 

−Φ −Φ 

−Φ 

Aidelsburger et al. PRL (2011) 

Aidelsburger et al.  arXiv:1308.0321 
Miyake eta l. arXiv:1308.1431 
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Time-periodic Hamiltonian  (Floquet system)         

Useful? Yes! If           has simple form (at least approximatly) 

Effective time-independent Hamiltonian for time-evolution over one period:  

Quantum engineering in time: 
Engineer a time-periodic many-body system that realizes 
an effective  time-independent Hamiltonian of interest! 

In a nutshell  



possesses solutions 
 
  equivalently 

Floquet states 
Schrödinger equation with time-periodic Hamiltonian 

Floquet state 
Quasienergy 

Floquet mode 

Floquet states form  complete orthonormal basis at every time 𝑡 



  
 
   

Floquet states Proof: 

   
  

     
       

Time evolution operator: 

Monodromy operator: 

 
• Eigenstates form complete orthonormal basis (from unitarity) 

 
 

• Eigenvalues are phase factors (from unitarity) 
 
 

•   Eigevalues are independent of 𝑡 (from                          ) 
 

Eigenstates are Floquet states 



Time evolution generated by time-periodic Hamiltonian 

• If prepared in Floquet state: purely periodic 
 

• If prepared in superposition of Floquet states: 
stroboscopic time-evolution determined by quasienergies 𝜀𝛼 

How to compute Floquet states and quasienergy practically? 
 numerically ?   
 analytic approximations?  

Time evolution 
on short times 
within one period 
(micromotion) 

Long-time 
 behavior 



Eigenvalue problem of monodromy operator 

use together with 

Usefull for numerical computation of small systems: 
• Compute              by integrating the time-evolution  

for a complete set of basis states 
 

• Diagonalize                     fully 



Quasienergy eigenvalue problem 
[Sambe PRA (1973)] 

Ambiguity in definition of Floquet modes |𝑢𝛼(𝑡)〉 (here 𝜔 = 2𝜋
𝑇

) 

Hermitian quasienergy eigenvalue problem  (time plays role of a coordinate) 

Quasienergy operator 

− drastically enlarged Hilbert space 

+ Stationary perturbation theory applicable 

+ Adiabatic principle works 

+ Intuitive Framework for resonance effects 



The Floquet Picture 
Arbitrary time-dependent Hamiltonian 

Two-times formalism 

Consider generalized Schrödinger equation in extended Hilbert space: 

Project back to original state space: 

Use tools and intuition of non-driven systems 
Stationary perturbation theory for eigenvalue problem of  

Adiabatic principle for parameter variation  

with 

e.g.: 



Perturbation theory for effective Hamiltonian 
 Quasienegy eigenvalue problem 

                                                  

 
 
  
 
  
 
  

Appropriately chosen basis 

Strategy for choosing  
Integrate out large terms ~ℏ𝜔 

                                                  

 
 
  
 
  
 
  

If 

neglect off-diagonal blocks        

⇒ effective Hamiltonian         
 

(1st order degenerate perturbation theory, 

systematic corrections from higher orders) 

𝑚 plays role of a ``photon‘‘ number 
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Basic scheme for generation of gauge fields 

Hubbard Hamiltonian with periodic driving 

     

tunneling periodic  
driving 

possible 
static tilt 

weak trap,  
interactions, 

Unitary transformation (interaction picture / change of gauge) 

Time average over one period 

Effective tunneling matrix elements (can be complex) 



Basic scheme for generation of gauge fields 

Plaquette fluxes Φ𝑃 = 0,𝜋 (time-revresal symmetry not broken)    

if global reflection symmetry   

These symmtries also prevent  
ratchet-type rectification 
Flach et al. PRL 84, 2358 (2000),  
Denisov et al. PRA 75, 063424 (2007). 

if the                and local reflection symmetry 
  
              or shift antisymmtry 

  



Basic scheme for generation of gauge fields 

Case 1: AC-modified tunneling (no off-sets                      ) 

Case 2: AC-induced tunneling (strong off-sets                       ) 

  
  

    

  
  

    

Plaquette fluxes Φ𝑃 ≠ 0,𝜋 requires to break 

Plaquette fluxes Φ𝑃 ≠ 0,𝜋 requires to break 

Easier to break, 
e.g. a moving 
Superlattice is 
 enough 



AC-modified tunneling via lattice shaking 
inertial force 

  

  

 

 

 

 

Break symmetry 

Square plaquettes remain trivial 
                          Φ𝑃 = 𝜃 + 𝜃′ − 𝜃 − 𝜃′ = 0  

𝜃 

𝜃 

𝜃𝜃 𝜃𝜃 

Triangular plaquette flux tunable 
   Φ𝑃 = 𝜃 − 2𝜃′ ≠ 0  𝜃𝜃 𝜃𝜃 

𝜃 



AC-induced tunneling in tilted lattice via 
moving superlattice 

(Kolovsky proposal & Bloch/Ketterle 
experiments) 



J 

 Dynamically induced quantum phase transition 

superfluid 
particles delocalized, 
gapless phonon excitations 

Mott-insulator 
particles localized at sites, 
gapped particle-hole excitations 
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MPA Fisher et al., PRB (1989), 
for cold atoms: Jaksch et al., PRL (1998)  
 

bosonic ground state: 
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MPA Fisher et al., PRB (1989), 
for cold atoms: Jaksch et al., PRL (1998)  
 

bosonic ground state: 

experiment: Zenesini et al., PRL (2009)  
proposal: Eckardt et al., PRL (2005) 

      



Perturbation theory for effective Hamiltonian 
 Quasienegy eigenvalue problem 

                                                  

 
 
  
 
  
 
  

Appropriately chosen basis 

Strategy for choosing  
Integrate out large terms ~ℏ𝜔 

                                                  

 
 
  
 
  
 
  

If 

neglect off-diagonal blocks        

⇒ effective Hamiltonian         
 

(1st order degenerate perturbation theory, 

systematic corrections from higher orders) 

𝑚 plays role of a ``photon‘‘ number 



Eckardt & Holthaus, PRL 2008 



 
Dynamically induced frustration 

in a triangular lattice 

Joint work with experimentalists from Sengstock group in Hamburg 

     
     

Struck et al., Science 2011 
Eckardt et al. EPL 2010 



Shaken triangular lattice 
Elliptically shaken triangular lattice 

Frustrated kinetics for 

      

    

    

 
 

 
     

    

J 
J‘ 𝜋 𝜋 𝜋 𝜋 

𝜋 𝜋 𝜋 𝜋 

    
    



Limit of weak interactions 
Condensate with wave function: 

resemble classical rotors  with antiferromagnetic coupling 

Experiment Reciprocal lattice 

Dispersion relation 

1 -- 

0 -- 

2 -- 

Direct lattice 



Spontaneous breakingof time-reversal symmetry 

Circular plaquette currents 

Condensate with wave function: 

resemble classical rotors  with antiferromagnetic coupling 



    
 
 
 
 

    
   

     

     

 

Corrections for intermediate interaction 

condensate 
fraction = 0.75 

Spiral staggered 

“Order-by-disorder-type effect” 



Strong interaction 
Hard-core boson limit 
 
System resembles frustrated quantum antiferromagnet  

Ground state difficult to predict 

Two simple Ansaetze give the same energy  per spin  -(3/8) J  

Classical  
Neel order 

Cover of singlets 
(exponentially degenerate!)  
 
=> Valence bond solid or 
      Spin liquid (gapped or critical) 



Strong interaction 
Hard-core boson limit 
 
System resembles frustrated quantum antiferromagnet  

Novel type of quantum spin simulator  

• built on easy-to-cool bosonic motional („charge“) degrees of freedom 

• large coupling of the order of boson tunneling (no superexchange) 

• different adiabatic preparation schemes (tunable frustration & „quantumness“)  

• can host quantum disordered spin-liquid-like phases 

• generalizable to further lattice geometries, e.g. Kagome (Berkeley group) 

• easy to implement experimentally 



Strong interaction 
Hard-core boson limit 
 
System resembles frustrated quantum antiferromagnet  

Conjectured phase diagram at half filling: 

Schmied et al. NJP 2008: PEPS and exact diagonalization 

J‘/J ~1.4 
   | 

~1.2 
   | 

~0.6 
   | 

~0.4 
   | 

    0 
   | 

Staggered 
Neel order 

Spiral 
Neel order 

algebraic 

gapped  
spin liquid 

gapped  
spin liquid 



Conclusions 
Lattice shaking is a low-demanding method  
for the creation of artificial gauge fields 
(both abelian and non-abelian) for neutral atoms. 
 
Opens novel routes for engineering  
many-body physics in optical lattices 
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