Why should anyone care about computing with anyons?

Jiannis K. Pachos

Introduction

EPSRC

Engineering and Physical Sciences Research Council

Introduction

- Quantum Computation is the quest for:
» neat quantum evolutions
" new quantum algorithms
- 2D Topological Quantum Systems: How?

1) Continuum gases: FQHE Chern-Simons $S U(N)_{k}$
2) Spin lattices: Quantum Double Models

Topological Degeneracy
Charge Fractionalization Effective gauge theories

[Wilczek, Freedman, Wen, Bais, Wang, Kitaev,...]

Anyons

-Two dimensional systems

- Dynamically trivial ($\mathrm{H}=0$). Only statistics.

$$
\text { Bosons } \quad|\Psi\rangle \rightarrow|\Psi\rangle
$$

Fermions $\quad|\Psi\rangle \rightarrow e^{i \pi \pi}|\Psi\rangle$

Anyons: vortices with flux \& charge (fractional). Aharonov-Bohm effect \Leftrightarrow Berry Phase.

Topological Degeneracy

System with degenerate ground states where:

- The degeneracy is protected by topology (genus).
- Degenerate states are not locally distinguishable.

\Rightarrow encode information in degenerate subspace
Index Theorem: n fermionic zero energy modes
$\Rightarrow 2^{n}$ degenerate ground states [Atiyah, Singer (1963)]

Topological Quantum Systems

Anyon Properties

- Assume we can:
- Create identifiable anyons vacuum pair creation
- Braid anyons

Statistical evolution: braid representation B

- Fuse anyons
e.g. $\sigma \times \sigma=1+\psi$

Fusion Hilbert space:

$$
|\sigma, \sigma \rightarrow 1\rangle,|\sigma, \sigma \rightarrow \psi\rangle
$$

am!

Anyon Properties

- Assume we can:
- Create identifiable anyons vacuum pair creation
- Braid anyons

- Fuse anyons
e.g. $\sigma \times \sigma=1+\psi$

Fusion Hilbert space:

$$
|\sigma, \sigma \rightarrow 1\rangle,|\sigma, \sigma \rightarrow \psi\rangle
$$

The braid group B_{n}

The braid group B_{n} has elements $b_{1}, b_{2}, \ldots, b_{n-1}$ that satisfy:

$$
\begin{aligned}
& b_{i} b_{j}=b_{j} b_{i}, \text { for }|i-j| \geq 2 \\
& b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1} \text { for } 1 \leq i<n
\end{aligned}
$$

Pictorially:

Braiding and Fusion properties

- The action of braiding of two anyons depends on their fusion outcome:
E.g. for c : fermion then $R_{a b}^{c}=i$ is possible

- Changing the order of fusion is non-trivial:

Construction of Anyonic Models

1. Take a certain number of different anyons

$$
1, a, b, \ldots
$$

the vacuum (1) and one or more non-trivial particles
2. Define fusion rules between them

$$
1 \times a=a, a \times b=c+d+\ldots, a \times a=1+\ldots
$$

The vacuum acts trivially. Each particle has an anti-particle (might be itself or not).

- Abelian anyons $a x b=c$
- Non-Abelian anyons $a x b=c+d+\ldots$

Construction of Anyonic Models

3. The F and B matrices are determined from the

 Pentagon and Hexagon identities

Construction of Anyonic Models

3. The F and B matrices are determined from the Pentagon and Hexagon identities

$$
\sum_{b}\left(F_{231}^{4}\right)_{b}^{c} R_{1 b}^{4}\left(F_{133}^{4}\right)_{a}^{b}=R_{13}^{c}\left(F_{213}^{4}\right)_{a}^{c} R_{12}^{a}
$$

Ising Anyons

Consider the particles: $1, \sigma$ and ψ
Fusion rules: $\sigma \times \sigma=1+\psi, \psi \times \psi=1, \sigma \times \psi=\sigma$

$$
\begin{aligned}
|\Psi\rangle & =|1,1, \ldots\rangle \\
|\Psi\rangle & =|1, \Psi, \ldots\rangle
\end{aligned}
$$

All these states span the fusion Hilbert space

Ising Anyons

Consider the particles: $1, \sigma$ and ψ
Fusion rules: $\sigma \times \sigma=1+\psi, \psi \times \psi=1, \sigma \times \psi=\sigma$

$2^{n / 2}$ increase in dim of Hilbert space

Ising Anyons

Consider the particles: $1, \sigma$ and ψ
Fusion rules: $\sigma \times \sigma=1+\psi, \psi \times \psi=1, \sigma \times \psi=\sigma$
From 5-gon and 6-gon identities we have:

$$
F_{\sigma \sigma \sigma}^{\sigma}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Rotation of basis states

Ising Anyons

Braiding ${ }_{1}^{1} R_{\sigma \sigma}^{1}=e^{-i \pi / 8 \mid}$ and $R_{\sigma \sigma}^{\psi}=-\overline{e^{-i \pi / 8 \mid}} \Rightarrow R_{\sigma \sigma}=e^{-i \pi / 8}\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
$\left.\left(R_{\sigma_{1} \sigma_{2}}\right)^{2}\right|_{\sigma_{4}} ^{\left(\bar{\sigma}_{1}\right.} \overbrace{1}^{\sigma_{2}} \overbrace{3}^{\sigma_{3}}=\left.\left(R_{\sigma_{1} \sigma_{2}}^{1}\right)^{2} V_{1}^{\sigma_{1}}\right|_{\sigma_{2}} ^{\sigma_{3}}+\left.\left(R_{\sigma_{1} \sigma_{2}}^{\psi}\right)^{2} \underbrace{\sigma_{1} \sigma_{2}}_{\psi}\right|_{\sigma_{4}} ^{\sigma_{3}}$
$=\left.e^{-i \pi / 4} \overbrace{1}^{\sigma_{1}}\right|_{\sigma_{4}} ^{\sigma_{2}}-e^{-i \pi / 4} \sum_{\psi}^{\sigma_{0}}{\underset{\sigma}{\sigma}}^{\sigma_{2}} \sigma_{3}$

$$
=\left.e^{-i \pi / 4}\right|_{\sigma_{4}} ^{\sigma_{1}} \int_{\psi}^{\sigma_{2}}
$$

$$
H \sigma^{z} H=\sigma^{x}
$$

Clifford group: non-universal!

Ising Anyons

Qubit initialization:

Measurement: Outcome of pairwise fusion, 1 or ψ

$$
H \sigma^{z} H=\sigma^{x}
$$

Gates: Clifford group. Non-universal!
Can be employed as a quantum memory. One needs a phase gate: employ interactions between anyons.

Fibonacci Anyons

Consider anyons with labels 1 or T with the fusion properties: $1 \times 1=1,1 \times T=T, T X T=1+T$

Fibonacci Anyons and QC

Qubit encoding:

Evolving a qubit:

State |0>

$$
\begin{aligned}
& |\mathrm{T}, \mathrm{~T} \rightarrow 1\rangle=|0\rangle \\
& |\mathrm{T}, \mathrm{~T} \rightarrow \mathrm{~T}\rangle=|1\rangle
\end{aligned}
$$

State |1> ${ }^{\top}$

Fibonacci Anyons and QC

Qubit encoding:

Evolving a qubit:

Unitaries B and F are dense in $S U(2)$.
Extends to $S U\left(d_{n}\right)$ when n anyons are employed.

Fibonacci Anyons and QC

Qubit encoding:

CNOT

Unitaries B and F are dense in $S U(2)$.
Extends to $S U\left(d_{n}\right)$ when n anyons are employed.

Conclusions

- Topological Quantum Computation promises to overcome the problem of decoherence and errors in the most direct way.
- There is lots of work to be done to make anyons work for us.
- Is it worth it?

Aesthetics says YES!

