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Toric Code and 
Quantum Doubles 



Anyons and Quantum Computation 
• Error correction needs a huge overhead. 

• Instead of performing active error correction let 
physics do the job. 

• Perform QC in a physical medium that is gapped 
and highly correlated:  

• Energy penalty for errors (gapped). 
• Make logical errors non-local (very unlikely). 

• Similar to quantum error correction, but without 
active control. 



Toric Code: ECC 
Consider the lattice Hamiltonian 

p p Spins on the edges. 

Two different types of  
interactions: ZZZZ or XXXX  
acting on plaquettes and vertices 
respectively. 

The four spin interactions involve 
spins of the same vertex/plaquette. 
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Toric Code: ECC 
Consider the lattice Hamiltonian 

Good quantum numbers: 

⇒ eigenvalues of XXXX and ZZZZ:  ±1 
Also Hamiltonian exactly solvable: 
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Toric Code: ECC 
Consider the lattice Hamiltonian 

Indeed, the ground state is: 

The |00…0> state is a ground state of the ZZZZ term.  
The (I+XXXX) term projects that state to the ground 
state of the XXXX term.  
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Toric Code: ECC 
Consider the lattice Hamiltonian 

Indeed, the ground state is: 

The ground state is a superposition of all X loops. 
It is stabilized by the application of all X loop operators. 
Equivalently for Z loops. 
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Toric Code: ECC 
•  Excitations are produced by  
  Z or X rotations of one spin.  

•  These rotations anticommute  
   with the X- or Z-part of the  
   Hamiltonian, respectively. 

•  Z excitations on v vertices.  
•  X excitations on p plaquettes. 

 X and Z excitations behave as anyons  
with respect to each other. 
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One can demonstrate the anyonic 
statistics between X and Z.  
First create excitations  
with Z and X rotations. 
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One can demonstrate the anyonic 
statistics between X and Z.  
First create excitations  
with Z and X rotations. 
Then rotate Z excitation around 
the X one. X

ZZ
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One can demonstrate the anyonic 
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Toric Code: ECC 
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One can demonstrate the anyonic 
statistics between X and Z.  
First create excitations  
with Z and X rotations. 
Then rotate Z excitation around 
the X one. X

ZZ

Toric Code: ECC 
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One can demonstrate the anyonic 
statistics between X and Z.  
First create excitations  
with Z and X rotations. 
Then rotate Z excitation around 
the X one. X

ZZ

Toric Code: ECC 
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One can demonstrate the anyonic 
statistics between X and Z.  
First create excitations  
with Z and X rotations. 
Then rotate Z excitation around 
the X one. 
This results in plaquette 
operator detecting the X 
excitation. Gives -1  

X

Z

Toric Code: ECC 

v v 

v v 

v 

p p 

p 

p 

p p 

p p 



After a complete rotation of an X anyon around a Z 
anyon (two successive exchanges) the resulting state 
gets a phase      (a minus sign): hence ANYONS with 
statistical angle  
A property we used is that 

Anyonic statistics 

Toric Code: ECC 
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One can demonstrate the anyonic 
statistics between X and Z.  
First create excitations  
with Z and X rotations. 
Then rotate Z excitation around 
the X one. 
This results in plaquette 
operator detecting the X 
excitation. Gives -1  
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Hence Toric Code has particles: 
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Toric Code: Anyons 
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Fusion rules: 

Fusion moves: F are trivial 

Braiding moves R:  



Toric code as a quantum error  
correcting code. 

Consider periodic boundary 
 conditions: TORUS of size L 

Toric Code: Encoding 
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Error correction: detect 
anyons/errors and connect  
shortest distance between the  
same type of anyons. 
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Toric code as a quantum error  
correcting code. 

Consider periodic boundary 
 conditions: TORUS of size L 

Toric Code: Encoding 
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Error correction: detect 
anyons/errors and connect  
shortest distance between the  
same type of anyons. 

Syndrome: Anyons 

Logical Gates: non-trivial loops 



Toric Code: Encoding 
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Logical Space and Gates 

Can store two qubits and 
perform Clifford group 
operations! 
Higher genus, g, stores 2g 
qubits. 



Quantum Double Models 
Toric Code is an example of quantum double models. 
Corresponding group Z2 ={1,e;e2=1} that gives rise to qubit 
states |1>,|e>. 
Imagine a general finite group G={g1, g2, ...,gd} and the 
corresponding qudit with states |gi>, i=1,...,d. 

Consider a qudit positioned 
at each edge of a square 
lattice.  
Define orientation on the 
lattice: 
Upwards and Rightwards 



Quantum Double Models 
Define operators: 

Hamiltonian and ground state: 



Quantum Double Models 
This is also an error correcting code defined from the 
stabilizer formalism. 

The syndromes are anyons, Abelian or non-Abelian, with 
the corresponding fusion rules, B and F matrices.  

These properties can be  
explicitly determined. 

Examples: D(Z2), D(Z2xZ2),  
D(S3) 
S3={1,x,y,y2,xy,xy2; x2=1,y3=1} 



Quantum Double Models 
This is also an error correcting code defined from the 
stabilizer formalism. 

The syndromes are anyons, Abelian or non-Abelian, with 
the corresponding fusion rules, B and F matrices.  

Information can be encoded 
in the fusion space of  
non-Abelian anyons and  
manipulated by braiding them. 

Realizations: 
Josephson junctions, photons, optical lattices,... 



From Abelion to Nonabelion 
Consider the toric code with higher genus surface or with 
punctures: encoding Hilbert space becomes larger. 

If you do not like punctures: 

Punctures are better for storing and manipulating info. 



  Hamiltonian 
bird’s eye view: 
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     1       µ           χ 
 Vacuum Abelian  “Non-Abelian” 
               Anyon         Anyon 

       -1 

•  The scheme: D(Z2xZ2) [or D(S3)] 
    similar to two toric codes 

From Abelion to Nonabelion 



•  Encode information in fusion 
channels: 

•  Qubit needs four anyons 
•  Logical |0> when each pair 

fuses to the vacuum 1 
•  Logical |1> when each pair 

fuses to µ 
•  1, µ indistinguishable to local 

operations when dressed with χ  

•  Measurement by fusion 

|0> 

|1> 

1 1 

µ µ 

From Abelion to Nonabelion 



•  Fault-tolerance 
–  Phase flips 
–  Bit flips 
by non-local  
operators only 
    topo. protection 

|0> 

|1> 

Energy gap present even 
during gate operations 

•  Redundancy and non-locality 
protects against virtual 
transitions 

•  Braiding is only Abelian. 

From Abelion to Nonabelion 



•  Quantum Double models: 
–  Toric Code 
–  Abelian encoding and quantum computation 
–  Non-Abelian models 

•  Degenerate encoding states 
•  Energy gap above encoding space 
•  Manipulations of code space: 

Summary 


