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Anyons and Quantum Computation

*Error correction needs a huge overhead.

*Instead of performing active error correction let
physics do the job.

*Perform QC in a physical medium that is gapped
and highly correlated:

‘Energy penalty for errors (gapped).
‘Make logical errors non-local (very unlikely).

»Similar to quantum error correction, but without
active control.



Toric Code: ECC

Consider the lattice Hamiltonian
T p | P+ P i
H = _EZpIZp2Zp3Zp4 — EleXv2Xv3Xv4
p A%

Spins on the edges. 1 o
A
Two different types of
interactions: ZZZZ or XXXX 1 °p txpeo | »
acting on plaquettes and vertices . - £

respectively.

The four spin interactions involve
spins of the same vertex/plaquette.



Toric Code: ECC

Consider the lattice Hamiltonian
T p | p
H = _E ZpIZp2Zp3Zp4 — E leXv2Xv3Xv4

p
Good quantum numbers:

1 p
[H,Z,Z,,Z,.Z,]1=0 |

[H9Xv1Xv2Xv3Xv4] o O
(XVIXVZXV3XV4)2 = 1

(ZpIZp2Zp3Zp4)2 = 1 )
—eigenvalues of XXXX and ZZZZ: +1
Also Hamiltonian exactly solvable:

[ XX X 5 X, ZpIZpZZp3Zp4] =0



Toric Code: ECC

Consider the lattice Hamiltonian
T p | P+ P i
H = _EZpIZp2Zp3Zp4 — EleXv2Xv3Xv4
p A%

A - — - 4 Y

Indeed, the ground state is: I p V p Y P T
" A ! = — y
\§>=HﬁG+XV1XVsz3XV4) OO"'O> 1 » | o 1 o |

The |00...0> state is a ground state of the ZZZZ term.

The (I+XXXX) term projects that state to the ground
state of the XXXX term.



Toric Code: ECC

Consider the lattice Hamiltonian

S

X[ © X ﬁ
H = _EZpIZp2Zp3Zp4 — EleXv2Xv3Xv4
p v

Indeed, the ground state is: f

)= []5 0+ X, XX, 00..0)

The ground state is a superposition of all X loops.
It is stabilized by the application of all X loop operators.
Equivalently for Z loops.



Toric Code: ECC

» Excitations are produced by
Z or X rotations of one spin.

» These rotations anticommute
with the X- or Z-part of the
Hamiltonian, respectively.

- Z excitations on v vertices.

» X excitations on p plaguettes.

-

[

X and Z excitations behave as anyons

with respect to each other.




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

First create excitations

with Z and X rotations.
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Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

First create excitations

with Z and X rotations.

Then rotate Z excitation around
the X one.
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Toric Code: ECC

One can demonstrate the anyonic

statistics between X and Z. TP [

First create excitations y
with Z and X rotations. {
Then rotate Z excitation around

the X one.




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

First create excitations t
with Z and X rotations. 1

Then rotate Z excitation around
the X one.

T p | P+ P i




Toric Code: ECC

One can demonstrate the anyonic

statistics between X and Z. e
First create excitations y
with Z and X rotations. 1 o z

Then rotate Z excitation around

the X one.




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

First create excitations

with Z and X rotations.

Then rotate Z excitation around
the X one.

This results in plaquette
operator detecting the X
excitation. Gives -1

L

1

‘Final> = X4X3X2X1‘Z> = (X4X3X2X1)Z3‘§>

_Z3 (X4X3X2X1)‘§>

= —| Initial)



Toric Code: ECC

Final) = X, X, X, X,|Z) = (X, X,X,X))ZE)
-Z, (X, X, X, X))|E) :G{]Anmm)

Anyonic statistics

After a complete rotation of an X anyon around a Z
anyoh (two successive exchanges) the resulting state
gets a phase 7T (a minus sign): hence ANYONS with

statistical angle 7T /2
A property we used is that X4X3X2X1‘§> = ‘§>



Toric Code: ECC

One can demonstrate the anyonic | \
statistics between X and Z. I P |
First create excitations —— : —%—.
with Z and X rotations. { . | |\ p 4
Then rotate Z excitation around

the X one. > +——
This results in plaquette 1 »p ”L_J—l 1 o
operator detecting the X

excitation. Gives -1 K " f

‘Final> = X4X3X2X1‘Z> = (X4X3X2X1)Z3‘§>
- Z, (X X, X, X))|§) = | Initial)



Toric Code: Anyons

Hence Toric Code has particles: <

1,e(X),m(2),c(fermion)

Fusion rules:

exe=1 mxm=1exe=1
exm=¢,exe=m, mxe=e

! @
X 1
@

Fusion moves: F are trivial

Braiding moves R:  R: =i R’ =-1




Toric Code: Encoding
-

Toric code as a quantum error z X
correcting code. + o } p 4 p |
Z
: g —— ’—1—.
Consider periodic boundary
conditions: TORUS of size L r o} o A
X £ y

Syndrome: Anyons

Error correction: detect
anyons/errors and connect 55 4

shortest distance between the
same type of anyons.

HXVIXV2XV3XV4 = HZpIZp2Zp3Zp4 =1
v p




Toric Code: Encodmg

Toric code as a quantum error
correcting code.

Consider periodic boundary
conditions: TORUS of size L

Syndrome: Anyons

Error correction: detect
anyons/errors and connect

shortest distance between the
same type of anyons.

Logical Gates: non-trivial loops




Toric Code: Encoding
"

Logical Space and Gates

)

1II2> = C;( lIjl>

qj3> = C)z( 1II1>

W4>=C)2(C;(‘LP1>

Can store two qubits and
perform Clifford group

operations!
Higher genus, g, stores 2g @
qubits. ./




Quantum Double Models

Toric Code is an example of quantum double models.
Corresponding group Z, ={1,e;e=1} that gives rise to qubit
states |1>,|e>.

Imagine a general finite group 6={gy, g,, ...,94} and the
corresponding qudit with states |g>, i=1,...,d.

Consider a qudit positioned [ [~ [ [ [
at each edge of a square B (R O P !
lattice. 4

. ) ) ¢ lx ¢ 13 P 11 ¢
Define orientation on the at.2 1 o124
lattice: | 3T | S R A
Upwards and Rightwards —l o | o | o1 ,



Quantum Double Models

Define operators:

L Z>=‘gz>, Lﬂz>=‘zg'l>, T"

Z> = 5h,z‘z>, T_h‘z> = 611‘1

2)
,Z

A(v) = ﬁ Y Li(e)Li(e,) LE (e;) L (e,), B(p) = Z T (e)T™* (ey)T," (&;)T." (e,)

Hamiltonian and ground state:
H =-% A(v)- ) B(p)

A0}E) -8 et
B(p)§)=|§) .

fo=

Hf ?
> o
SER { 3
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Quantum Double Models

This is also an error correcting code defined from the
stabilizer formalism.

The syndromes are anyons, Abelian or non-Abelian, with
the corresponding fusion rules, B and F matrices.

These properties can be ———T——T——T—*
explicitly determined.

® lx ® 13 II ®
Examples: D(Z,), D(Z,xZ,). SO, DECRN BRSNE
D(S3) ¢ 3T ¢ ¢ ¢ ®
53:{]'IXIYIYZIXYIXY2; xZ:l'y3:1} ® ® e ®




Quantum Double Models

This is also an error correcting code defined from the

stabilizer formalism.

The syndromes are anyons, Abelian or non-Abelian, with
the corresponding fusion rules, B and F matrices.

Information can be encoded .
in the fusion space of
non-Abelian anyons and [
manipulated by braiding them. |_{,

L J 3

i

Realizations: *
Josephson junctions, photons, optica

lattices,...



From Abelion to Nonabelion

Consider the toric code with higher genus surface or with
punctures: encoding Hilbert space becomes larger.

Punctures are better for storing and manipulating info.

If you do not like punctures:



From Abelion to Nonabelion

. The scheme: D(Z,XZ,) [or D(S4)] bi';'g,';";‘;"'vci‘;‘w:
similar to two toric codes

Empty Q

@ @ o Lower
R onl ’
\ ) \ ] J Upper‘
Y Y Y only
1 U X
Vacuum Abelian “"Non-Abelian” U d
Anyon Anyon pper an .

1 Lower



- Encode information in fusion

From Abelion to Nonabelion

channels:
uxp=1, XxX=1+p
* Qubit needs four anyons

- Logical |0> when each pair
fuses to the vacuum 1

- Logical |1> when each pair
fuses to ¢

- 1, pindistinguishable to local
operations when dressed with x

* Measurement by fusion




From Abelion to Nonabelion

* Fault-tolerance
- Phase flips
- Bit flips
by non-local
operators only

— fopo. protection

¥

¥

Energy gap present even
during gate operations

I\ |ee

0>

15

» Redundancy and non-locality
protects against virtual

transitions

» Braiding is only Abelian.



Summary

* Quantum Double models:

- Toric Code
- Abelian encoding and quantum computation
- Non-Abelian models

- Degenerate encoding states
» Energy gap above encoding space
* Manipulations of code space:




