GROUND - STATE ENERGY OF CHARGED ANYON GASES

B. Abdullaev,

Institute of Applied Physics, National University of Uzbekistan.

24.09.2013

Contents

- Interacting anyons in 2D harmonic potential in the presence of external magnetic field: general setup
- Anyons: many-body Aharonov Bohm effect
- Non-interacting anyons in 2D harmonic well
- Coulomb-interacting anyons in 2D harmonic well
- Non-interacting anyons in 2D harmonic well and magnetic field
- Coulomb-interacting anyons in 2D harmonic well and magnetic field
- Infinite Coulomb anyons gas
- Ground state energy of infinite Coulomb anyon gas
- Explicit derivation of ground state energy formulas by taking into account short range correlations in wave function
- Do anyons and fermions exist in the ground state of 2D in concept of anyons?
- Conclusion

Interacting anyons in 2D harmonic potential in the presence of external magnetic field: general setup (B. Abdullaev, et al., Phys. Rev. B 68, 165105 (2003)) Hamiltonian $\widehat{H} = \frac{1}{2M} \sum_{k=1}^{N} \left(\left\{ \vec{p}_k - \left(\vec{A}_v(\vec{r}_k) + e\vec{A}_{ext}(\vec{r}_k) / c \right) \right\}^2 + M^2(\omega_0)^2 |\vec{r}_k|^2 \right) + \frac{1}{2} \sum_{k,j \neq k}^{N} \frac{e^2}{|\vec{r}_{kj}|}.$ Anyon vector $\vec{A}_v(\vec{r}_k) = \hbar v \sum_{i \neq k}^{N} \frac{\vec{e}_z \times \vec{r}_{kj}}{|\vec{r}_{kj}|^2};$ Magnetic field $\vec{A}_{ext}(\vec{r}_k) = \frac{\vec{H} \times \vec{r}_k}{2}$

Minimization of energy
$$E = \frac{\int \psi^* \left(\vec{R}\right) \hat{H} \psi(\vec{R}) d\vec{R}}{\int \psi^*(\vec{R}) \psi(\vec{R}) d\vec{R}}$$

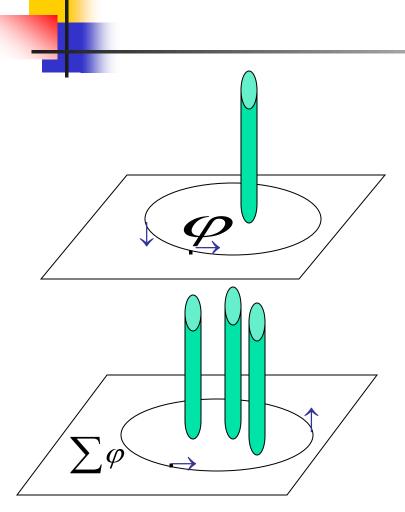
$$\psi(\vec{R}) = \left(\frac{\alpha}{\pi}\right)^{N/2} \prod_{k=1}^{N} exp\left(-\alpha \frac{\left((x_k)^2 + (y_k)^2\right)}{2}\right)$$

Typically, E = ReE + iImE, however, for Gaussian $\psi(\vec{R})$, one has ImE = 0.

24.09.2013

with trail wave function

Anyons: many-body Aharonov - Bohm effect



Inside tube $\vec{H} \neq 0$, outside $\vec{H} = 0$ and $\vec{A} = (\phi/2\pi)\vec{\nabla}\varphi$, where ϕ is magnetic flux. If $\phi_0 = \pi\hbar c/|e|$ is elementary magnetic flux, then $\psi(\vec{r}) \rightarrow \psi(\vec{r})e^{i\nu\varphi}; \quad \nu = \phi/\phi_0;$ $\psi(\vec{r}_1, \vec{r}_2, \cdots) \rightarrow \psi(\vec{r}_1, \vec{r}_2, \cdots)e^{i\nu\Sigma\varphi};$

$$e^{i\nu\sum\varphi} = \prod_{i\neq j}^{N} \frac{(z_i - z_j)^{\nu}}{|z_i - z_j|^{\nu}}; \ \vec{A}_{\nu}(\vec{r}_k) = \hbar\nu\sum_{j\neq k}^{N} \frac{\vec{e}_z \times \vec{r}_{kj}}{|\vec{r}_{kj}|^2};$$

for z = x + iy. Thus Schrödinger equation is: $\frac{1}{2M}\sum_{i=1}^{N} (\vec{p}_{i} + \vec{A}_{v}(\vec{r}_{i}))^{2} \Phi(\vec{r}_{1}, \vec{r}_{2}, \cdots) =$ $= E\Phi(\vec{r}_{1}, \vec{r}_{2}, \cdots)$ for bosonic representation of $\Phi(\vec{r}_{1}, \vec{r}_{2}, \cdots)$

for bosonic representation of $\Phi(\vec{r}_1, \vec{r}_2, \cdots)$.

24.09.2013

Non-interacting anyons in 2D harmonic well

Hamiltonian

$$\widehat{H} = \frac{1}{2M} \sum_{k=1}^{N} \left(\left\{ \vec{p}_{k} - \vec{A}_{\nu}(\vec{r}_{k}) \right\}^{2} + M^{2}(\omega_{0})^{2} |\vec{r}_{k}|^{2} \right).$$

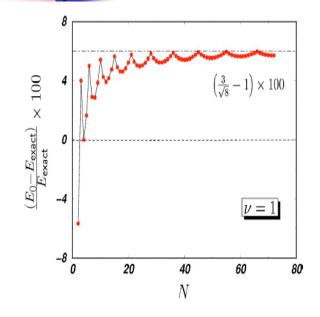


FIG. 1. Relative deviation (in percent) of the approximate ground state energy E_0 [Eq. (21)], from the exact ground state energy, E_{exact} , for up to N=72 noninteracting fermions ($\nu=1$) in a parabolic confining potential. The dash-dotted line indicates the asymptotic ($N \rightarrow \infty$) value.

Energy before minimization is $\frac{E}{\hbar\omega_0} = \frac{N}{2} \left(\mathcal{N}\alpha + \frac{1}{\alpha} \right)$, where $\mathcal{N} = 1 + v^2 (N-1) \left[ln \left(\frac{1}{2\delta} \right) - 3^{1/2} ln \left(\frac{4}{3} \right) (N-2) \right]$. When the nearest distance between anyons $\delta \to 0$ then $\mathcal{N} \to \infty$. Origin of this divergence is three particle interaction term $\int \psi \left(\vec{R} \right) \frac{\vec{r}_{kj} \cdot \vec{r}_{kl}}{|\vec{r}_{kj}|^2 ||\vec{r}_{kl}|^2} \psi \left(\vec{R} \right) d\vec{R}$ for $k \neq j, k \neq l, j \neq l$. Minimization $\frac{dE}{d\alpha} = 0$ gives $\alpha_0 = \mathcal{N}^{-1/2}$, thus ground state energy is $E_0 = N \mathcal{N}^{1/2}$. Known from literature at $v \to 0$ limit energy is $E_{0l} \approx N + N(N-1)v/2$. Thus fitting at $v \to 0 E_0$ to E_{0l} (regularization !) one obtains expression $\mathcal{N} = 1 + v(N-1)$ and expression for δ .

Hence, ground state energy of non-interacting anyons in 2D harmonic well is $\frac{E}{\hbar\omega_0} = N(1 + \nu(N-1))^{1/2}$.

24.09.2013

Coulomb-interacting anyons in 2D harmonic well

Hamiltonian of system

$$\widehat{H} = \frac{1}{2M} \sum_{k=1}^{N} \left(\{ \vec{p}_k - \vec{A}_v(\vec{r}_k) \}^2 + M^2(\omega_0)^2 |\vec{r}_k|^2 \right) + \frac{1}{2} \sum_{k,j \neq k}^{N} \frac{e^2}{|\vec{r}_{kj}|}.$$

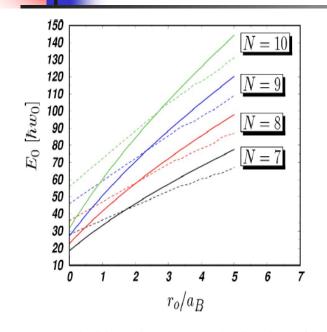


FIG. 3. Coulomb interaction parameter r_0/a_B dependence of the ground state energy for 7 – 10 electrons calculated by variational (Ref. 41) and fixed-node quantum Monte Carlo methods (Ref. 42) (dashed curves) (results of both calculations are indistinguishable in these curves) and by formula (44) (solid curves).

Expression for energy is $\frac{E}{\hbar\omega_0} = \frac{N}{2} \left(\mathcal{N}\alpha + \frac{1}{\alpha} + 2\mathcal{M}\alpha^{1/2} \right)$ with $\mathcal{M} = \left(\frac{\pi}{2}\right)^{1/2} \frac{r_{0(N-1)}}{2a_B}$ and $\mathcal{N} = 1 + \nu(N-1)$. Minimization $\frac{dE}{d\alpha} = 0$ gives equation $X^4 - \mathcal{M}X - \mathcal{N} = 0$ for $X = 1/\alpha^{1/2}$ with solution: $X_0 = (A+B)^{1/2} + \left[-(A+B) + 2(A^2 - AB + B^2)^{1/2}\right]^{1/2}$, where

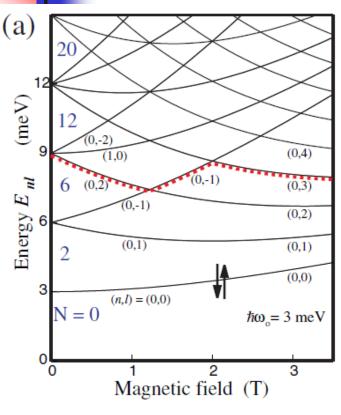
$$A = \left\{ \frac{M^2}{128} + \left[\left(\frac{N}{12} \right)^3 + \left(\frac{M^2}{128} \right)^2 \right]^{1/2} \right\}^{1/3}$$
$$B = \left\{ \frac{M^2}{128} - \left[\left(\frac{N}{12} \right)^3 + \left(\frac{M^2}{128} \right)^2 \right]^{1/2} \right\}^{1/3}$$

and
$$\frac{E_0}{\hbar\omega_0} = \frac{N}{2} \left[\frac{\mathcal{N}}{(X_0)^2} + (X_0)^2 + \frac{2\mathcal{M}}{X_0} \right].$$

24.09.2013

Non-interacting anyons in 2D harmonic well and magnetic field

Hamiltonian



Fock-Darwin spectrum $E_{nl}(H)$.

$$\widehat{H} = \frac{1}{2M} \sum_{k=1}^{N} \left(\left\{ \vec{p}_k - \left(\vec{A}_v(\vec{r}_k) + e\vec{A}_{ext}(\vec{r}_k) / c \right) \right\}^2 + M^2(\omega_0)^2 |\vec{r}_k|^2 \right).$$

Single electron Fock–Darwin spectrum $E_{nl} = P(2n + |l| + 1) + lR,$ where *n* and *l* are radial and angular quantum numbers, $P = \hbar ((\omega_0)^2 + (\omega_c/2)^2)^{1/2}, R = \hbar \omega_c/2, \omega_c = |e|H/mc$ with magnetic field $H = |\vec{H}|.$

Filling these states by *N* electrons one obtains ground state energy for lowest Landau levels at

$$\omega_c \ge \omega_0 (N-2)/(N-1)^{1/2}:$$

$$E = \frac{P}{2}N(N+1) - \frac{R}{2}N(N-1)$$

Calculation for ground state energy for anyons gives:

$$E_0 = PN\mathcal{N}^{1/2} - \frac{\nu R}{2}N(N-1).$$

For $\omega_c \to \infty$ it should be $E_0 \to NR$ for fermions $\nu = 1$ and bosons $\nu = 0$. For arbitrary large $\omega_c \ E_0 \to NP$ for bosons. Thus

$$\mathcal{N}^{1/2} = 1 + \frac{\nu(N-1)}{2}.$$

24.09.13

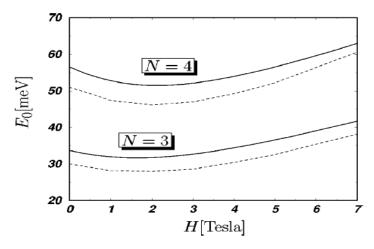
Coulomb-interacting anyons in 2D harmonic well and magnetic field

Hamiltonian

$$\widehat{H} = \frac{1}{2M} \sum_{k=1}^{N} \left(\left\{ \vec{p}_k - \left(\vec{A}_v(\vec{r}_k) + e\vec{A}_{ext}(\vec{r}_k)/c \right) \right\}^2 + M^2(\omega_0)^2 |\vec{r}_k|^2 \right) + \frac{1}{2} \sum_{k,j \neq k}^{N} \frac{e^2}{|\vec{r}_{kj}|}.$$

Calculated energy is $\frac{E_0}{\hbar\omega_0} = \frac{N}{2} \left[\frac{\mathcal{N}}{(X_0)^2} + \left(1 + \left(\frac{\omega_c}{2\omega_0} \right)^2 \right) (X_0)^2 - \frac{\nu\omega_c}{2\omega_0} (N-1) + \frac{2\mathcal{M}}{X_0} \right].$

Expression for X_0 is the same but replacing $\mathcal{N} \to \mathcal{N} \left[1 + \left(\frac{\omega_c}{2\omega_0} \right)^2 \right]^{-1}$ and $\mathcal{M} \to \mathcal{M} \left[1 + \left(\frac{\omega_c}{2\omega_0} \right)^2 \right]^{-1}$.



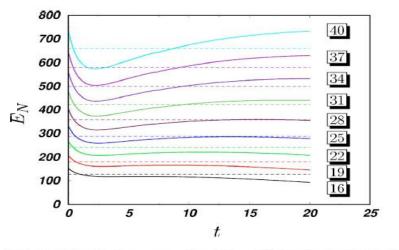


FIG. 4. Magnetic field *H* dependence of the ground state energy for N=3 and N=4 spin-polarized electrons in a harmonic potential calculated in Ref. 45 (the dashed curves), and using Eq. (50) (the solid curves). As in Ref. 45 we used $\hbar\omega_0=3.37$ meV (r_0/a_B $=\sqrt{H^*/(\hbar\omega_0)}$, where the effective Hartree H^* is equal to H^* $\simeq 11.86$ meV).

FIG. 5. Ground state energy $E_N = (E_0 - N\hbar\omega)/(\hbar\omega_0)$ for 16–40 electrons calculated using the expression Eq. (50) for $r_0/a_B = 1.911$, applying the expression for \mathcal{N} Eq. (53) with $|\nu| = 1$ (solid curves), and energy for classical electrons (Ref. 48) (dashed lines). Here $\omega = (\omega_0^2 + \omega_c^2/4)^{1/2}$ and $t = \omega_c/\omega_0$.

24.09.2013

Infinite Coulomb anyons gas

Hamiltonian
$$\widehat{H} = \frac{1}{2M} \sum_{k=1}^{N} \left[\left\{ \vec{p}_k + \vec{A}_v \right\}^2 + M^2 (\omega_0)^2 |\vec{r}_k|^2 + \frac{1}{2} \left(\sum_{k,j \neq k}^{N} \frac{e^2}{|\vec{r}_{kj}|} + V(\vec{r}_k) \right) \right]$$

with $V(\vec{r}_k) = -\rho \int \frac{e^2 d^2 r}{|\vec{r}_k - \vec{r}|}$.

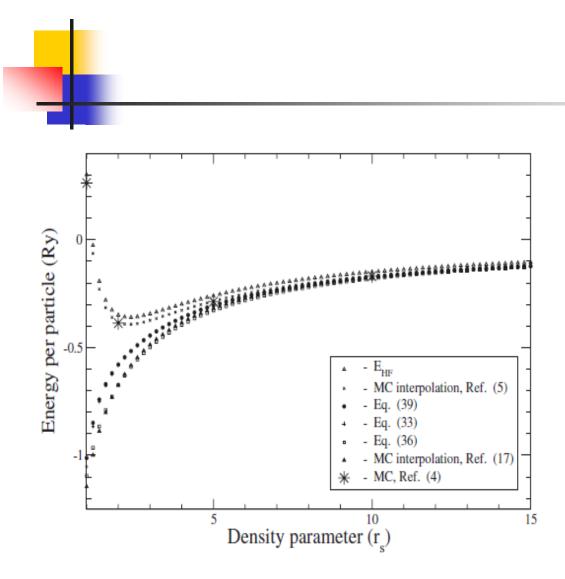
Let us consider no interacting case and v = 1 then at $N \to \infty E_0 = \hbar \omega_0 N^{3/2}$ since $E_0 = \hbar \omega_0 N \mathcal{N}^{1/2}$ and $\mathcal{N} = 1 + v(N - 1)$. Ground state energy of 2D electron gas with no interaction is $E_{0eg} = N\hbar^2/m(r_0)^2$, where r_0 is mean distance between electrons. From $E_0 = E_{0eg}$ one gets $\hbar \omega_0 = \hbar^2/(m(r_0)^2 N^{1/2})$ (harmonic potential regularization with vanishing confinement at $N \to \infty$!).

From $\frac{E_0}{\hbar\omega_0} = \frac{N}{2} \left[\frac{N}{(X_0)^2} + (X_0)^2 + \frac{2M}{X_0} \right]$ one obtains energy per particle (in Rydberg $Ry = e^2/2a_B$ units, where a_B is Bohr radius):

$$\frac{E_0}{N} = \frac{2f(\nu, r_s)}{(r_s)^2} \left[\frac{\nu}{2(K_X)^2} + \frac{(K_X)^2}{2} - \frac{K}{K_X} \right]$$
$$K_X = (K_A + K_B)^{1/2} + \left[-(K_A + K_B) + 2\left((K_A)^2 - K_A K_B + (K_B)^2\right)^{1/2} \right]^{1/2}$$

24.09.2013

Ground state energy of infinite Coulomb anyon gas



$$K_{A} = \left\{ \frac{K^{2}}{128} + \left[\left(\frac{\nu}{12} \right)^{3} + \left(\frac{K^{2}}{128} \right)^{2} \right]^{1/2} \right\}^{1/3}$$

$$K_{B} = \left\{ \frac{K^{2}}{128} - \left[\left(\frac{\nu}{12} \right)^{3} + \left(\frac{K^{2}}{128} \right)^{2} \right]^{1/2} \right\}^{1/3},$$
where one used
 $\mathcal{N} = \nu N,$
 $\mathcal{M} = N^{3/4} K$ and
 $K = c_{WC} r_{S} / f^{1/2} (\nu, r_{S})$
with $(c_{WC})^{2/3} = 2.2122$ taken from
classical Wigner crystal energy.

Ground state energy as function of Coulomb density parameter. From B. Abdullaev, U. Roessler, M. Musakhanov, Phys. Rev. B 76, 075403 (2007).

29.09.2013

Explicit derivation of ground state energy formulas by taking into account short range correlations in wave function

Replacing trial wave function $\psi(\vec{R}) \rightarrow \prod_{i \neq j} |\vec{r}_{ij}|^{\nu} \psi(\vec{R})$, one derives explicitly (with no logarithmic divergence regularization procedure !):

• $\frac{E}{\hbar\omega_0} = N\mathcal{N}^{1/2}$ with $\mathcal{N} = 1 + \nu(N - 1)$ (Abdullaev, C.-H. Park, and M. M. Musakhanov, Physica C **471**, 486 (2011));

•
$$\frac{E_0}{\hbar\omega_0} = \frac{N}{2} \left[\frac{\mathcal{N}}{(X_0)^2} + (X_0)^2 + \frac{2\mathcal{M}}{X_0} \right] \text{ with } \mathcal{N} = 1 + \nu(N-1) \text{ (unpublished);}$$

- $E_0 = PNN^{1/2} \frac{\nu R}{2}N(N-1)$ with $N = 1 + \nu(N-1)$ (unpublished);
- $\frac{E_0}{\hbar\omega_0} = \frac{N}{2} \left[\frac{\mathcal{N}}{(X_0)^2} + \left(1 + \left(\frac{\omega_c}{2\omega_0} \right)^2 \right) (X_0)^2 \frac{\nu\omega_c}{2\omega_0} (N-1) + \frac{2\mathcal{M}}{X_0} \right] \text{ with } \mathcal{N} = 1 + \nu(N-1) \text{ (unpublished).}$

24.09.2013

Do anyons and fermions exist in the ground state of 2D in concept of anyons?

Introducing the Zeeman term
$$\frac{\hbar}{m} \sum_{k=1}^{N} \hat{\vec{s}} \cdot \vec{b}_{k}$$
 with anyon (statistical)
magnetic field:
 $\vec{b}_{k} = -2\pi\hbar v \vec{e}_{z} \sum_{j(k\neq j)}^{N} \delta^{(2)}(\vec{r}_{k} - \vec{r}_{j})$ and $s_{z} = \hbar/2$

one obtains for Schrödinger equation

$$\frac{1}{2m}\sum_{k=1}^{N} \left[(\vec{p}_k + \vec{A}_k)^2 + \frac{\hbar}{m}\hat{\vec{s}}\cdot\vec{b}_k \right] \Phi(r_1, r_2, ...) = E\Phi(r_1, r_2, ...)$$

with

 $\Phi(\vec{r}_1,\vec{r}_2,...) \Longrightarrow \prod |\vec{r}_{ij}|^{\nu} \Phi(\vec{r}_1,\vec{r}_2,...)$ $i \neq j$

term connected with statistics

$$\pi v \frac{\hbar^2}{m} \sum_{j(k \neq j)}^N \delta^{(2)}(\vec{r}_k - \vec{r}_j)$$

and the Zeeman term

$$-\pi v \frac{\hbar^2}{m} \sum_{j(k\neq j)}^N \delta^{(2)}(\vec{r}_k - \vec{r}_j)$$

24.09.2013

Conclusion

- Approximate expression for ground state energy of Coulomb interacting anyons in 2D harmonic potential in the presence of external magnetic field has derived;
- 2. Approximate expression for ground state energy of Coulomb interacting infinite anyon gas has derived;
- 3. Exact cancellation of statistics and Zeeman terms in the anyon Hamiltonian has found.

Thanks for attention.

