Anyons in one dimension

Marco Roncaglia

INRIM - Institute of Metrology, Torino, Italy

DISAT - Politecnico di Torino, Italy

Berlin School: Anyons with Ultracold Atoms, 24-28 Sep 2013

Physics in 1D is easy....

Physics in 1D is easy....
...or maybe not!

Strong quantum fluctuations in 1D!

Phonon spectrum $\quad \omega(q)=2 \sqrt{\frac{K}{M}}|\sin q a / 2| \approx c q$
Average displacement $\langle u\rangle=0$

Strong quantum fluctuations in 1D!

Phonon spectrum

$$
\omega(q)=2 \sqrt{\frac{K}{M}}|\sin q a / 2| \approx c q
$$

Average displacement $\langle u\rangle=0$

For having a stable lattice $\quad\left\langle u^{2}\right\rangle \lesssim a^{2}$
(Lindemann)

Fluctuations at $\mathrm{T}=0$

$$
\left\langle u^{2}\right\rangle=\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{\hbar}{2 M \omega(q)}
$$

IR divergence
Quantum melting!
1D solids (crystals) necessarily lie in a higher dimensional support!

One dimensional systems

Transverse motion is frozen

One dimensional systems

Transverse motion is frozen

electrons con move along edoe (conductiog)

- Spin chains and ladders
- Quantum wires
- FQHE edge states
- Organic conductors

- Nanotubes
- Quantum dot arrays

Quantum (analog) simulators

Quantum mechanical problems involving a large number of particles are typically hard to solve

Build a controllable "experimental" apparatus which emulates the model you want to solve, and extract information from it

The route to knowedge

The route to knowedge

Challenging physical
phenomenon (HTc
superconductivity, strong
coupling QCD,...)

The route to knowedge

Formulate a model for it (usually, a
Hamiltonian)

$\mathcal{H}, \dot{\rho}$

Challenging physical
phenomenon (HTc
superconductivity, strong
coupling QCD,...)

The route to knowedge

Formulate a model for it

Challenging physical phenomenon (HTc
superconductivity, strong coupling QCD,...)

The route to knowedge

Formulate a model for it

The route to knowedge

Formulate a model for it

Quantum simulators

Tunable interactions
High isolation

Different geometries

Artificial gauge fields

1D

2D array of 1D cigar-shaped potentials

Confining potential

Non homogeneous phase

Not only ultracold atoms!

Ion traps

Coupled quantum cavities

Photonic gases in nonlinear media

Theorists' toolbox

Analytical methods

Exact solutions (Bethe-Ansatz, Integrability)
Effective field theories (Luttinger liquids, bosonization, nonlinear sigma models, ...)

Conformal field theories, scaling, renormalization
Variational methods
Mean Field
Approximate maps onto solvable models

Numerical methods
Exact diagonalization
DMRG, t-DMRG, MPS
Quantum Monte Carlo

Anyway, there is no universal method!

Numerical methods

Quantum mechanics is linear \Rightarrow Eigenvalue problem

Generic state $\quad|\psi\rangle=\sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{M}=0}^{\infty} c_{n_{1} \cdots n_{M}}\left|n_{1}, \ldots, n_{M}\right\rangle$

> Coupled 2-level
> systems $(S=1 / 2)$
$\operatorname{dim}\{\mathcal{H}\} \approx 2^{L}$
Discrete symmetries can reduce dimension (not dramatically)
Typical Hamiltonians are sparse matrices

Numerical methods

Quantum mechanics is linear \Rightarrow Eigenvalue problem

Generic state $\quad|\psi\rangle=\sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{M}=0}^{\infty} c_{n_{1} \cdots n_{M}}\left|n_{1}, \ldots, n_{M}\right\rangle$

Coupled 2-level
systems ($\mathrm{S}=1 / 2$)
$\operatorname{dim}\{\mathcal{H}\} \approx 2^{L}$
Discrete symmetries can reduce dimension (not dramatically)
Typical Hamiltonians are sparse matrices

Lanczos algorithm: iterative procedure to reduce H in tridiagonal form and diagonalize it easily

Good: machine precision
Bad: long CPU time and few sites

Density matrix renormalization group (DMRG)

Allows to simulate bigger chains
The Hilbert space of the block is truncated to m^{*} states

The superblock is diagonalized with Lanczos

The truncation is performed retaining the m^{*} highest weights of the density matrix

Works best when entanglement between blocks is bounded (gap)

Matrix product states (MPS)

$$
|\Psi\rangle=\sum_{i_{1}, \ldots i_{M}=1}^{d} \operatorname{Tr}\left[A^{[1], i_{1}} \ldots A^{[M], i_{M}}\right]\left|i_{1}, \ldots i_{M}\right\rangle
$$

S.R. White, Phys. Rev. Lett. 69, 2863 (1992).
U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005).

Finite size scaling

Quantum many-body problems are "hard"
This is why we propose quantum simulators
Often the winning strategy is to use a combination of numerics and theory

Close to quantum phase transitions:
Regimes
Scaling variable: $\quad z=L^{1 / v} t \sim\left(\frac{L}{\xi}\right)^{1 / v}$

Universality

- Details are not important close to the critical point
- The critical exponents depend only on: symmetries, dimensionality and range of interactions

Finite size scaling (ii)

- CFT on a finite size chain of length L (PBC)

$$
\frac{E_{G S}}{L}=e_{\infty}-\frac{\pi c v}{6 L^{2}}
$$

- The excited states are related to the dimensions

$$
E_{m n}-E_{G S}=\frac{2 \pi v}{L}\left(d_{m n}+r+\bar{r}\right) \quad d_{m n}=\left(\frac{m^{2}}{4 K}+n^{2} K\right), \quad m, n \in Z
$$

Anyons

3D $\psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)= \pm \psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \quad$ Bosons or Fermions
[Leinaas and Myrheim, 1977]
[F. Wilczek, Fractional Statistics and Anyon Superconductivity,

Anyons

$3 \mathrm{D} \quad \psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)= \pm \psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
Bosons or Fermions

2D $\quad \psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=e^{i \theta} \psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \quad$?

Transmutation of statistics
Adiabatic paths cannot intersect

[Leinaas and Myrheim, 1977]
[F. Wilczek, Fractional Statistics and Anyon Superconductivity,

Anyons

$3 \mathrm{D} \quad \psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)= \pm \psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
Bosons or Fermions

2D $\quad \psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=e^{i \theta} \psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \quad$?

Transmutation of statistics
Adiabatic paths cannot intersect

1D How can particles exchange without touching? Transmutation?
[Leinaas and Myrheim, 1977]
[F. Wilczek, Fractional Statistics and Anyon Superconductivity,

Transmutation from hard core bosons (spins) to fermions

spin-1/2 $\quad\left\{\sigma_{j}^{-}, \sigma_{j}^{+}\right\}=\mathbb{I} \quad\left[\sigma_{j}^{-}, \sigma_{l}^{+}\right]=0 \quad j \neq l \quad \begin{aligned} & \text { hard-core } \\ & \text { bosons }\end{aligned}$

$$
\left[\sigma_{j}^{-}, \sigma_{l}^{-}\right]=0
$$

fermions

$$
\left\{c_{j}, c_{l}^{\dagger}\right\}=\delta_{j l}
$$

$$
\begin{gathered}
\sigma^{\alpha}=\text { Pauli matrices } \\
\sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Transmutation from hard core bosons (spins) to fermions

$\underline{\text { spin-1/2 }} \quad\left\{\sigma_{j}^{-}, \sigma_{j}^{+}\right\}=\mathbb{I} \quad\left[\sigma_{j}^{-}, \sigma_{l}^{+}\right]=0 \quad j \neq l \quad \begin{aligned} & \text { hard-core } \\ & \text { bosons }\end{aligned}$

$$
\left[\sigma_{j}^{-}, \sigma_{l}^{-}\right]=0
$$

fermions

$$
\left\{c_{j}, c_{l}^{\dagger}\right\}=\delta_{j l}
$$

$$
\sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right.
$$

Transformation $\quad \mathrm{O}=\downarrow \quad \mathrm{O}=\uparrow$

$$
\begin{aligned}
\sigma_{j}^{+} & =K_{j} c_{j}^{\dagger}, \quad \sigma_{j}^{-}=K_{j}^{\dagger} c_{j}, \quad \sigma_{j}^{z}=2 c_{j}^{\dagger} c_{j}-\mathbb{I} \quad \begin{array}{l}
\text { [P. Jordan and E. Wigner, } \\
\text { Z. Phys. 47, 631 (1928)] }
\end{array} \\
K_{j} & =\prod_{l=1}^{j-1}\left(-\sigma_{l}^{z}\right)=\exp \left(i \pi \sum_{l=1}^{j-1} c_{l}^{\dagger} c_{l}\right) \quad \text { parity operator }
\end{aligned}
$$

Transmutation from hard core bosons (spins) to fermions

$\left.\begin{array}{ccc}\begin{array}{ll}\text { spin-1/2 }\end{array} & \left\{\sigma_{j}^{-}, \sigma_{j}^{+}\right\}=\mathbb{I} & {\left[\sigma_{j}^{-}, \sigma_{l}^{+}\right]=0} \\ & {\left[\sigma_{j}^{-}, \sigma_{l}^{-}\right]=0} & j \neq l\end{array} \begin{array}{c}\text { hard-core } \\ \text { bosons }\end{array}\right] \begin{gathered}\sigma^{\alpha}=\text { Pauli matrices } \\ \sigma^{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \sigma^{-}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\end{gathered}$

Transformation $O=\downarrow \quad O=\uparrow$

$$
\begin{aligned}
\sigma_{j}^{+} & =K_{j} c_{j}^{\dagger}, \quad \sigma_{j}^{-}=K_{j}^{\dagger} c_{j}, \quad \sigma_{j}^{z}=2 c_{j}^{\dagger} c_{j}-\mathbb{I} \quad \begin{array}{l}
\text { [P. Jordan and E. Wigner, } \\
K_{j}
\end{array}=\prod_{l=1}^{j-1}\left(-\sigma_{l}^{z}\right)=\exp \left(i \pi \sum_{l=1}^{j-1} c_{l}^{\dagger} c_{l}\right) \quad \text { phys. 47, 631 (1928)] }
\end{aligned}
$$

Problem: verify that all the fermionic commutation relations are mapped onto the spin ones.

Jordan-Wigner transformation

reference site

local parity-conserving operators remain local

$$
\sigma_{i}^{+} \sigma_{i+1}^{-}=c_{i}^{\dagger} c_{i+1} \quad \sigma_{i}^{+} \sigma_{i+1}^{+}=c_{i}^{\dagger} c_{i+1}^{\dagger}
$$

But

$$
\sigma_{i}^{+} \sigma_{i+r}^{-}=c_{i}^{\dagger} e^{i \pi \sum_{j=i}^{i+r} n_{j}} c_{i+r}
$$

JW is useless in 2D

Quantum Ising model

$$
H=-\sum_{i=1}^{L}\left(J \sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right)
$$

$$
\sigma_{i}^{x}=\sigma_{i}^{+}+\sigma_{i}^{-}
$$

$J=-\quad H=-\sum_{i=1}^{L}\left[\left(\sigma_{i}^{+} \sigma_{i+1}^{-}+\sigma_{i}^{+} \sigma_{i+1}^{+}+\right.\right.$h.c. $\left.)+h \sigma_{i}^{z}\right]$

Quantum Ising model

$$
H=-\sum_{i=1}^{L}\left(J \sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right)
$$

$$
\sigma_{i}^{x}=\sigma_{i}^{+}+\sigma_{i}^{-}
$$

$$
J=-\sum_{i=1}^{L}\left[\left(\sigma_{i}^{+} \sigma_{i+1}^{-}+\sigma_{i}^{+} \sigma_{i+1}^{+}+\text {h.c. }\right)+h \sigma_{i}^{z}\right]
$$

$$
J(\mathrm{JW})
$$

$$
\begin{gathered}
\mathcal{N}=\sum_{i=1}^{L} c_{i}^{\dagger} c_{i} \\
\text { total \# } \\
\text { particles }
\end{gathered}
$$

$$
\begin{gathered}
H=-\sum_{i=1}^{L-1}\left(c_{i}^{\dagger} c_{i+1}+c_{i}^{\dagger} c_{i+1}^{\dagger}+\text { h.c. }\right)-2 h \sum_{i=1}^{L} c_{i}^{\dagger} c_{i}+L h \\
P^{z}=e^{i \pi \mathcal{N}} \quad \text { parity is conserved }
\end{gathered}
$$

for $P^{z}=1$
PBC \leftrightarrow PBC
for $P^{z}=-1$

Quantum Ising model (ii)

$$
\swarrow^{\mathrm{ABC}}
$$

$$
c_{j}=\frac{1}{\sqrt{L}} \sum_{k \in B Z} e^{i k j} c_{k} \quad \text { Fourier space }
$$

$$
k=\frac{\pi(2 n+1)^{\swarrow}}{L}
$$

$$
H=2 \sum_{k \in B Z} \epsilon_{k} c_{k}^{\dagger} c_{k}+\sum_{k \in B Z}\left(W_{k} c_{k}^{\dagger} c_{-k}^{\dagger}+W_{k}^{*} c_{-k} c_{k}\right)+L h
$$

$$
H=\sum_{k}\left(c_{k}^{\dagger}, c_{-k}\right)\left(\begin{array}{cc}
\epsilon_{k} & W_{k} \\
W_{k}^{*} & -\epsilon_{k}
\end{array}\right)\binom{c_{k}}{c_{-k}^{\dagger}}
$$

unitary transformation

$$
\binom{\eta_{k}}{\eta_{-k}^{\dagger}}=R\binom{c_{k}}{c_{-k}^{\dagger}}
$$

η_{k} new fermionic operators
diagonalization $\quad H=\sum_{k} \omega_{k}\left(\eta_{k}^{\dagger} \eta_{k}-\frac{1}{2}\right)$
spectrum

$$
\omega_{k}=2 \sqrt{(\cos k+h)^{2}+\sin ^{2} k}
$$

Quantum Ising model (iii)

$$
H=-\sum_{i=1}^{L}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right)
$$

Phase diagram $\quad h \ll 1 \quad|\leftarrow \leftarrow \leftarrow \ldots \leftarrow \leftarrow\rangle \pm|\rightarrow \rightarrow \rightarrow \ldots \rightarrow \rightarrow\rangle \quad P^{z}= \pm 1$

Ferro.	Para.	$h \gg 1$	$\|\uparrow \uparrow \uparrow \ldots \uparrow \uparrow\rangle$
$h=1$		h	

$$
\left\langle\sigma_{i}^{+} \sigma_{i+r}^{-}\right\rangle=\left\langle c_{i}^{\dagger} e^{-i \pi \sum_{l=i}^{i+r-1} c_{l}^{\dagger} c_{l}} c_{i+r}\right\rangle \longleftrightarrow \neq 0 \text { Ferro }
$$

Quantum Ising model (iii)

$$
H=-\sum_{i=1}^{L}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right)
$$

Phase diagram $\quad h \ll 1 \quad|\leftarrow \leftarrow \leftarrow \ldots \leftarrow \leftarrow\rangle \pm|\rightarrow \rightarrow \rightarrow \ldots \rightarrow \rightarrow\rangle \quad P^{z}= \pm 1$

Duality

$$
\begin{aligned}
\mu_{j}^{z} & =\sigma_{j}^{x} \sigma_{j}^{x} \\
\mu_{j}^{x} & =\prod_{k<j} \sigma_{k}^{z}
\end{aligned}
$$

$$
H=-\sum_{i}\left[h \mu_{i}^{x} \mu_{i+1}^{x}+\mu_{i}^{z}\right]
$$

$$
\text { For } \mathrm{h}>1\left\langle\mu_{i}^{x} \mu_{i+r}^{x}\right\rangle \xrightarrow[r \rightarrow \infty]{ } \neq 0
$$

The model is self-dual at $\mathrm{h}=1$

For $r \rightarrow \infty$

$$
\left\langle e^{-i \pi \sum_{l=i}^{i+r-1} c_{l}^{\dagger} c_{l}}\right\rangle \rightarrow \neq 0
$$

Topological phases and Majorana edge states

E. Majorana (I937):

- pure real solution to the Dirac equation
- particles are their own anti particles

Topological phases and Majorana edge states

E. Majorana (I937):

- pure real solution to the Dirac equation
- particles are their own anti particles

Topological phases and Majorana edge states

E. Majorana (I937):

- pure real solution to the Dirac equation
- particles are their own anti particles

Topological phases and Majorana edge states

E. Majorana (I937):

- pure real solution to the Dirac equation
- particles are their own anti particles

Topological phases and Majorana edge states

E. Majorana (I937):

- pure real solution to the Dirac equation
- particles are their own anti particles

Particles with non-Abelian statistics

Topological phases and Majorana edge states

Particles with non-Abelian statistics
Fundamental interest in complex constituents of matter

Topological phases and Majorana edge states

Particles with non-Abelian statistics
Fundamental interest in complex constituents of matter
Potential applications in topological quantum computation protocols

Kitaev model

Kitaev model

A. Kitaev,

Majorana fermions emerge as edge states (fractionalization) Phys. Usp. 10, 131, 2001.
Read and Green 2000.

p-wave superconductor

Kitaev model

A. Kitaev, Majorana fermions emerge as edge states (fractionalization) Phys. Usp. 10, 131, 2001.

p-wave superconductor

$$
H=-\sqrt{J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}
$$

"physical" fermions
-1000 00 Majoranas/site $c_{2 j-1}=a_{j}^{\dagger}+a_{j}$
$c_{1} C_{2}$

$$
c_{2 j}=(-i)\left(a_{j}^{\dagger}-a_{j}\right)
$$

Kitaev model

$$
H=-\quad J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}
$$

Kitaev model

$$
H=-\quad J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}
$$

Kitaev model

$$
H=-\sqrt{J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}
$$

lattice completely full or empty

Kitaev model

$$
H=-\quad J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}
$$

lattice completely full or empty

Majorana edge states

$$
H=-J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}
$$

Majorana edge states

Majorana edge states

Provided by the proximity effect to a superconductor

Majorana edge states

Provided by the proximity effect to a superconductor

Signatures:
Two-fold degenerate ground state (with opposite parities!)
Zero-energy modes, non local correlation between the edges

Localization of the excitation at the edges

Non-Abelian braiding statistics

Majorana edge states

$H=-J \sum_{j=1}^{L-1} a_{j}^{\dagger} a_{j+1}+h . c .+\sum_{j=1}^{L-1} \Delta a_{j} a_{j+1}+\Delta^{*} a_{j+1}^{\dagger} a_{j}^{\dagger}-\mu \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}$
Key feature: parity symmetry!
Electron number is conserved modulo 2
Provided by the proximity effect to a superconductor

Signatures:
Two-fold degenerate ground state (with opposite parities!)
Zero-energy modes, non local correlation between the edges

Localization of the excitation at the edges
Non-Abelian braiding statistics

Related features
Double degenerate entanglement spectrum in open and periodic chains

Resilience to disorder
Single ground state in periodic/antiperiodic chains (opposite parities)

Majorana edge states

Provided by the proximity effect to a superconductor

Signatures:
Two-fold degenerate ground state (with opposite parities!)

Zero-energy modes, non local correlation between the edges
Localization of the excitation at the edges

Related features
Double degenerate entanglement spectrum in open and periodic chains

Resilience to disorder
Single ground state in periodic/antiperiodic chains (opposite parities)

Non-Abelian braiding statistics

Anyons in 1D lattice: commutation relations

$$
\left.\epsilon \begin{array}{l}
a_{j} a_{k}^{\dagger}-e^{-i \theta \epsilon(j-k)} a_{k}^{\dagger} a_{j}=\delta_{j k} \\
a_{j} a_{k}-e^{i \theta \epsilon(j-k)} a_{k} a_{j}=0
\end{array}\right\}\left\{\begin{array}{rl}
1 & j>k \\
0 & j=k \\
1 & \\
\epsilon(j-k) & \text { They behave like bosons } \\
\text { on the same site }
\end{array}\right.
$$

Commutation relations depend on ordering unless $\theta=0, \pi$

Bosons

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

Exchanging particles in 1D?

Trying to exchange particles yields to collision

The other way

The other way

The other way

The other way

The other way

The other way

$$
\begin{aligned}
& \text { moverur } \\
& \text { k i j } \\
& |\psi\rangle=a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle
\end{aligned}
$$

The other way

$$
\begin{aligned}
& \text { Mosintur } \\
& \text { k i j } \\
& |\psi\rangle=a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle \xrightarrow{\text { exchange }}|\psi\rangle=a_{k}^{\dagger} a_{j} a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle=a_{k}^{\dagger} a_{i}^{\dagger} a_{j} a_{j}^{\dagger}|0\rangle=e^{-i \theta} a_{i}^{\dagger} a_{k}^{\dagger}|0\rangle
\end{aligned}
$$

The other way

$$
\begin{aligned}
& \bigwedge_{\mathrm{k}} \\
&|\psi\rangle=a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle \xrightarrow{\text { exchange }}|\psi\rangle=a_{k}^{\mathrm{B}} \overbrace{\mathrm{i}}^{\dagger} a_{j} a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle=a_{k}^{\dagger} a_{i}^{\dagger} a_{j} a_{j}^{\dagger}|0\rangle=e^{-i \theta} a_{i}^{\dagger} a_{k}^{\dagger}|0\rangle \\
& \xrightarrow{\text { translate }} e^{-i \theta} a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle=e^{-i \theta}|\psi\rangle
\end{aligned}
$$

The other way

$$
\begin{aligned}
& \text { 亿. } \\
&|\psi\rangle=a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle \xrightarrow[\mathrm{k}]{\mathrm{exchange}}|\psi\rangle=a_{k}^{\dagger} a_{j}^{\mathrm{B}} a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle=a_{k}^{\dagger} a_{i}^{\dagger} a_{j} a_{j}^{\dagger}|0\rangle=e^{-i \theta} a_{i}^{\dagger} a_{k}^{\dagger}|0\rangle \\
& \xrightarrow{\text { translate }} e^{-i \theta} a_{j}^{\dagger} a_{i}^{\dagger}|0\rangle=e^{-i \theta}|\psi\rangle
\end{aligned}
$$

Which object in 1D plays the role of the flux tube in 2D?

Generalized Jordan-Wigner transformation

$$
a_{j}^{\dagger}=\exp \left(-i \theta \sum_{i=1}^{j-1} n_{i}\right) b_{j}^{\dagger}
$$

Bosonic variable

Generalized Jordan-Wigner transformation

$$
a_{j}=b_{j} \exp \left(i \theta \sum_{i=1}^{j-1} n_{i}\right) \quad a_{j}^{\dagger}=\exp \left(-i \theta \sum_{i=1}^{j-1} n_{i}\right) b_{j}^{\dagger}
$$

Bosonic variable

$n_{i}=a_{i}^{\dagger} a_{i}=b_{i}^{\dagger} b_{i} \quad$ On-site quantities remain the same

$$
a_{j}^{\dagger} a_{j+1} \rightarrow b_{j}^{\dagger} b_{j+1} e^{i \theta n_{j}}
$$

Hopping anyons are mapped onto bosonic correlated hopping or conditional hopping processes

Correlated hopping?

Electron correlations in narrow energy bands

By J. Hubbard
Theoretical Physics Division, A.E.R.E., Harwell, Didcot, Berks
(Communicated by B. H. Flowers, F.R.S.-Received 23 April 1963)

It is pointed out that one of the main effects of correlation phenomena in d - and f-bands is to give rise to behaviour characteristic of the atomic or Heitler-London model. T'o investigate this situation a simple, approximate model for the interaetion of electrons in

[^0]
Correlated hopping?

Electron correlations in narrow energy bands

By J. Hubbard

Theoretical Physics Division, A.E.R.E., Harwell, Didcot, Berks
(Communicated by B. H. Flowers, F.R.S.-Received 23 April 1963)
It is pointed out that one of the main effects of correlation phenomena in d - and f-bands is to give rise to behaviour characteristio of the atomie or Heitler-London model. To inveatigate this situation a simple, approximate model for the interaetion of electrons in

Cold Bosonic Atoms in Optical Lattices

D. Jaksch, ${ }^{1,2}$ C. Bruder, ${ }^{1,3}$ J. I. Cirac, ${ }^{1,2}$ C. W. Gardiner, ${ }^{1,4}$ and P. Zoller ${ }^{1,2}$
${ }^{1}$ Institute for Theoretical Physics, University of Santa Barbara, Santa Barbara, California 93106-4030
${ }^{2}$ Institut fiir Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
${ }^{3}$ Institut fïr Theoretische Festkörperphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
${ }^{4}$ School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand
(Received 26 May 1998)

The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the

Correlated hopping in condensed matter

Application of the Hubbard model to materials with extended orbitals: the charge localized in the bonds affects the screening of the effective potential between the valence electrons, the extension of the Wannier orbitals and the hopping between them. Relevant for hole superconductivity [Hirsch and co-workers, 1989].

Hubbard model with correlated hopping

$$
\begin{aligned}
\mathcal{H}= & \left.-\sum_{i \sigma}\left[1-X\left(n_{i \bar{\sigma}}+n_{i+1 \bar{\sigma}}\right)\right]\right]\left(c_{i \sigma}^{\dagger} c_{i+1 \sigma}+\text { H.c. }\right) \\
& +U \sum_{i} n_{i \uparrow} n_{i \downarrow}
\end{aligned}
$$

Anyon-Hubbard model
Anyons

$$
\begin{gathered}
\sim^{\prime} \overbrace{}^{J} \\
H^{a}=-J \sum_{j}^{L}\left(a_{j}^{\dagger} a_{j+1}+\text { h.c. }\right)+\frac{U}{2} \sum_{j}^{L} n_{j}\left(n_{j}-1\right)
\end{gathered}
$$

Conditional-hopping bosons

$$
\begin{gathered}
H^{b}=-J \sum_{j}^{L}\left(b_{j}^{\dagger} b_{j+1} e^{i \theta n_{j}}+\text { h.c. }\right)+\frac{U}{2} \sum_{j}^{L} n_{j}\left(n_{j}-1\right)
\end{gathered}
$$

In the hopping process the phase term depends only on the occupation in the left side.

As expected, anyons brake parity and time reversal, except for $\theta=0, \pi$

In the hopping process the phase term depends only on the occupation in the left side.

As expected, anyons brake parity and time reversal, except for $\theta=0, \pi$

Artificial gauge fields Artificial particles

Artificial magnetic field

Peierls phase

$$
H=\frac{1}{2 m}[\mathbf{p}-q \mathbf{A}]^{2}
$$

Phase acquired from $\mathrm{j}+1$ to j

$$
\begin{aligned}
\psi\left(x_{j}\right) & \rightarrow \exp \left(\frac{1}{\hbar} \int_{j+1}^{j} q \mathbf{A} \cdot d \mathbf{l}\right) \psi\left(x_{j}\right) \\
H & =-J \sum_{j}\left(b_{j}^{\dagger} b_{j+1} e^{i \theta}+\text { h.c. }\right) \\
\theta & =\frac{1}{\hbar} \int_{j+1}^{j} q \mathbf{A} \cdot d \mathbf{l}
\end{aligned}
$$

$$
\Phi=\int \mathbf{B} \cdot d \mathbf{S}
$$

Magnetic flux

In $1 \mathrm{D} \theta$ can be "gauged away" to the border (Aharonov-Bohm)

No hopping along z
Normal tunneling along y
Tilted deep lattice along x
Two Raman lasers between internal states |g> and |e> induce hopping in x State dependent OL: |e> is halfway between two adjacent |g>
Phase difference between Rabi frequencies Ω_{1}, Ω_{2} gives a Peierls term
Peierls phases depend on y, creating a net flux per plaquette

Density-dependent hopping phase

$$
H^{b}=-J \sum_{j}^{L}\left(b_{j}^{\dagger} b_{j+1} e^{i \theta n_{j}}+e^{-i \theta n_{j}} b_{j+1}^{\dagger} b_{j}\right)
$$

Truncation of local Hilbert space
$n_{j}=0,1 \quad$ No phase terms: same spectrum as hard core bosons (free fermions)
$n_{j}=0,1,2 \quad$ Non-trivial interference effects

$e^{-i \theta}$

Photon assisted Raman tunneling

We distinguish energetically different occupation numbers by interaction U 4-dimensional GS manifold

Various way of implementation: e.g. spin-dependent lattices

$$
\begin{array}{ll}
|g\rangle & F=1, m_{F}=-1 \\
\text { |e }\rangle & F=1, m_{F}=0
\end{array}
$$

We want

$$
\begin{aligned}
J_{23} & =J_{24}=J \\
J_{13} & =J_{14}=J e^{i \theta}
\end{aligned}
$$

For each tunneling rate we define a Λ-scheme: we need 4 different lasers

Photon assisted Raman tunneling (ii)

Let us focus on two states $|a\rangle,|b\rangle$

$$
\begin{array}{ll}
H=\sum_{i=a, b, e} \hbar \omega_{i}|i\rangle\langle i|+\frac{\hbar}{2}\left(\gamma_{a}|e\rangle\langle a|+\gamma_{b}|e\rangle\langle b|+\text { h.c. }\right) \\
\gamma_{a(b)}=\Omega_{a(b)}^{e} W_{a(b)}^{e} e^{-i\left(\omega_{e}-\omega_{a(b)}-\delta\right) t} & \text { off-diagonal } \\
\text { terms }
\end{array}
$$

$$
\frac{\delta}{|a\rangle} \omega_{a} \frac{|e\rangle}{|b\rangle} \omega_{e} \omega_{b}
$$

$$
\begin{aligned}
& W_{a}^{e}=e^{i k_{a} x_{a}} \int w_{e}^{*}\left(x+x_{e}\right) e^{i k_{a} x} w_{a}(x) d x \\
& W_{b}^{e}=e^{i k_{b}\left(x_{a}+d\right)} \int w_{e}^{*}\left(x+x_{e}\right) e^{i k_{b} x} w_{b}(x+d) d x
\end{aligned}
$$

superposition integrals

$$
\Omega_{a}^{e}, \Omega_{b}^{e}
$$

Rabi (sizable)
frequencies
$w(x)$
Wannier functions
$\gamma_{a(b)} \in \mathbb{C}$ modulus and phase tuned by choosing the appropriate intensity, polarization and direction of the driving fields.

Photon assisted Raman tunneling (iii)

For sufficiently large δ, the level |e> is not populated and can be adiabatically eliminated and in the RWA

$$
H_{\mathrm{eff}}=-\frac{\hbar}{4 \delta}\left(\begin{array}{cc}
\left|\tilde{\gamma}_{a}\right|^{2} & \tilde{\gamma}_{a}^{*} \tilde{\gamma}_{b} \\
\tilde{\gamma}_{b}^{*} \tilde{\gamma}_{a} & \left|\tilde{\gamma}_{b}\right|^{2}
\end{array}\right)
$$

effective Hamiltonian for |a>, |b>

$$
\tilde{\gamma}=\text { non-rotating } \gamma
$$

But $\left|\tilde{\gamma}_{a}\right|=\left|\tilde{\gamma}_{b}\right|$ implies that D and U vanish \Rightarrow "free" anyons

Alternative proposals for correlated hopping

R.Ma et al., PRL 107, 095301 (2011)
[Y.-A. Chen et al., arXiv:1104.1833]

Eckart et al., PRL 95, 260404 (2005),
Struck J, et al., Phys. Rev. Lett. 108, 225304 (2012)

Alternative proposals for correlated hopping

rescaled hopping

Non sinusoidal driving
R.Ma et al., PRL 107, 095301 (2011)
[Y.-A. Chen et al., arXiv:1104.1833]
Eckart et al., PRL 95, 260404 (2005),
Struck J, et al., Phys. Rev. Lett. 108, 225304 (2012)
$\underline{\text { Hard-core limit case } \quad\left(n_{j}=0,1\right)}$

$$
H=-J \sum_{j}\left(b_{j}^{\dagger} b_{j+1}+b_{j+1}^{\dagger} b_{j}\right)
$$

- Phase terms disappear
- Same spectrum as fermions
- Same density distribution in trap

But...
Density distribution in momentum space is asymmetrical

[Hao, Y. et al., PRA 79, 043633 (2009).]

DMRG

$$
k=\frac{2 \pi}{L} m \quad m=0,1, \ldots, L-1 \quad \begin{aligned}
& \text { quantization } \\
& \text { of momenta }
\end{aligned}
$$

local basis truncation

$$
n_{j} \leq 3
$$

$$
\left\langle n_{k}\right\rangle=\frac{1}{L} \sum_{i j} e^{i k\left(x_{i}-x_{j}\right)}\left\langle b_{i}^{\dagger} b_{j}\right\rangle \quad \begin{aligned}
& \text { observed in TOF } \\
& \text { experiments }
\end{aligned}
$$

The peak decays with increasing θ (decoherence)

The peak shifts quadratically

$$
\begin{gathered}
\theta_{\max }(k)=\alpha\left(k-k_{0}\right)^{2}+\beta \\
\beta=k_{0}=\pi, \quad \alpha \approx-1 / \pi
\end{gathered}
$$

Density distribution in momentum space

Phase diagram

$\theta=0 \quad$ Bose-Hubbard model

$$
H=-J \sum_{j}\left(b_{j}^{\dagger} b_{j+1}+b_{j+1}^{\dagger} b_{j}\right)+\frac{U}{2} \sum_{j} n_{j}\left(n_{j}-1\right)-巴 \sum_{j} n_{j}
$$

Mean field

Numerical
(DMRG)

DMRG on the anyon-Hubbard

$E_{0}^{(n)}$ GS energy at filling n

$$
n=N / L
$$

filling

$$
\mu_{+}^{(n)}=E_{+}^{(n)}-E_{0}^{(n)}, \quad \mu_{-}^{(n)}=E_{0}^{(n)}-E_{-}^{(n)},
$$

Extended Mott lobes

MI-SF phase transition with θ

local basis truncation

$$
n_{j} \leq 3
$$

Finite size scaling

The gap are calculated at different lattice sizes $L=15,30,40,50,60$
Then extrapolated to $L \rightarrow \infty$

The gaps go to zero in the superfluid phase

Trap potential

$$
H_{t r}^{b}=H^{b}+V \sum_{i}((L+1) / 2-i)^{2} n_{i}
$$

Appearance of fractional plateaus?

$$
\begin{array}{|lllllll|}
\hline-0 & -\frac{\pi}{4} & -\frac{\pi}{2} & -\frac{3 \pi}{4} & -\pi \\
\hline
\end{array}
$$

$$
N=L=30, J / U=0.5, V / U=0.01
$$

Local density approximation

The trap is like a site-dependent chemical potential

Spatial correlations are neglected

In 2D

wedding cake structure

In-situ imaging

[J.F. Sherson et al., Nature 467, 68 (2010)]

Mean field solution (i)

$$
H=\sum_{j}\left[\frac{1}{2} n_{j}\left(n_{j}-1\right)-\mu n_{j}-J\left(c_{j}^{\dagger} b_{j+1}+b_{j+1}^{\dagger} c_{j}\right)\right]
$$

anyon-Hubbard

$$
c_{j}=e^{-i \theta n_{j}} b_{j}
$$

$\mathrm{J}=0 \quad\left|\Psi_{0}\right\rangle=|\psi\rangle^{\otimes L}$

$$
|\psi\rangle=\sum_{\nu=0}^{\infty} c_{\nu} \frac{\left(b^{\dagger}\right)^{\nu}}{\sqrt{\nu!}}|0\rangle \quad \text { Gutzwiller }
$$

local energies $\quad \epsilon(\nu)=\frac{1}{2} \nu(\nu-1)-\mu \nu$
$\nu=N / L$ filling
ground state $\Rightarrow \quad \nu$ particles in $\mu_{-}^{(\nu)}<\mu<\mu_{+}^{(\nu)} \leadsto \nu-1<\mu<\nu$
local gaps $\epsilon(\nu+1)-\epsilon(\nu)=\nu-\mu, \quad \epsilon(\nu-1)-\epsilon(\nu)=-(\nu-1)+\mu$

Mean field solution (ii)

$$
c_{j}^{\dagger} b_{j+1} \approx-\alpha_{2}^{*} \alpha_{1}+\alpha_{2}^{*} b_{j+1}+\alpha_{1} c_{j}^{\dagger} \quad \text { decoupling hopping term }
$$

$$
\alpha_{1}=\left\langle b_{j}\right\rangle \quad \alpha_{2}=\left\langle c_{j}\right\rangle \quad \text { MF parameters }
$$

MF Hamiltonian

$$
H=\sum_{j} H_{j}+L J\left(\alpha_{2}^{*} \alpha_{1}+\alpha_{1}^{*} \alpha_{2}\right)
$$

$$
H_{j}=\frac{1}{2} n_{j}\left(n_{j}-1\right)-\mu n_{j}-J\left(\alpha_{2} b_{j}^{\dagger}+\alpha_{2}^{*} b_{j}+\alpha_{1} c_{j}^{\dagger}+\alpha_{1}^{*} c_{j}\right)
$$

trivial solution

$$
\alpha_{1}=\alpha_{2}=0 \quad \text { MI phase }
$$

$\alpha_{l} \neq 0 \quad \Rightarrow \quad$ instability towards SF phase

Self-consistency

$$
\alpha_{l}=\Lambda_{l l^{\prime}} \alpha_{l^{\prime}}
$$

instability occurs when maximal eigenvalue of Λ is >1

$$
|\psi\rangle=\left|\psi^{(0)}\right\rangle+\left|\psi^{(1)}\right\rangle \quad\left|\psi^{(0)}\right\rangle=|\nu\rangle
$$

$\left|\psi^{(1)}\right\rangle=\sum_{\nu^{\prime}} \frac{\left\langle\nu^{\prime}\right| H_{J}|\nu\rangle}{\epsilon(\nu)-\epsilon\left(\nu^{\prime}\right)}\left|\nu^{\prime}\right\rangle=J \frac{\sqrt{\nu}\left(\alpha_{2}^{*}+\alpha_{1}^{*} e^{-i \theta(\nu-1)}\right)}{\mu-\nu+1}|\nu-1\rangle+J \frac{\sqrt{\nu+1}\left(\alpha_{2}+\alpha_{1} e^{i \theta \nu}\right)}{\nu-\mu}|\nu+1\rangle$
self-consistency relations $\alpha_{1}=\langle\psi| b_{j}|\psi\rangle \quad \alpha_{2}=\langle\psi| c_{j}|\psi\rangle \quad$ give

$$
\begin{gathered}
\Lambda=J\left(\begin{array}{cc}
f(\theta) & A \\
A & f(-\theta)
\end{array}\right), \quad f(\theta)=e^{i \theta \nu}\left[A+\left(e^{-i \theta}-1\right) B\right] \\
A=\frac{\mu+1}{(\mu-[\mu])([\mu]-\mu+1)} \quad B=\frac{[\mu]+1}{\mu-[\mu]}
\end{gathered}
$$

$$
\begin{array}{|l|}
\hline \text { lobe } \\
\text { labeling } \\
\nu=[\mu]+1 \\
\hline
\end{array}
$$

eigenvalues $\quad \lambda_{ \pm}=\frac{J}{2}\left[f(\theta)+f(-\theta) \pm \sqrt{4 A^{2}+(f(\theta)-f(-\theta))^{2}}\right]$

Mean field solution (iv)

Bosons in the 1D continuum

Interacting gas in 1D

$$
g_{1 \mathrm{D}}=\hbar^{2} c / m
$$

$$
H=\frac{\hbar^{2}}{2 m} \int_{0}^{L} \mathrm{~d} x \partial \Psi^{\dagger}(x) \partial \Psi(x)+\frac{1}{2} g_{1 \mathrm{D}} \int_{0}^{L} \mathrm{~d} x \Psi^{\dagger}(x) \Psi^{\dagger}(x) \Psi(x) \Psi(x)
$$

Dimensionless coupling $\quad \gamma=c / n$
Bosons
$\Rightarrow \quad$ Lieb-Liniger (Bethe-Ansatz)

For $\gamma \gg 1 \quad \Rightarrow \quad$ Tonks-Girardeau gas

$$
\Psi_{B}\left(x_{1}, \ldots, x_{N}\right)=\prod_{i<j}\left|\sin \left[\pi\left(x_{j}-x_{i}\right) / L\right]\right|
$$

Anyons in the 1D continuum

Anyons

$$
\begin{aligned}
& \Psi\left(x_{1}\right) \Psi^{\dagger}\left(x_{2}\right)=\mathrm{e}^{-\mathrm{i} \kappa w\left(x_{1}, x_{2}\right)} \Psi^{\dagger}\left(x_{2}\right) \Psi\left(x_{1}\right)+\delta\left(x_{1}-x_{2}\right) \\
& \Psi\left(x_{1}\right) \Psi\left(x_{2}\right)=\mathrm{e}^{\mathrm{i} \kappa w\left(x_{1}, x_{2}\right)} \Psi\left(x_{2}\right) \Psi\left(x_{1}\right) \\
& \Psi^{\dagger}\left(x_{1}\right) \Psi^{\dagger}\left(x_{2}\right)=\mathrm{e}^{\mathrm{i} \kappa w\left(x_{1}, x_{2}\right)} \Psi^{\dagger}\left(x_{2}\right) \Psi^{\dagger}\left(x_{1}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{lc}
w\left(x_{1}, x_{2}\right)=-w\left(x_{2}, x_{1}\right)=1 & \text { for } \quad x_{1}>x_{2} \\
w(x, x)=0 & \kappa=0, \pi \\
& \text { Bosons } \boldsymbol{\pi}
\end{array}\right.
$$

$$
|\Phi\rangle=\int_{0}^{L} \mathrm{~d} x^{N} \exp \left(-\mathrm{i} \frac{\kappa N}{2}\right) \chi\left(x_{1} \cdots x_{N}\right) \Psi^{\dagger}\left(x_{1}\right) \cdots \Psi^{\dagger}\left(x_{N}\right)|0\rangle
$$

Bethe Ansatz

$$
\chi\left(x_{1} \cdots x_{N}\right)=\exp \left(-\frac{\mathrm{i} \kappa}{2} \sum_{x_{i}<x_{j}}^{N} w\left(x_{i}, x_{j}\right)\right) \sum_{P} A\left(k_{P 1} \cdots k_{P N}\right) \mathrm{e}^{\mathrm{i}\left(k_{P 1} x_{1}+\ldots+k_{P N} x_{N}\right)}
$$

Relations between coefficients

$$
A\left(\ldots k_{j}, k_{i} \ldots\right)=\frac{k_{j}-k_{i}+\mathrm{i} c^{\prime}}{k_{j}-k_{i}-\mathrm{i} c^{\prime}} A\left(\ldots k_{i}, k_{j} \ldots\right)
$$

Bethe-Ansatz equations

$$
\mathrm{e}^{\mathrm{i} k_{j} L}=-\mathrm{e}^{\mathrm{i} \kappa(N-1)} \prod_{\ell=1}^{N} \frac{k_{j}-k_{\ell}+\mathrm{i} c^{\prime}}{k_{j}-k_{\ell}-\mathrm{i} c^{\prime}}
$$

$$
E=\sum_{j=1}^{N} k_{j}^{2}
$$

Effective interaction

$$
c^{\prime}=c / \cos (\kappa / 2)
$$

$$
\begin{array}{ll}
0 \leq \kappa \leq \pi & \text { repulsive } \\
\pi \leq \kappa \leq 2 \pi & \text { attractive }
\end{array}
$$

TG gas limit $\gamma \gg 1$
Energy $\quad E_{0} / L \approx \frac{1}{3} n^{3} \pi^{2}\left(1-\frac{4 \cos (\kappa / 2)}{\gamma}\right), \quad \mu \approx n^{2} \pi^{2}\left(1-\frac{16 \cos (\kappa / 2)}{3 \gamma}\right)$, Chem. pot. Pressure $\quad P_{0} \approx \frac{2}{3} n^{3} \pi^{2}\left(1-\frac{6 \cos (\kappa / 2)}{\gamma}\right), \quad Q \approx n \pi\left(1-\frac{2 \cos (\kappa / 2)}{\gamma}\right) . \quad \begin{aligned} & \text { Cut-off } \\ & \text { momentum }\end{aligned}$

Thank you

[^0]:

