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1 Introduction

In 1924 Satyendra Nath Bose sent a paper investigating the statistics of photons to Albert Einstein.

Shortly after that Einstein generalised the idea from massless to massive particles and predicted that for

a system of weakly or non-interacting bosons a phase transition would occur at very low temperatures,

leading to a macroscopic occupation of the ground state [1, 2]. About 70 years later, due to new

cooling techniques based on laser technology and evaporative cooling, it was possible to create the

Bose-Einstein condensate under laboratory conditions [3,4]. Since then there has been a lot of research

on this topic [5�8]. Both the dynamics - mostly at zero temperature - and the thermodynamical

properties are topics of high interest for experimental as well as theoretical physicists.

Regarding the dynamics of the condensate it is possible to analyse collective oscillations which are not

only easily produced in the experiments but can also be measured within a very high accuracy leading

to an error of less than 1 percent [9]. They are described theoretically by the time-dependent Gross-

Pitaevskii equation, which describes the condensate at zero temperature. Within the thermodynamic

limit this equation can be approximately solved in the Thomas-Fermi regime where the kinetic term

is neglected in comparison with the interaction. Using this approximation the excitation spectrum of

a condensate in a harmonic trap has been derived already by Stringari [10]. A more general solution

for a �nite particle number can be derived within a variational ansatz [11, 12] and leads to results

for both repulsive as well as attractive interactions. The latter will be used in this work where we

analyse collective oscillations of a trapped condensate under the in�uence of a parametric oscillation.

Usually the di�erent oscillation modes of a trapped BEC are excitated by small changes of the trap

geometry. In this way it is possible to excite the dipole as well as the quadrupole mode. However, the

excitation analysed in this work will not be caused by changing the trap symmetry. Instead the s-wave

scattering length of the condensate will be modi�ed by applying an external oscillating magnetic �eld

via Feshbach resonance [13] shown in Figure 1. Parametric resonance is a phenomenon that arises when

a former time-independent parameter of an oscillating system periodically changes with time (see, for

instance, Ref. [14]). In this case resonances can be observed. It is possible to stabilise or destabilise the

oscillations of the system in this way. One of the most common applications for parametric resonance

is the Paul-trap [15] which is used to store charged particles by using alternating electrical �elds.

Currently there is an experimental group led by V.S. Bagnato and R.G. Hulet that excites the

quadrupole collective mode of a trapped Bose-gas by applying a Feshbach resonance [16]. The ex-

periment is done in the following way: A BEC of 7
3Li is produced by Zeeman decelerating the atoms

and con�ning them in an optical trap. Coaxial to the trap laser there are coils which allow to manip-

ulate the s-wave scattering length. In the �rst step the scattering length has to be large in order to

accelerate the thermalisation of the atoms and enhancing the evaporation process. After obtaining a

condensate of about 105 atoms the magnetic �eld is lowered slowly to the desired value. The modula-

tion of the scattering length is now realised by adding a small AC component to the bias �eld of the

trap:
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Figure 1: Dependence of the s-wave scattering length from an external magnetic �eld for 7
3Li atoms. Since the function

diverges at a special point it is possible to obtain any desired value for the scattering length [13].

B(t) = B0 + b cos Ωt , (1)

with an average magnetic �eld B0 = 565 G and a modulation of b ' 10 G. Thus the scattering length

reads

as(t) = anr

[
1− ∆

B(t)−Bres

]
, (2)

where anr = −24.5 a0 (a0 being the Bohr radius) denotes the non-resonant scattering length, Bres =
736.8 G the resonant �eld value for as, and ∆ = 192.3 G is the resonance width. For su�ciently small

amplitude b Eq. (2) reduces to

as(t) ' aav + a cos Ωt (3)

with the average scattering length aav ' 2.9 a0 and the amplitude a ' −1.6 a0. The experiment

is performed for di�erent modulation frequencies Ω in such a way that an image of the condensates'

radius over the modulation frequency is obtained.

Figure 2 shows the results of the ongoing experiment [16]. The harmonic trap used in the experiment

is cylindric with the two trap frequencies ωz = 2π× 5.5 Hz and ωr = 2π× 255 Hz. For the quadrupole
mode the oscillation of the cloud radius was observed in dependency of the modulation frequency. A

big resonance peak can be found at a modulation frequency around 9 Hz and a smaller one around the

doubled value of 18 Hz. The grey line shows a numerical simulation of the spectrum for a quadrupole

mode. The resonance peaks denote a destabilisation of the eigenmode of the condensate. Such a

destabilisation is the main topic in this work which will describe a similar system from a theoretical

point of view. In contrary to the experiment here the condensate will be con�ned in a trap with

spherical symmetry, which simpli�es the complexity of the problem. In this case stabilisation and
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Figure 2: Resonance spectrum obtained by the experiment led by V.S. Bagnato and R.G. Hulet as well as a numerical
simulation of the experiment [16]. The amplitude of the condensates oscillation has been determined depend-
ing on the modulation frequency Ω for a �xed average scattering length aav and scattering length amplitude
a.

destabilisation for the breathing mode can be discussed. A similar study has been performed in [17,18]

with other methods. The outline of the thesis is as follows. In the second chapter the dynamics of a

condensate in a harmonic trap will be examined. The third section will concentrate on the phenomenon

of parametric resonance by deriving the characteristic properties for the Mathieu equation and then

applying those properties on the collective oscillations of the condensate which are described by the

Mathieu equation.

2 Dynamics of a Bose-Einstein Condensate in a Trap

In this section the time-dependent Gross-Pitaevskii equation will be solved with a Gaussian trial

function depending on six variational parameters. This will lead to a set of ordinary di�erential

equations which describe the dynamics of the condensate via its widths. The resulting equilibrium

positions will be discussed as well as the collective oscillations of the condensate in the vicinity of these

positions and the corresponding eigenmodes. The latter are of further interest in this work because

they are to be stabilised or destabilised via parametric resonance.

2.1 Gross-Pitaevskii Equation and Variational Principle

The dynamics of a condensed Bose gas in a trap at zero temperature is described by the time-dependent

Gross-Pitaevskii equation, often called nonlinear Schrödinger equation,

i~
∂

∂t
Ψ(x, t) =

{
− ~2

2M
∆ + V (x) + g(t)|Ψ(x, t)|2

}
Ψ(x, t), (4)
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2.1 Gross-Pitaevskii Equation and Variational Principle

with the harmonic trap potential

V (x) =
M

2

3∑
i=1

ω2
i x

2
i (5)

and the parameter g describing the strength of the two-particle interaction

g(t) =
4π~2a(t)

M
, (6)

where a(t) denotes the s-wave scattering length from (3).

There are two essential points where (4) di�ers from the Schrödinger equation. The �rst one is the non-

linear interaction term g(t) |Ψ(x, t)|2 Ψ(x, t). Additionally the wave function Ψ(x, t) is not normalised

to 1 but to the total particle number N of our Bose gas:

N =
∫
d3x|Ψ(x, t)|2 . (7)

The time-dependent Gross-Pitaevskii equation follows from the action

A[Ψ∗,Ψ] =
∫
dt

∫
d3xL

(
Ψ∗(x, t),∇Ψ∗(x, t),

∂Ψ∗(x, t)
∂t

; Ψ(x, t),∇Ψ(x, t),
∂Ψ(x, t)

∂t

)
(8)

with the Lagrange density

L = i~ Ψ∗(x, t)
∂Ψ(x, t)

∂t
− ~2

2M
∇Ψ∗(x, t)∇Ψ(x, t)

−V (x) Ψ∗(x, t) Ψ(x, t)− g(t)
2

Ψ∗(x, t)2 Ψ(x, t)2. (9)

This indeed leads to the Gross-Pitaevskii equation (4) if applied to the Hamilton's principle

δA[Ψ∗,Ψ] = 0 (10)

yielding the Euler-Lagrange equation

δA
δΨ∗(x, t)

=
∂L

∂Ψ∗(x, t)
−∇ ∂L

∂∇Ψ∗(x, t)
− ∂

∂t

∂L
∂ ∂Ψ∗(x,t)

∂t

= 0 , (11)

and its complex conjugate. Now we follow Ref. [11] and use the Gaussian trial function

Ψ(x, t) =
N1/2

π3/4Ã(t)3/2
exp

{
−

3∑
i=1

[
1

2Ai(t)2
+ iBi(t)

]
x2
i

}
(12)
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2.1 Gross-Pitaevskii Equation and Variational Principle

with Ã(t)3 being the product over all Ai(t). Thus the Langrange function

L =
∫
d3xL (13)

can be calculated by inserting (12) in (8) and (9). The result is the action as a functional of the

variational parameters Ai(t) and Bi(t).

The Lagrange function can be split into four parts which are now to be calculated separately:

L = Ltime + Lkin + Lpot + Lint. (14)

The potential part

Lpot = −
∫
d3xV (x) |Ψ(x, t)|2 (15)

gives

Lpot = −N M

4

3∑
i=1

ω2
i A

2
i (t). (16)

The part describing the interaction

Lint = −g(t)
2

∫
d3x |Ψ(x, t)|4 (17)

leads to

Lint = − g(t)N2

2(2π)3/2 Ã(t)3
. (18)

In the same way it is possible to calculate the kinetic part

Lkin = − ~2

2M

∫
d3x∇Ψ∗(x, t)∇Ψ(x, t), (19)

yielding

Lkin = −N
3∑
i=1

{
~2

4M A2
i (t)

+
~2

M
B2
i (t)A2

i (t)
}

(20)

by evaluating the Gauss integrals. The last part

Ltime = −i~
∫
d3xΨ∗(x, t)

∂Ψ(x, t)
∂t

(21)
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2.1 Gross-Pitaevskii Equation and Variational Principle

becomes

Ltime =
N ~

2

3∑
i=1

A2
i (t) Ḃi(t). (22)

Inserting these results into (14) �nally leads to the Lagrange function

L = N

3∑
i=1

{
~
2
A2
i (t) Ḃi(t)−

~2

4M A2
i (t)
− ~2

M
B2
i (t)A2

i (t)−
M

4
ω2
iA

2
i (t)
}
− g(t)N2

2(2π)3/2 Ã(t)3
, (23)

and the corresponding action is de�ned by

A[Ai, Bi] =
∫
dtL

(
Ai(t), Ȧi(t);Bi(t), Ḃi(t)

)
. (24)

In analogy to Ritz' variational principle an expression for the variational parameters can be found

by extremising (24) with respect to the variational parameters Ai(t) and Bi(t). This leads to the

Euler-Lagrange equations

∂L

∂Ai(t)
− d

dt

∂L

∂Ȧi(t)
= 0 , (25)

∂L

∂Bi(t)
− d

dt

∂L

∂Ḃi(t)
= 0 . (26)

The �rst one reads

−~Ai(t)Ḃi(t) +
2~2

M
B2
i (t)Ai(t) +

M

2
ω2
iAi(t) =

~2

2MA3
i (t)

+
g(t)N

2(2π)3/2Ã(t)3Ai(t)
, (27)

whereas the second one turns out to be

Bi(t) = −MȦi(t)
2~Ai(t)

. (28)

Inserting (28) into (27) leads to

Äi(t) + ω2
iAi(t) =

~2

2MA3
i (t)

+
g(t)N

(2π)3/2MÃ(t)3Ai(t)
. (29)

Notice that the dynamics is essentially due to the variational parameters Bi(t). With only Ai(t) as

variational parameters the procedure would not have resulted in equations of motion. Before discussing
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2.2 Equilibrium Positions

them further, it is rather useful to introduce dimensionless variables

ωi = λi ω , Ai =

√
~
Mω

αi , τ = ωt (30)

and to make use of (6) in order to introduce the dimensionless coupling strength

P (τ) =

√
2
π

a(τ)N√
~/Mω

. (31)

This results in a system of three coupled ordinary di�erential equations describing the dynamics of the

condensate via its widths:

α̈x(τ) + λ2
xαx(τ) =

1
α3
x(τ)

+
P (τ)

α2
x(τ)αy(τ)αz(τ)

, (32)

α̈y(τ) + λ2
yαy(τ) =

1
α3
y(τ)

+
P (τ)

α2
y(τ)αx(τ)αz(τ)

, (33)

α̈z(τ) + λ2
zαz(τ) =

1
α3
z(τ)

+
P (τ)

α2
z(τ)αx(τ)αy(τ)

. (34)

Those equations of motion correspond to harmonic oscillators modi�ed by a kinetic term and an

additional term that depends on the dimensionless parameter P (τ) which describes according to (31)

the strength of the interaction between particles in the condensate and depends on the s-wave scattering

length a(τ). In the introduction it is described how the oscillation of a(τ) is introduced and that is

expressed for small amplitudes according to (3). Thus it is useful to split P (τ) into a constant and an

oscillating part

P (τ) = P0 + P1 cos
Ωτ
ω
. (35)

The dimensionless interaction parameters P0 and P1 are given by (31) with the values for aav and a

mentioned in the introduction (3). Since those parameters are constant in the experiment the only

control parameter in the following is the modulation frequency Ω.

2.2 Equilibrium Positions

Taking another look at the equations of motion (32)�(34) reveals that the dynamics of the widths of

the condensate can be described as the motion of a point mass according to

α̈i(τ) = −∂Veff(αx(τ), αy(τ), αz(τ))
∂αi(τ)

, (36)
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2.2 Equilibrium Positions

where the e�ective potential is given by

Veff(αx, αy, αz) =
3∑
i=1

1
2

(
λ2
iα

2
i +

1
α2
i

)
+

P (τ)
αxαyαz

. (37)

Thus, the equilibrium positions are calculated by setting the gradient of the potential to zero and by

neglecting the time dependency of P (τ), which yields

λ2
xαx0 =

1
α3
x0

+
P0

α2
x0αy0αz0

, (38)

λ2
yαy0 =

1
α3
y0

+
P0

α2
y0αx0αz0

, (39)

λ2
zαz0 =

1
α3
z0

+
P0

α2
z0αx0αy0

. (40)

Specialising to cylindrical symmetry according to αx0 = αy0 = α0, this leads to the two algebraic

equations

α4
0 = 1 +

P0

αz0
, (41)

λ2α4
z0 = 1 +

P0αz0
α2

0

(42)

for the equilibrium positions α0 and αz0.

Since the dynamics of the condensate will evolve around the equilibrium positions in this work, it is

convenient to analyse their position and stability. This can be done by �nding a single equation for

αz0 depending on P0. Solving (42) for α2
0 and inserting the result into (41) leads to

λ4α9
z0

(
1 +

P0

αz0

)
− 2λ2α5

z0

(
1 +

P0

αz0

)
− P 2

0α
3
z0 + αz0 − P0 = 0 , (43)

which represents a polynomial of ninth degree in αz0. It is important to notice that there may be fake

solutions because of squaring (41) in the beginning of the calculations. Therefore it is necessary to

check for every solution of (43) whether it also solves (41) and (42).

The sought solutions are the real, positive zeros of the polynomial (43) since neither a negative nor an

imaginary width does hold any physical meaning. The number of those solutions turns out to depend

on P0.

This work will be based on a condensate in a trap with spherical symmetry where the calculation of

the equilibrium positions and their stability becomes much easier. Setting λ = 1 and αz0 = α0 reduces

the equilibrium equations (41) and (42) to

α5
0 − α0 − P0 = 0 . (44)
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2.3 Collective Oscillations

Figure 3: Dimensionless interaction strength P0 as a function of the variational width parameter α0. There is a

minimum for P0 = Pcrit. The condensate will collapse for all values smaller than this critical Pcrit.

For di�erent values of P0 there are either 0 , 1 or 2 real, positive solutions. There is no equilibrium

point for all values of P0 lower than

Pcrit =
(−4

5

)
1

51/4 ' −0.535 . (45)

All positive values of P0 lead to one solution. Particular interesting is the stability of the two solutions

which exist for 0 > P0 > Pcrit, which can be seen in Figure 3 because both stable and unstable solutions

are to be expected there. In order to determine the stability of the solutions, the oscillation frequencies

of the isotropic condensate around these certain equilibrium points have to be calculated.

2.3 Collective Oscillations

The current task is to solve (32)�(34) in the vicinity of (αx0, αy0, αz0). For small de�ections δαi from

the equilibrium position, the potential can be expanded into a Taylor series:

Veff(αx0 + δαx, αy0 + δαy, αz0 + δαz) = Veff(αx0, αy0, αz0)

+
3∑
i=1

(
λ2
i

2
+

3
2α4

i0

+
P (τ)

α2
i0αx0αy0αz0

)
δα2

i +
P (τ)

αx0αy0αz0

(
δαxδαy
αx0αy0

+
δαyδαz
αy0αz0

+
δαxδαz
αx0αz0

)
+ ... , (46)

which, in case of the axial symmetry, can be written as

Veff(α0 + δαx, α0 + δαy, αz0 + δαz) = Veff(α0, αz0) +
1
2
δαTM(τ)δα+ ... , (47)

with δαT = (δαx, δαy, δαz) and
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2.3 Collective Oscillations

M(τ) =



1 +
3
α4

0

+
2P (τ)
α4

0αz0

P (τ)
α4

0αz0

P (τ)
α3

0α
2
z0

P (τ)
α4

0αz0
1 +

3
α4

0

+
2P (τ)
α4

0αz0

P (τ)
α3

0α
2
z0

P (τ)
α3

0α
2
z0

P (τ)
α3

0α
2
z0

λ2 +
3
α4
z0

+
2P (τ)
α2

0α
3
z0


. (48)

Thus the dynamics for small de�ections around the equilibrium positions is described by oscillations

with the amplitudes δαi. In the following it has to be analysed if the oscillation frequencies are real,

complex or even pure imaginary, which would lead to non-stable equilibrium points. Additionally it is

possible to determine the oscillation modes once the frequencies are known.

The frequencies are related to the eigenvalues of the matrix M(0), which is obtained from (48) by

replacing P (τ) with P0. The eigenvalue problem reads

(
M(0) − ξI

)
x = 0 , (49)

which will �nally lead to the oscillation frequencies ν = ω
√
ξ and by calculating the eigenvectors x

will allow to determine the di�erent eigenmodes.

The characteristic polynomial corresponding to M(0) is

p(ξ) = A2 · C +D ·B −B ·A− C ·D2 , (50)

with the abbreviations

A = 3 +
1
α4

0

− ξ , (51)

B = 2
(

P0

α3
0α

2
z0

)2

, (52)

C = λ2 +
3
α4
z0

+
2P0

α2
0α

3
z0

− ξ , (53)

D =
P0

α4
0αz0

. (54)

Thus the solutions are obtained by requiring p(ξ) = 0, i.e.

A(A · C −B)−D(D · C −B) = 0 . (55)

A close inspection shows that one solution is A = D, resulting in

ξ a = 4− 2P0

α4
0αz0

. (56)
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2.3 Collective Oscillations

The remaining two solutions are given by the following equation which is of second degree in ξ:

A =
B − C ·D

C
. (57)

After a few algebraic manipulations and using the constraints for the equilibrium points (41), (42) the

�nal result is

ξ b,c = 2
(

1 + λ2 − P0

4α2
0α

3
z0

)
∓ 2

√(
1− λ2 +

P0

4α2
0α

3
z0

)2

+
P 2

0

2α6
0α

4
z0

. (58)

As already mentioned the eigenvalues correspond to oscillation frequencies for the condensate. The

resulting three frequencies are [11]

νa = 2ω

√
1− P0

2α4
0αz0

, (59)

νb,c = 2ω

1
2

(
1 + λ2 − P0

4α2
0α

3
z0

)
∓ 1

2

√(
1− λ2 +

P0

4α2
0α

3
z0

)2

+
P 2

0

2α6
0α

4
z0


1/2

. (60)

With this, determining the eigenmodes becomes a straight-forward but cumbersome calculation.

For the �rst eigenvalue ξ a two of the matrix columns are identical.

A(x1 + x2) +Bx3 = 0 (61)

A(x1 + x2) +Bx3 = 0 (62)

B(x1 + x2) + Cx3 = 0 . (63)

Solving this system gives

xa =

 1
−1
0

 , (64)

which describes an oscillation in only x and y direction while the width αz remains unchanged, which

is called 2D-quadrupole mode.

For the eigenvalue ξb,c we obtain correspondingly:

Ax1 +Bx2 + Cx3 = 0 (65)

Bx1 +Ax2 + Cx3 = 0 (66)

C(x1 + x2) +Dx3 = 0 . (67)
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2.3 Collective Oscillations

Using the constraints for the equilibrium positions (41) and (42) this system of linear equations leads

to:

xb,c =

 1
1

2ξb,c−8
BD

 . (68)

Of these two eigenmodes the �rst one, xb, is called stretching mode due to the negative algebraic sign

of the z-component and xc is called breathing mode as it has a positive z-component.

For the parametric resonance it is important to determine which frequencies belong to stable and/or

unstable oscillations. The unstable oscillations are of highest interest. If there is such an unstable

oscillation mode, being able to stabilise it under certain circumstances will hold important practical

applications, maybe similar to Paul-traps or other systems where parametric resonance is already in

use. In order to see if this is possible, it has to be determined if the frequencies have real or complex

values.

This is what will be done now for the isotropic trap, where (59) reduces to the real value

νa = ω

√
2 +

2
α4

0

(69)

for any possible α0. Correspondingly we obtain from (60)

νb,c = ω

√√√√2
(

2− P0

4α5
0

)
∓ 2

√(
P0

4α5
0

)2

+
P 2

0

2α10
0

, (70)

νb,c = ω

√
7
2

+
1

2α4
0

∓ 3
2

(
1− 1

α4
0

)
. (71)

Thus, the other two frequencies are

νb = ω

√
2 +

2
α4

0

(72)

which, again, is a real number and actually the same as νa in (69) and

νc = ω

√
5− 1

α4
0

. (73)

This last frequency will be imaginary for P0 < Pcrit with Pcrit de�ned by (45).

It remains for us to explore the consequences of these results in two important particular cases: The

Thomas-Fermi limit of large particle numbers, which occurs for the current experiment and in the case

14



2.3 Collective Oscillations

without any interaction, both for a spherical trap which will be used for the parametric resonance later

on.

In the limit P0 →∞ the equilibrium conditions (41) and (42) reduce to

P0 = α4
0 αz0 , λ2α2

z0 = α2
0 (74)

and the resulting frequencies are

νa =
√

2ω , (75)

νb,c =
ω√
2

[
4 + 3λ2 ∓

√
16− 16λ2 + 9λ4

]1/2
. (76)

Those values can also be deduced immediately by the Thomas-Fermi-approximation in the Gross-

Pitaevskii equation which was done by Stringari in 1996 [10]. By comparing the results it is possible to

assign the modes described by the di�erent quantum numbers to the calculated frequencies. Separating

the condensates density δn(r, ϑ, ϕ) into a radial and an angle-dependent part

δn(r, ϑ, ϕ) = A(r)Ylm(ϑ, ϕ) (77)

leads to the following oscillation frequency for an isotropic trap:

ν = ω
√

2n2 + 2nl + 3n+ l , (78)

where n denotes the main quantum number and l the quantum number for the angular momentum.

In comparison to that the frequencies (75), (76) calculated for λ = 1 are

νa,b =
√

2ω , νc =
√

5ω . (79)

Thus the comparison leads to identifying the quantum numbers n = 0, l = 2 characterising quadrupole

modes for the a- and b-modes as well as n = 1, l = 0 which denotes a monopole mode for the c-mode.

The other limit P0 → 0 reduces the Gross-Pitaevskii equation to a simple Schrödinger equation. In

this case the frequencies are straight-forward to calculate. The energy levels are given by

En,l = ~ω
(
2n+ l + 3

2

)
, (80)

with the ground state energy E0,0 = 3
2~ω. Thus, the collective frequencies are given by ν = ω(2n+ l).

In the isotropic case the variational ansatz leads to α0 = 1 for P0 = 0. Inserting this in (69), (72), (73)

holds the following results:

νa,b,c = 2ω , (81)

leading to the same quantum numbers as the limit P0 →∞.
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2.4 Discussion

Figure 4: Oscillations modes of the condensate in a cylindrical trap [11].

2.4 Discussion

It may be useful to summarise what has been obtained so far.

The variational ansatz in this section leads to equations of motion for the widths of the condensate that

can be solved in the vicinity of the equilibrium positions for small excitations. As already promised in

the introduction, this resulted in a set of collective oscillation modes. Further examination showed that

there are breathing and stretching modes. There is a certain number of equilibrium points depending

on the interaction parameter P0 which was determined explicitly for spherical symmetry. Stable as

well as unstable solutions can be detected and for a critical value of P0 there is no solution at all.

This observation can be interpreted as a collapse of the condensate for P0 < Pcrit. This phenomenon

has already been discovered in previous studies [17]. Using the de�nition (31) the value Pcrit can be

connected with a critical particle number.

Particular oscillation modes and their frequencies have been found and are illustrated in Figure 4.

The 2D-quadrupole mode a in (64) with the frequency (59), the stretching mode b in (68) with the

frequency (60) and the breathing mode c in (68) with the frequency (60).

In the two limits for the interaction P0 →∞ and P0 → 0 the results are in good agreement with previous

calculations. By inserting the values given in the experiment [16], the stretching mode oscillation

frequency given by (68) can be compared with the Thomas-Fermi limit (76). For the given interaction

strength P0 ' 5 the oscillation frequency is νb ' 9.39 Hz while the Thomas-Fermi limit leads to a

frequency of νb,TF ' 8.70 Hz resulting in a variation of about 8%. Both frequencies are shown in

Figure 5. We observe that the oscillation frequency converges rather slow for increasing P0 against the

Thomas-Fermi limit.

3 Parametric Resonance

In this chapter the application of the parametric resonance to the collective oscillations of the con-

densate in the vicinity of the equilibrium positions will be discussed. This is done for the isotropic

condensate but could be applied to other symmetries as well. The ansatz chosen here is based on the
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3.1 Spherical Trap

Figure 5: Oscillation frequency νb of the stretching mode as a function of the interaction strength P0. The red function
is calculated by (68) while the green constant represents the frequency for the Thomas-Fermi limit (76), both
calculated for the experiment parameters given in Ref. [16].

Mathieu equation

ẍ(t) + [c− 2q cos 2t]x(t) = 0 . (82)

First the dynamics of the condensate have to be rewritten in the form of the Mathieu equation, then

a general solution for the equation and its characteristics can be determined and used to describe the

special case of the condensate.

3.1 Spherical Trap

Again (47) will be used with a spherical trap symmetry, setting λ = 1 and αz0 = α0 . In this case the

constraints for the equilibrium points are given by (44). The potential for small excitations can be

written as

Veff(α0 + δα) = Veff(α0) +
1
2

[
1 +

3
α4

0

+
4P (τ)
α5

0

]
δα2 , (83)

using (35) yields

Veff(α0 + δα) = Veff(α0) +
1
2

[
1 +

3
α4

0

+
4P0

α5
0

+
4P1 cos Ω

ω t

α5
0

]
δα2 . (84)

This leads to the following equation of motion for δα

δα̈(t) +

[
1 +

3
α4

0

+
4P0

α5
0

+
4P1 cos Ω

ω t

α5
0

]
δα = 0 . (85)
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3.2 Pendulum

A rescaling of time

2t′ = Ω
ω , (86)

∂

∂t
=

Ω
2ω

∂

∂t′
, (87)

brings (85) in the form of a Mathieu equation (82):

δα̈(t′) +
4ω2

Ω2

[
5− 1

α4
0

+
4P1 cos 2t′

α5
0

]
δα(t′) = 0 . (88)

Comparing the coe�cients with (82) leads to

c =
4ω2

Ω2

(
5− 1

α4
0

)
, (89)

q = −8P1ω
2

α5
0Ω2

. (90)

3.2 Pendulum

Another application of parametric resonance is a mathematical pendulum with oscillating centre of

rotation. In this case the equation of motion can be linearised for small angles and results in a Mathieu

equation as well. For a centre of rotation that oscillates with frequency Ω and amplitude A the equation

of motion is

ϕ̈(t) +
(
g

l
+
AΩ2

l
cos Ωt

)
sinϕ(t) = 0 , (91)

where l denotes the length of the pendulum and ϕ(t) the angle. In analogy to the condensate in the

spherical trap the equation of motion can be linearised for small oscillations around each equilibrium

position ϕ0 = 0 , π and yields

ϕ̈(t)±
[
g

l
+
AΩ2

l
cos Ωt

]
ϕ(t) = 0 . (92)

Rescaling ϕ(t) = ϕ̃
(

2t′

Ω

)
, t′ = Ωt

2 and comparing with (82) leads to

c = ± 4g
lΩ2

, q = ∓2A
l

(93)

with a positive c for the lower and a negative one for the upper equilibrium position. The parameter

c depends on the frequency Ω of the parametric oscillation, while q characterises the amplitude A.

3.3 Floquet Theory

In order to determine the behaviour of those systems described by the Mathieu equation (82) the

Floquet theory can be used. This will result in a stability diagram depending on the parameters c and
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3.4 Fourier Series

q as well as an equation for the resonance frequencies and a resonance curve corresponding to Figure

2 shown in the introduction. The Floquet theory says that for the Hill equation

ẍ(t) + f(t)x(t) = 0 (94)

with the property f(t) = f(t+ T ), the solution can be written as

x(t) = u(t) eλt, (95)

with u(t) = u(t+ T ).

A similar theorem is often used in solid state physics known as Bloch theorem. The Bloch theorem

makes a statement about the solutions of the Schrödinger equation for a spatially periodic potential.

Due to the solutions being periodic a fundamental system of solutions x1(t), x2(t) can be expressed by(
x1(t+ T )
x2(t+ T )

)
=

(
A11 A12

A21 A22

)(
x1(t)
x2(t)

)
. (96)

Further examination of the Wronski determinant of the fundamental system [14] shows that

det

(
A11 A12

A21 A22

)
= 1 . (97)

3.4 Fourier Series

Making use of the Floquet theory (95) the solutions can be described as a periodic part and a Floquet

factor. Thus they can be expanded into a Fourier series

x(t) =
∞∑

n=−∞
xne

(λ+2in)t . (98)

Inserting (98) in (82) leads to

∞∑
n=−∞

xn
[
(λ+ 2in)2 + c− 2q cos 2t

]
e(λ+2in)t = 0 , (99)

which can be rewritten as

∞∑
n=−∞

{xn[(λ+ 2in)2 + c]− qxn−1 − qxn+1}e(λ+2in)t = 0 . (100)

The equation has to hold for every t and n, so we conclude

xn[(λ+ 2in)2 + c]− qxn−1 − qxn+1 = 0 . (101)
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3.4 Fourier Series

This is a trilinear recurrence relation for the Fourier coe�cients xn. The next step is to use this

recurrence relation in order to �nd a relation between c and q for a given λ. It proves useful to de�ne

a set of ladder operators [19, 20] to describe the relation between adjacent Fourier components:

xn−1 = S−n xn , (102)

xn+1 = S+
n xn . (103)

Using this in (101) yields

[(λ+ 2in)2 + c]xn − q
(
S−n + S+

n

)
xn = 0 , (104)

which can be written as

xn+1 =
1
q
xn[(λ+ 2in)2 + c]− S−n xn . (105)

Changing the indices from n→ n− 1 leads to

xn =
1
q
xn−1[(λ+ 2in)2 + c]− S−n−1xn−1 . (106)

Solving this for xn−1 yields

xn−1 = q {[λ+ 2i(n− 1)]2 + c− qS−n−1}
−1xn . (107)

A comparison with (102) leads to the ladder operator

S−n =
q

[λ+ 2i(n− 1)]2 + c− qS−n−1

. (108)

Similar considerations result in an equation for the other operator

S+
n =

q

[λ+ 2i(n+ 1)]2 + c− qS+
n+1

. (109)

Both results (108), (109) together with (102), (103) can be inserted in the trilinear recurrence relation

(101). Starting from n = 0 leads toλ2 + c− q2

(λ+ 2i)2 + c− q2

(λ+4i)2+c−...

− q2

(λ− 2i)2 + c− q2

(λ−4i)2+c−...

x0 = 0 , (110)

which consists of two continued fractions [20]. Since this equation has to hold even for x0 6= 0 it

connects the parameters λ, q and c.
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3.5 Stability Borders

3.5 Stability Borders

In general solving this problem is quite di�cult. Fortunately, the main interest lies within the stability

of the oscillations for small parametric driving forces, i.e. small q. Thus the problem is to be solved

by restricting it to the stability borders and small amplitudes q. By using (95) and (96) the periodic

solutions of the Hill equation (94) can be written as a linear combination of x1(t) and x2(t):

eλT [c1x1(t) + c2x2(t)] = c1 [A11x1(t) +A12x2(t)] + c2 [A21x1(t) +A22x2(t)] . (111)

Since x1(t) , x2(t) are linear independent of each other, this can be written as(
A11 A21

A12 A22

)(
c1

c2

)
= eλT

(
c1

c2

)
. (112)

The solutions of this eigenvalue problem are given by

e2λT − (A11 +A22) eλT + DetA = 0 , (113)

which, due to (97), is solved by

eλ±T =
TrA±

√
(TrA)2 − 4
2

, (114)

with TrA denoting the trace of the matrix A. By multiplying the two solutions it is easy to see that

λ+ + λ− = 0 . (115)

Combining (115) with (114) results in the stability borders. For TrA > 2 the exponents are real and no

stable solution will be found. The condition TrA < 2 on the other hand leads to imaginary exponents

and thus the stable solutions since the exponential function is bounded for pure imaginary exponents.

For q = 0 the trace of A can be calculated straight-forwardly. With the two fundamental solutions

x1/2(t) = e±i
√
c t and (97) the stability borders can be found at

cn = n2 , (116)

with n being an integer.

Inserting (116) in (93) leads to the resonance frequencies

ωn =
2ω0

n
, (117)

where ω0 is the oscillation frequency of the undisturbed system (for example the linearised pendulum)

for small oscillations. Now that the stability borders are given with λ = ±i
√
c and (116), the continued

fractions in (110) can be expanded at those points up to the desired order in q.
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3.5 Stability Borders

For λ = 0 we obtain

c− 2q2

−4 + c− q2

−16+c−...

= 0 . (118)

This problem can be solved for small q with the ansatz c(q) = a0 + a1q + a2q
2 + ... . Evaluating the

continued fractions by only considering terms up to second order in q leads to

a1q + a2q
2 − 2q2

−4 + a1q + a2q2 + ...
= 0 , (119)

which yields

c0(q, λ = 0) = −1
2q

2 + ... . (120)

The same procedure can be applied for λ = ±i as well as λ = ±2i. The resulting stabilities are

illustrated in Figure 6 and the corresponding functions are [21]:

c−1 = 1− q − 1
8q

2 + ... , (121)

c+
1 = 1 + q − 1

8q
2 + ... , (122)

c−2 = 4− 1
12q

2 + ... , (123)

c+
2 = 4 + 5

12q
2 + ... . (124)

These results are obtained by taking into account the following technical problem. While expanding

the continued fractions, resonances may appear for certain values of λ. Here this phenomenon is shown

by the example of the ansatz c1 = 1 + b1q + b2q
2 + ... inserted in (110) for λ = i:

i2 + 1 + b1q + b2q
2 − q2

(3i)2 + 1 + b1q + b2q2 + ...
− q2

(−i)2 + 1 + b1q + b2q2 + ...
= 0 , (125)

which results in

b1q + b2q
2 +

q2

8 + ...
− q2

b1q + ...
= 0 . (126)

Thus a thorough investigation of the continued fractions for each expansion is necessary in order not

to miss crucial terms.

In the case of the pendulum the values of c > 0 correspond to the stable equilibrium position while the

unstable region with c < 0 corresponds to the upper equilibrium position. For q > 0 this equilibrium

point can be stabilised which can be seen by the functions crossing the x-axis. The expressions derived

for the stability borders and the diagram are now used for the condensate as well. For the condensate

inserting the corresponding expressions for c in (89) and q in (90) in (120) leads to

P1 =

√
α10

0

8

(
1
α4

0

− 5
)

Ω
ω
, (127)
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3.6 Resonance Curves

Figure 6: Stability diagram for the Mathieu equation. The coloured functions are the stability borders (120)�(124)

calculated for small q. The �lled regions denote unstable oscillations.

which describes the relation between modulation frequency Ω and interaction strength P1 for the stabil-

isation of the breathing mode. Inserting the parameters in (116) and using (73) for the eigenfrequency

of the breathing mode it is possible to reproduce (117). Thus the resonances are expected to occur at

twice the eigenfrequency divided by an integer.

3.6 Resonance Curves

In order to compare our �ndings to the experimental results of Figure 2 it is necessary to calculate

the solutions of the Mathieu equation de�ned by (98). Comparing with Section 3.1 shows that the

solutions x(t) correspond to the variation of the variational width parameter δα. Again the plan

is to �rst calculate a general solution for the Mathieu equation and then specialise to the trapped

condensate by inserting the parameter de�nitions (89) and (90). First of all the behaviour of λ for

a �xed q has to be determined. The Floquet exponent λ is given as a function of c and q by (110).

Rewriting this equation and expanding the continued fractions only up to the �rst denominator results

in a polynomial of third grade in λ2:

16c− 8c2 + c3 + 8q2 − 2c q2 + λ2
(
16 + 3c2 − 2q2

)
+ λ4 (8 + 3c) + λ6 = 0 . (128)

Solving this equation by using the Cardano formulas [22] results in 3 solutions for λ2. However, for

q = 0 the solution has to ful�l λ2 = −c. Since the expansion only holds for small q, this condition can

be used to determine the relevant solution. For a �xed q > 0 the squared Floquet exponent becomes
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3.6 Resonance Curves

Figure 7: Imaginary part of λ2 solving (128) as a function of c.

Figure 8: Time signal x/x0 for �xed q = 0.3. The left plot shows a stable oscillation calculated for c = 0.3 while the

function shown in the right plot with c = 1 is divergent. The latter unstable behaviour corresponds to the

Floquet exponent λ shown in Figure 7.

complex around certain values of c. This behaviour is shown in Figure 7.

Choosing the sign when taking the square root determines if the oscillation diverges or converges. The

solution for λ has to be inserted into the Fourier series (98). Around n = 0 this results in

x

x0
= eλt

[
1 + e2i t q

(λ+ 2i)2 + c
+ e−2i t q

(λ− 2i)2 + c

]
. (129)

For a �xed value of q the relative amplitude x
x0

is a function of t and c. With regard to Figure 7 a

resonance is expected to be seen around c = 1. The time signal for this value is plotted in Figure 8

and compared to the time signal for another value of c where λ does not show any odd behaviour.

Since x/x0 is oscillating with di�erent phases for every c it is necessary to determine the maximum in

an appropriate time interval. Evaluating the continued fractions in second and higher orders leads to

polynomials of higher degree in λ2. For every denominator the degree is increased by two, thus the

equations have to be solved numerically. Solving (110) for higher orders and inserting into

x(t) = x0 e
λt
(
1 + e2itS+

1 + e−2itS−1 + ...
)

(130)
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3.6 Resonance Curves

Figure 9: Resonance spectrum for the Mathieu equation calculated by expanding the continued fractions up to the �rst

(left plot) and second denominator (right plot).

Figure 10: Resonance spectrum of the condensate in a spherical trap in �rst and second order. The maximal amplitude

in a time interval is plotted over the modulation frequency.

leads to further resonances at higher values of c corresponding to the integer n due to (117). The

maximal elongation in a speci�c time interval for q = 0.3 has been plotted in Figure 9 over c for

expansion in �rst and second order. The �rst resonance can be seen at c = 1 and corresponds to the

value of n = 1 and the second appears at c = 4, n = 2. In both plots the �rst resonance can be seen.

With a di�erence of less than 5% the height of the resonance peak does not signi�cantly change from

�rst to second order, thus justifying our approximative procedure. Furthermore the drastic di�erence

in the peak heights shows that the �rst resonance is stronger than the second one. It can be expected

that the third resonance is even weaker.

By using (89) and (90) again the amplitude corresponding to the variational width δα becomes a

function of t and Ω since all parameters c, q and λ are functions of Ω. Corresponding to the experiment

the maximum amplitude around a speci�c time-interval has been calculated and plotted over the

relative modulation frequency Ω
ω0

in Figure 10, where the amplitude is shown for an expansion of the

continued fractions up to the second denominator.

Figure 10 corresponds qualitatively to the characteristics of parametric and to observations made

in other applications like the swing, where the resonance e�ect is maximal at twice the oscillation

frequency. Just as in Figure 9 the change in height of the �rst resonance peak between the �rst and
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second order is less than 5%. The factor of height di�erence between the �rst (∼ 6.6) and the second

(∼ 1.6) resonance peak shown in the right plot is about 10. Further resonances are expected to be seen

at lower frequencies due to (117) and could be calculated by further expanding the continued fractions.

Presuming that the height di�erence factor between third and second resonance is about the same as

between second and �rst, it would be impossible to identify any further resonances.

Contrary to Figure 2 the resonance peak at the lower frequency in Figure 10 is much smaller than the

other one, while the experiment data shows a small peak at a high frequency and a big one at the

lower frequency. However, there is a di�erence between the experimental setup and our theoretical

considerations regarding the trap symmetry. While the theoretical studies of this work are based on

the breathing mode of the condensate con�ned by a spherical trap in the experiment a quadrupole

mode of a cylindrical condensate was examined, the latter depends crucially on the anisotropy of the

condensate. It remains to be investigated whether the qualitative di�erences between the resonance

spectra of Figures 2 and 10 are really due to the di�erent trap geometries.

4 Summary and Conclusion

In this work the dynamics of a trapped Bose-Einstein condensate have been studied by using a vari-

ational approach [11]. Additionally the phenomenon of parametric resonance has been discussed and

a general approach for studying systems with dynamics that can be expressed by a Mathieu equation

has been introduced. While parametric resonance is a common phenomenon with applications such

as the Paul trap or the acceleration of a swing, it has not been successfully used for a stabilisation or

destabilisation of the condensates collective oscillations until now.

The current experiment led by V.S. Bagnato and R.G. Hulet [16] is a �rst step in this direction.

Due to the complexity of the problem the results presented in this work have been calculated for a

spherical trap. In the experiment, however, a cylindrical trap is used, which might be the reason for the

di�erences between the resonance spectra presented in Figure 2 and Figure 10. The resonance curve

calculated by solving the Mathieu equation clearly shows the expected characteristics of parametric

resonance, a main peak at twice the eigenfrequency and smaller peaks at smaller frequencies de�ned

by (117). In the experimental data for the cylindrical trap the peak heights are interchanged which

contradicts not only the calculations in this work but also the results for other parametric driven

systems such as the swing. In order to study this discrepancy the approach made here has to be

generalised for cylindrical symmetry which leads to matrix-valued continued fractions [20].
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