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1 Introduction

One of the most general theories available to describe statistical systems out of but close
to thermodynamic equilibrium is the Kubo formalism. This theory covers a variety of
physical problems that can be treated in the context of linear response theory. Some of
them are, for instance, discussed in the original paper by Kubo [1]. A major advantage of
the Kubo formalism lies in the fact that the non-equilibrium system can be characterized
solely via calculations in thermal equilibrium.

The fundamental concept of linear response theory is to construct a linear input-output
relationship, or more precise a relation between an external effect and a corresponding
reaction of the system. A primal result of the Kubo formalism is that the reaction of
the system can be expressed as a convolution between the external modulation and a
so called response function. Therefore, by definition, response functions do not depend
on the external modulation, but rather correspond to material properties of the system
itself. Physical quantities, defined through response functions, are often referred to as
susceptibility or impedance as e.g. in electromagnetism.

Although in the Kubo formalism all calculations of response functions are performed
at thermal equilibrium, analytic solutions may not exist or require tremendous effort.
To account for these circumstances, a frequently used method to investigate response
functions are sum rules. The latter provide a method to express the moments of the
response function via nested commutators which may provide more accessible results. The
moments can then be used to characterize or approximatively reconstruct the function.
Sum rules have, for instance, been utilized to explore giant resonances in nuclei [2, 3]
where the corresponding modes have been observed experimentally [4].

In this work we turn our focus to the vivid field of ultracold quantum gases that
provide a promising playground for both theoretical and experimental physics. One of
the observable phenomena in trapped ultracold quantum gases are collective motions of
the gas, which can be excited via a modulation of the trap frequency [5] or via Feshbach
resonance [6, 7]. Since the very beginning of the experimental realization of Bose-Einstein
condensates in 1995 [8, 9] the physical properties of the system have been explored by the
measurements of these collective oscillations [10, 11] and have been found to be in good
agreement with the theoretical predictions [12]. Subsequently measurements of oscillation
frequencies with high precision have been achieved [13]. Consequently, time dependent
phenomena like collective excitations as well as the time-of-flight expansion of a condensate
are subjects of thorough experimental and theoretical studies.

The main goal of this work is to derive a method to estimate the lowest excitation energy
in ultracold quantum gases at zero temperature using sum rules. This method has been
presented by Stringari [14], but no detailed derivation has been found available in the
present literature. Therefore, a comprehensive derivation of the sum-rule approach is
performed. First of all in Section 2 the foundation of the Kubo formalism is presented and
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1 Introduction 2

general application-oriented expressions like the sum rules are derived in a general context.
In Section 3 we proceed with the relation of the Kubo formalism to correlation functions.
These considerations lead to a profound result which is well known as the fluctuation
dissipation theorem and can be easily proven in the context of the Kubo formalism. The
mathematical expressions derived in this section will also enable us to construct estimates
which are relevant for elementary excitations. In Section 4 the derived expressions will
be applied to a generic case of elementary excitations in ultracold quantum gases at zero
temperature.

A main result of this thesis is that, by applying the sum-rule approach, rather general
expressions are derived for the estimation of specific elementary excitation energies. The
obtained expressions consist only of the particular ground-state energies of the system,
which are the kinetic, the trapping and the interaction energy. At once these expressions
hold for any dimension and any underlying quantum statistics and are directly applicable
for an important class of potentials. However, the respective ground-state energies have to
be calculated separately for every specific many-body quantum system. This is exemplarily
done by numerical calculations for an interacting Bose gas and a dipolar Fermi gas.

Additionally virial identities for the involved ground-state energies are discussed. These
identities allow to reduce the effort required to calculate the ground-state energies. They
further enable us to analytically discuss different physical limits. Finally, in Section 5 the
quality of the results obtained and the general limits of the method are discussed.



2 Linear Response Theory

This section is devoted to a comprehensive discussion of the fundaments of the Kubo
formalism. Furthermore, the method of sum rules will be discussed. We will mostly focus
on the derivation of identities which are relevant for the development of further methods
in the following sections.

2.1 System of Interest

We consider a system governed by a Hamiltonian H0 which is not time dependent. If we
regard a statistical system at finite temperature, all eigenstates |ψi〉 of H0 have a certain
probability pi to be occupied. In general, this is described through the density matrix

ρ := ∑
i

pi |ψi〉 〈ψi| . (2.1)

The expectation value of an operator G can then be written as

〈G〉 = Tr ρG , (2.2)

where Tr G denotes the trace of an operator G. The system rests in thermal equilibrium
until a time t0, where a time dependent perturbation is switched on. The fact that prior to
time t0 the system is in equilibrium plays a crucial role for our theory.

We require that the time dependence of the perturbation Hamiltonian can be split into
the product of a c-number f (t) and a time independent operator B. Thus the perturbed
Hamiltonian takes the form

Ht = H0 − B f (t) . (2.3)

Thereby the subscript ·t denotes the explicit time dependence of an operator. Apparently
the Hamiltonian Ht has the structure of many systems realized in experiments where a
quantity of the system is modulated with time. The form B f (t) is often said to represent
an operator B that couples to an external field f (t).

2.2 Basics of Quantum Mechanical Formulation

We temporarily introduce the superscripts ·S , ·H and ·I for operators in the Schrödinger,
Heisenberg and Interaction picture. The full Hamiltonian (2.3) then reads

HS
t = HS

0 − BS f (t) . (2.4)

First we briefly review the Heisenberg picture. The main requirement for different
representations of quantum mechanics is that expectation values of operators must remain
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2 Linear Response Theory 4

picture independent. We know that the time evolution of a pure state in the Schrödinger
picture is given by

|ψ(t)〉 = U(t, t0) |ψ〉 , (2.5)

where U(t, t0) is a unitary operator that fulfills the Schrödinger equation. The ket |ψ〉 :=
|ψ(t0)〉 denotes the static solution of the Schrödinger equation at time t0. In the Heisenberg
picture the observables rather than the states carry the time dependence

〈ψ(t)|GS |ψ(t)〉 = 〈ψ|U†(t, t0)GSU(t, t0)|ψ〉 = 〈ψ|GH(t)|ψ〉 . (2.6)

As the expectation value should be independent of the picture, one finds that an observable
GHt (t) must fulfill the Heisenberg equation

dGHt
dt

(t) =
i
h̄
[HS

t , GHt (t)] +
∂GHt
∂t

(t) . (2.7)

Since Ht(t) commutes with itself, we have the general result

dHH
t

dt
(t) =

∂HH
t

∂t
(t) . (2.8)

For operators that are not explicitly time dependent the Heisenberg equation reads

dGH

dt
(t) =

i
h̄
[HS

t , GH(t)] . (2.9)

If we look at the expectation value of a many-particle system, we notice that the density
matrix (2.1) in the Schrödinger picture carries the time dependence as the states evolve
with time. This time dependence is defined by the Von Neumann equation

dρS

dt
(t) = − i

h̄
[HS

t (t), ρS(t)] . (2.10)

As in the Heisenberg picture the states do not depend on time, the density matrix ρH also
does not depend on time. Instead the operator GH(t) includes the full unitary transforma-
tion U(t, t0).

In order to deal with the difficulties of time dependent systems, we introduce a further
representation of quantum mechanics. For systems with a time independent Hamiltonian
HS

0 the time evolution of states is simply given by

U(t, t0) = U0(t− t0) := e−iH0(t−t0)/h̄ . (2.11)

To include this result in the theory of time dependent systems we define the operator
U1(t, t0) that fulfills the equation

U(t, t0) =: U0(t− t0)U1(t, t0) . (2.12)

Now we can distribute the time evolution to both the states and the observables via

GI(t) = U†
0 (t− t0)GSU0(t− t0) , (2.13)

|ψI(t)〉 = U1(t, t0) |ψ〉 . (2.14)
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We refer to this representation as the Interaction picture. In general every split-up of the
full Hamiltonian Ht = H0 + H1t defines such a separate Interaction picture. As we have
already defined U0(t− t0) to be based on HS

0 , we have

HS
1 t = −BS f (t) . (2.15)

Observables G(t) have to fulfill the modified Heisenberg equation of motion

dGIt
dt

(t) =
i
h̄
[HS

0 , GIt (t)] +
∂GIt
∂t

(t)

=
i
h̄

U†
0 (t− t0)[HS

0 , GSt ]U0(t− t0) + U†
0 (t− t0)

∂GSt
∂t

U0(t− t0)

=
i
h̄
[HS

0 , GSt ]
I (t) +

(
∂GSt
∂t

)I
(t) (2.16)

and respectively the simplified equation

dGI

dt
(t) =

i
h̄
[HS

0 , GS ]I (t) (2.17)

for observables that are not explicitly time dependent.
Aside from solving the equilibrium system the problem has now been squeezed to the

calculation of the operator U1(t, t0). From the requirement that U(t, t0) has to fulfill the
Schrödinger equation, one easily finds that U1(t, t0) also has to fulfill the Schrödinger
equation

ih̄
∂

∂t
U1(t, t0) = HI

1 t(t)U1(t, t0) , (2.18)

which has the formal solution

U1(t, t0) = T exp

− i
h̄

t∫
t0

HI
1(t
′)dt′

 , (2.19)

where T denotes the time ordering superoperator [15].

2.3 Response Functions

In this section we develop a theory for a first-order approximation of equation (2.19) also
referred to as Kubo formalism. The derivations mostly follow the approaches of the textbooks
[15, 16] which are mainly based on the original work of Kubo [1].

2.3.1 Derivation

As previously discussed, the introduction of the Interaction picture squeezes the difficulties
of systems with explicit time dependence to the calculation of the time evolution operator



2 Linear Response Theory 6

U1(t, t0). We found that this operator has the formal solution (2.19). The expansion in
powers of H1t yields

U1(t, t0) = Id− i
h̄

t∫
t0

HI
1 t(t

′)dt′ +O
(

HI
1

2
t
)

. (2.20)

As from now on we will only consider first-order approximations, most of the equal signs
imply this approximation, hence we write

U1(t, t0) = Id− i
h̄

t∫
t0

HI
1(t
′)dt′ . (2.21)

As already stated before, it plays a crucial role that the system is in thermal equilibrium
prior to the time t0. To implement the features of the system in equilibrium, we define the
equilibrium average

〈G(t)〉eq := Tr ρHGI(t) . (2.22)

Here only the time evolution U0(t− t0) is involved which is explicitly given by equation
(2.11). To distinguish the equilibrium average from averages at any time t, we denote the
latter by 〈G(t)〉ne ≡ 〈G(t)〉.

We now turn to the effects of the perturbation namely the effects on an arbitrary operator
A. To observe how the expectation value of A changes in time, we define the deviation
from equilibrium via

δ〈A(t)〉 := 〈A(t)〉ne − 〈A(t)〉eq . (2.23)

To calculate this quantity, we explicitly write out the non-equilibrium expectation value. In
the framework of our first-order approximation we obtain

〈A(t)〉ne = Tr ρH

1 +
i
h̄

t∫
t0

HI
1(t
′)dt′

 AI(t)

1− i
h̄

t∫
t0

HI
1(t
′)dt′


= Tr ρHAI(t) +

i
h̄

Tr ρH
t∫

t0

[
AI(t), BI(t′)

]
f (t′)dt′

+
1
h̄2 Tr ρHAI(t)

 t∫
t0

BI(t′) f (t′)dt′

2

. (2.24)

The last term arising is of second order in HI
1 t and has to be neglected in first-order

perturbation theory. The other terms can be identified as equilibrium averages as defined
in (2.22). We thus write

〈A(t)〉ne = 〈A(t)〉eq +
i
h̄

t∫
t0

〈[
AI(t), BI(t′)

]〉
eq f (t′)dt′ (2.25)
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or in terms of the deviation of A(t)

δ〈A(t)〉 = i
h̄

t∫
t0

〈[
AI(t), BI(t′)

]〉
eq f (t′)dt′ . (2.26)

We define the arising equilibrium average as the response function

χ′′AB(t, t′) :=
1

2h̄
〈[

AI(t), BI(t′)
]〉

eq . (2.27)

The deviation in terms of the response function reads

δ〈A(t)〉 = 2i
t∫

t0

χ′′AB(t, t′) f (t′)dt′ . (2.28)

We notice that the response function (2.27) does not depend on f (t) in any way. Rather it
is constructed from the equilibrium configuration of the system and from the information
that the quantity B is perturbed and the effects on the quantity A are observed. The
response function therefore represents properties of the considered equilibrium system
only and hence is often related to material constants and similar quantities.

2.3.2 General Properties

We now proof some important properties of the response function (2.27). It is clear that the
properties of χ′′AB are only governed by the involved operators H, A and B in the Interaction
picture. We will therefore use the notation G(t) := GI(t) and G := GI(t0) = GS .

We first state that χ′′AB(t, t′) does only depend on time differences t− t′. Looking at the
definition

χ′′AB(t, t′) =
1

2h̄
〈[

A(t), B(t′)
]〉

eq =
1

2h̄

[〈
A(t)B(t′)

〉
eq −

〈
B(t′)A(t)

〉
eq

]
(2.29)

we analyze the equilibrium average〈
A(t) B(t′)

〉
eq = Tr ρ A(t)B(t′)

= Tr ρ U†
0 (t− t0)AU0(t− t0)U†

0 (t
′ − t0)BU0(t′ − t0)

= Tr ρ U0(t′ − t0)U†
0 (t− t0) A U0(t− t0)U†

0 (t
′ − t0) B , (2.30)

where we used the cyclic invariance of the trace and assumed that H0 is Hermitian and
therefore commutes with ρ. Using the explicit form of U0(t− t0) from equation (2.11) we
obtain

U0(t− t0)U†
0 (t
′ − t0) = U0(t− t′) . (2.31)

Thus, equation (2.30) can be written as〈
A(t) B(t′)

〉
eq = Tr ρU0(t− t′)† AU0(t− t′) B

= Tr ρA(t− t′) B =
〈

A(t− t′) B
〉

eq . (2.32)
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We therefore can rewrite the response function as a function of the time difference t− t′

only

χ′′AB(t− t′) =
1

2h̄

[〈
A(t− t′)B

〉
eq −

〈
BA(t− t′)

〉
eq

]
, (2.33)

which also implies that the response function is invariant under time translations.
Keeping in mind, that the response function always depends on a time difference t− t′,

we write χ′′AB(τ) for simplicity in the following, where τ has to be replaced by t− t′ for
explicit calculations again.

Applying the cyclic invariance of the trace in equation (2.32) we can also move the time
dependence from one operator to the other in the form

〈A(τ)B〉eq = 〈AB(−τ)〉eq . (2.34)

This result can now be used to calculate the symmetry property

χ′′AB(−τ) =
1

2h̄

[
〈A(−τ)B〉eq − 〈BA(−τ)〉eq

]
=

1
2h̄

[
〈AB(τ)〉eq − 〈B(τ)A〉eq

]
= −χ′′BA(τ) . (2.35)

We further compute the complex conjugation of the response function. Using the definition
of the density matrix (2.1) we find

χ′′∗AB(τ) =
1

2h̄
Tr [BρA(τ)− A(τ)ρB]∗

=
1

2h̄ ∑
i,j

pj

[
〈i|B|j〉∗ 〈j|A(τ)|i〉∗ − 〈i|A(τ)|j〉∗ 〈j|B|i〉∗

]
=

1
2h̄ ∑

i,j
pj

[
〈i|A†(τ)|j〉 〈j|B†|i〉 − 〈i|B†|j〉 〈j|A†(τ)|i〉

]
= −χ′′A†B†(τ) . (2.36)

This result becomes more important if we consider the case that A and B are observables.
In that case A, B are Hermitian and the identity (2.36) trivially reduces to

χ′′∗AB(τ) = −χ′′AB(τ) . (2.37)

From this identity we can conclude that the response function must be purely imaginary
in case of Hermitian operators.

2.3.3 Fourier Transform

In order to analyze the frequency spectrum of the response function, we define the Fourier
transform

χ̃′′AB(ω) :=
∞∫
−∞

χ′′AB(τ) eiωτ dτ , (2.38)

as well as the corresponding inverse Fourier transform

χ′′AB(τ) :=
1

2π

∞∫
−∞

χ̃′′AB(ω) e−iωτ dω . (2.39)
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For the derivation of equations (2.33) and (2.35) we only used linear operations. Therefore
these identities also hold for χ̃′′AB(ω), as the Fourier transformation only affects the isolated
time dependence of the operator A(τ). Namely we have

χ̃′′AB(ω) =
1

2h̄

[
〈A(ω)B〉eq − 〈BA(ω)〉eq

]
(2.40)

and

χ̃′′AB(−ω) = −χ̃′′BA(ω) . (2.41)

Furthermore, if A, B are Hermitian we can use identity (2.37) to obtain

χ̃′′∗AB(ω) =

∞∫
−∞

(
eiωτ

)∗
χ′′∗AB(τ)dτ = −

∞∫
−∞

e−iωτχ′′AB(τ)dτ = −χ̃′′AB(−ω) . (2.42)

Next we write down the response function in a more explicit form to finally obtain a
different representation of its Fourier transform. Using identity (2.34) and the definition
(2.1) we find

χ′′AB(τ) =
1

2h̄
Tr ρ [A(τ)B− BA(τ)]

=
1

2h̄ ∑
m,i

pm 〈i|m〉 [〈m|A(τ)B|i〉 − 〈m|B(−τ)A|i〉]

=
1

2h̄ ∑
m

pm [〈m|A(τ)B|m〉 − 〈m|B(−τ)A|m〉]

=
1

2h̄ ∑
m,n

pm [〈m|A(τ)|n〉 〈n|B|m〉 − 〈m|B(−τ)|n〉 〈n|A|m〉] . (2.43)

In the last line we introduced intermediate states Id = ∑n |n〉 〈n|. We choose all states |n〉
to be eigenstates of the unperturbed Hamiltonian HS

0 with eigenvalues En = h̄ωn. Inserting
the Interaction picture time dependence U0(τ) of the operators A, B we obtain

χ′′AB(τ) =
1

2h̄ ∑
m,n

pm

[
〈m|eiH0τ/h̄ Ae−iH0τ/h̄|n〉 〈n|B|m〉

− 〈m|e−iH0τ/h̄BeiH0τ/h̄|n〉 〈n|A|m〉
]

=
1

2h̄ ∑
m,n

pm

[
〈m|eiωmτ Ae−iωnτ|n〉 〈n|B|m〉

− 〈m|e−iωmτBeiωnτ|n〉 〈n|A|m〉
]

. (2.44)

With this rather explicit expression we are now in the position to calculate the Fourier
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transform to

χ̃′′AB(ω) =
1

2h̄

∞∫
−∞

eiωτχ′′AB(τ)dτ

=
1

2h̄ ∑
m,n

pm

[
〈m|A|n〉 〈n|B|m〉

∞∫
−∞

ei(ω−ωnm)τ dτ

− 〈m|B|n〉 〈n|A|m〉
) ∞∫
−∞

ei(ω+ωnm)τ dτ

]

=
π

h̄ ∑
m,n

pm

[
〈m|A|n〉 〈n|B|m〉 δ(ω−ωnm)

− 〈m|B|n〉 〈n|A|m〉 δ(ω + ωnm)

]
. (2.45)

Here the abbreviation ωnm := ωn −ωm is used. Apparently the frequency spectrum of the
response function consists of sharp peaks at ±ωnm.

2.4 Dynamic Susceptibility

In this section some essential tools of the Kubo formalism will be briefly outlined. To this
end we turn back to the point where we have defined the response function. We found in
(2.28) that the deviation from equilibrium in first oder is given by

δ〈A(t)〉 = 2i
t∫

t0

χ′′AB(t− t′) f (t′)dt′ . (2.46)

The next aim is to extend the lower and upper boundary of the integral to minus and plus
infinity. We recall that the system is in equilibrium prior to the disturbance induced by the
external field f (t). Therefore, we assume that f (t) is chosen such that it is zero until time
t0 and replace the lower boundary by −∞. To replace the upper boundary by +∞ we have
to adjust the integrand such that it vanishes for all times t′ > t. We do so by introducing
the dynamic susceptibility

χAB(t− t′) := 2i θ(t− t′) χ′′AB(t− t′) , (2.47)

where θ denotes the Heaviside step function. The definition of the dynamic susceptibility
can be interpreted as an explicit implementation of causality [16]. The deviation (2.46) can
then be written in terms of the dynamic susceptibility

δ〈A(t)〉 =
∞∫
−∞

χAB(t− t′) f (t′)dt′ = (χAB ∗ f )(t) , (2.48)

where (· ∗ ·)(t) denotes the convolution of two functions.
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Although the definition of the dynamic susceptibility was at first technically motivated,
the Fourier transform gives rise to a further physical interpretation. Using the convolution
theorem we find

δ〈A(ω)〉 = χ̃AB(ω) f (ω) . (2.49)

This means that if we observe the deviation δ〈A(ω)〉 for a perturbation with the known fre-
quency spectrum f (ω), we can measure the Fourier transform of the dynamic susceptibility
χ̃AB(ω).

Next we relate the Fourier transforms χ̃AB(ω) and χ̃′′AB(ω) in a direct manner. Using the
integral representation of the Heaviside step function

θ(x) = lim
η ↓ 0

1
2πi

∞∫
−∞

eixγ

γ− iη
dγ , (2.50)

the dynamic susceptibility reads

χ̃AB(ω) = lim
η ↓ 0

1
π

∞∫∫
−∞

eiτγ

γ− iη
eiωτχ′′AB(τ)dγ dτ . (2.51)

We express χ′′AB(τ) in terms of its Fourier transform χ̃′′AB(ω) by using the inverse Fourier
transform. Then we have

χ̃AB(ω) = lim
η ↓ 0

1
2π2

∞∫∫
−∞

1
γ− iη

χ̃′′AB(ω
′′)

∞∫
−∞

eit(γ+ω−ω′′) dt dω′′dγ , (2.52)

where the integration over τ yields 2π δ(γ + ω−ω′′). This enables us to also execute the
integration over γ. Finally we obtain

χ̃AB(ω) = lim
η ↓ 0

1
π

∞∫
−∞

χ̃′′AB(ω
′′)

ω′′ −ω− iη
dω′′ . (2.53)

We will turn back to this identity later on.
A spectral representation can be obtained by inserting the equation (2.45) into equation

(2.53) yielding

χ̃AB(ω) = lim
ε ↓ 0

1
h̄

∞∫
−∞

∑
m,n

pm

(
〈m|A|n〉 〈n|B|m〉 δ(ω′′ −ωnm)

ω′′ −ω− iη

− 〈m|B|n〉 〈n|A|m〉 δ(ω′′ −ωmn)

ω′′ −ω− iη

)
dω′′

= − lim
ε ↓ 0

1
h̄ ∑

m,n
pm

(
〈m|A|n〉 〈n|B|m〉

ω−ωnm + iη
− 〈m|B|n〉 〈n|A|m〉

ω−ωmn + iη

)
. (2.54)

This expression can be used as a starting point for explicit calculations as is e.g. done for
Bose–Einstein condensates [17].
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Using methods of complex analysis and distribution theory it can be shown that the
Fourier transform of the dynamic susceptibility can be written in the form

χ̃AB(ω) = χ̃′AB(ω) + i χ̃′′AB(ω) , (2.55)

where χ̃′′AB(ω) is the previously discussed response function. Both χ̃′AB(ω) and χ̃′′AB(ω) can
be shown to be real. This leads to the conclusion that χ̃′′AB(ω) represents the dissipative part
of the dynamic susceptibility. The underlying mathematics and derivations are extensively
discussed in Ref. [18] as well as the specific requirements to the involved functions that
have to be regarded. A comprehensive summary of statical physics including the Kubo
formalism can be found in Ref. [19].

2.5 Sum Rules

In this section we develop a simplified method to calculate the energy weighted moments
of the response function’s Fourier transform

v
(n)
AB :=

1
π

∞∫
−∞

(h̄ω)nχ̃′′AB(ω)dω . (2.56)

Inserting the spectral representation (2.45) we immediately obtain

v
(n)
AB =

1
h̄ ∑

m,l
pl (h̄ωlm)

n [〈m|A|l〉 〈l|B|m〉 − (−1)n 〈m|B|l〉 〈l|A|m〉] . (2.57)

The moments of a function can be used to explore its distribution characteristics. Also
the moments of a function represent the coefficients of the corresponding Laurent series
and, in principle, enable us to approximately reconstruct the function in the radius of
convergence around ω = 0.

In order to obtain a direct way to calculate the nth moment of χ̃′′AB(ω), we rewrite the
definition (2.56) in the terms of the nth time derivative as

(−i)nv
(n)
AB =

h̄n

π

∞∫
−∞

dn

dtn e−iω(t−t0) χ̃′′AB(ω)dω

∣∣∣∣
t=t0

= 2h̄n dn

dtn χ′′AB(t)
∣∣∣∣
t=t0

. (2.58)

For the second equal sign we have identified the inverse Fourier transform (2.39) of the
response function at time t0. Inserting the definition of χ′′AB(t) from equation (2.33) we
obtain

(−i)nv
(n)
AB = h̄n−1 dn

dtn 〈[A(t), B]〉eq

∣∣∣∣
t=t0

= h̄n−1
〈[

dn A
dtn (t0), B

]〉
eq

. (2.59)

We now have reduced the calculation of the nth moment to a calculation of the nth time
derivative of the operator A in the Heisenberg representation. We confine our theory to
observable operators A, B that are not explicitly time dependent. The Interaction picture
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Heisenberg equation is given by (2.17). Using this equation we first calculate the second
derivative of A(t) at time t0

d2A
dt2 =

i
h̄

[
H0,

dA
dt

]
=

i2

h̄2 [H0, [H0, A]] . (2.60)

We recall that per definition operators without time argument have to be evaluated at time
t0 i.e. dG/dt ≡ dG/dt|t0 .

Accordingly, we can write the nth derivative as the n-fold commutator

dn A
dtn =

in

h̄n [H0, · · · [H0, · · · [H0, A] · · · ] · · · ]] , (2.61)

where H0 appears n times in front of the operator A. In order to obtain the same prefactor
as in equation (2.59), the anticommutativity of the commutator is used to get

dn A
dtn =

(−i)n

h̄n [[· · · [· · · [A, H0] · · · , H0] · · · , H0] . (2.62)

Combining equations (2.59) and (2.62) we finally have

v
(n)
AB =

1
h̄
〈[[· · · [· · · [A, H0] · · · , H0] · · · , H0], B]〉eq =

1
h̄
〈[Ln A, B]〉eq , (2.63)

where we introduced the superoperator

LG := [G, H0] . (2.64)

Like equation (2.57) this representation of the function’s moments does not include any
operators in Fourier space. Also all the calculations take place at time t0 or, in other words,
only Schrödinger picture operators and states are involved.

We also present a slightly different way to calculate the moments that often allows for
the calculation of moments in the first place. Rewriting equation (2.59) we find

(−i)nv
(n)
AB = h̄n−1 dn

dtn 〈[A(t), B]〉eq

∣∣∣∣
t=t0

= h̄n−1 dn

dtn

[
〈A(t) B〉eq − 〈BA(t)〉eq

]∣∣∣∣
t=t0

= h̄n−1 dn−k

dtn−k

[〈
dk A
dtk (t) B

〉
eq
−
〈

B
dk A
dtk (t)

〉
eq

]∣∣∣∣∣
t=t0

, (2.65)

where we moved k of n time derivatives into the average. The idea is now to shift the
time dependence from the time derivatives of A to the operator B and then calculate the
n− k remaining time derivatives. Corresponding to equation (2.34) we can shift the time
dependence to the operator B, if the time derivatives of A(t) give a valid Interaction picture
operator as defined via (2.13). This can be easily verified by looking at the Heisenberg
equation (2.17). Therefore we can write

(−i)nv
(n)
AB = h̄n−1(−1)l

[〈
dk A
dtk

dl B
dtl (t)

〉
eq
−
〈

dl B
dtl (t)

dk A
dtk

〉
eq

]∣∣∣∣∣
t=t0

, (2.66)
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where we introduced the abbreviation l := n− k. The minus signs in front arise from the
fact that we have to take the time derivatives of B(−t). Inserting equation (2.62) and using
the definition (2.64), the nth moment reads

v
(n)
AB =

1
h̄
(−1)l

[〈(
Lk A

) (
Ll B

)〉
eq
−
〈(

Ll B
) (

Lk A
)〉

eq

]
. (2.67)

Until now we only dealt with positive moments and the zeroth moment. For negative
moments the time derivatives in (2.59) become inverse operators of the time derivative. We
take the Heisenberg equation for an operator F and act with the inverse time derivative on
both sides of the equation to obtain

F =
i
h̄

d−1

dt−1 [H0, F] . (2.68)

If we require that
i
h̄
[H0, F] = A (2.69)

we have to solve equation (2.69) to find the operator F that gives the inverse time derivative
of A. This concept can be easily generalized to further negative moments. But equation
(2.69) is hardly solvable for practical purposes [17].

However, applications of the sum-rule formalism can be found in Refs. [15–17]. A slightly
different form of sum rules and their application will be discussed below in Section 3.1.2.



3 Correlation Functions and Related Estimates

In this section we will turn to the field of correlation functions. We will briefly discuss the
properties of these functions and relate them to the response functions. Finally we will use
the obtained identities to derive estimates between moments of the correlation function at
zero temperature.

3.1 Correlation Functions

In the following we will define correlation functions and treat them in a similar manner
as the response functions in Section 2.3 and also derive sum rules as in Section 2.5. In
addition, we will derive the seminal fluctuation dissipation theorem.

3.1.1 Definition and Relation to Linear Response Theory

A further approach to deal with time dependent quantum mechanical systems is to consider
time correlation functions of the form

CAB(t, t′) := 〈A(t)B(t′)〉eq . (3.1)

Again we use the convention that G(t) denotes an operator in the Interaction picture and G
in the Schrödinger picture. An important example of a correlation function is the dynamic
structure factor which is essential in scattering theory [16]. Although the calculation and
interpretation of correlation functions represents a huge area of modern physics, we restrict
ourselves to some specific properties of these functions.

Obviously the response function, as defined in (2.27), can be expressed in terms of
correlation functions via

χ′′AB(t, t′) =
1

2h̄
[
CAB(t, t′)− CBA(t′, t)

]
. (3.2)

This result is very instructive as we can read off that the operators A(t) and B(t) have to
be time correlated to obtain a nonzero response function. In other words, the deviation
δ〈A(t)〉 is zero if A(t) and B(t) are not correlated in time.

The calculations performed in Sections 2.3.2 and 2.3.3 can be used to derive similar
identities for correlation functions, i.e. we find

CAB(t, t′) = CAB(t− t′) = CAB(τ) . (3.3)

For the Fourier transform

C̃AB(ω) :=
∞∫
−∞

CAB(τ) eiωτ dτ , (3.4)

15
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we obtain
C̃∗AB(ω) = C̃B† A†(ω) . (3.5)

In a similar calculation as for equation (2.45) we find the spectral representation

C̃AB(ω) = 2π ∑
m,n

pm 〈m|A|n〉 〈n|B|m〉 δ(ω−ωnm) (3.6)

with ωnm := ωn −ωm. For a Hermitian operator A and choosing A = B we have

C̃A(ω) = 2π ∑
m,n

pm |〈m|A|n〉|2 δ(ω−ωnm) . (3.7)

We notice that the summands take the form of Fermi’s golden rule [20].

3.1.2 Sum Rules

In Section 2.5 we developed a way to calculate the moments of the response function also
referred to as sum rules. Again we can trivially adopt the result to correlation functions.
To this end we define the nth energy weighted moment of the correlation function

m(n)
AB :=

1
2π

∞∫
−∞

(h̄ω)nC̃AB(ω)dω . (3.8)

The equivalent result to equation (2.67) reads

m(n)
AB = (−1)l

〈(
Lk A

) (
Ll B

)〉
eq

, (3.9)

with arbitrary k, l ∈ Z, where k + l = n and again LG := [G, H0].
Next we consider the special case that A = B. We rewrite equation (3.9) by combining

two different choices of k, l. First in the form as written down in equation (3.9) and second
with k, l interchanged. The nth energy weighted moment then reads

m(n)
A =

1
2
(−1)l

[〈(
Lk A

) (
Ll A

)〉
eq
+ (−1)k+l

〈(
Ll A

) (
Lk A

)〉
eq

]
. (3.10)

Thus, the odd moments of the correlation function are given via the commutator

m(n)
A =

1
2
(−1)l

〈[
Lk A,Ll A

]〉
eq

, (3.11)

and the even moments via the anticommutator

m(n)
A =

1
2
(−1)l

〈{
Lk A,Ll A

}〉
eq

. (3.12)

The specific result (3.11) has been presented in the context of nuclear excitations [2].
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3.1.3 Identities in Canonical Ensemble

In this section we examine correlation functions with the specific density matrix of the
canonical ensemble. This density matrix reads

ρ =
e−βH0

Z
, (3.13)

where 1/β := kBT is the inverse temperature and Z denotes the partition function

Z := Tr e−βH0 . (3.14)

Inserting the density matrix into the definition of the correlation function (3.1) we find

CAB(τ) = Tr ρ U†
0 (τ)A(τ)U0(τ) B

=
1
Z

Tr e−βH0 eiH0τ/h̄ Ae−iH0τ/h̄eβH0e−βH0 B

=
1
Z

Tr eiH0(τ+ih̄β)/h̄ Ae−iH0(τ+ih̄β)/h̄e−βH0 B . (3.15)

If we now allow the time to be complex, we can identify the time evolution operator
U0(τ + ih̄β) that transforms A to the Interaction picture at the corresponding complex
time. Using the same arguments as for equation (2.32), we obtain the identity

CAB(τ) = Tr e−βH0 BA(τ + ih̄β) = 〈B(−τ − ih̄β)A〉eq = CBA(−τ − ih̄β) . (3.16)

Combining the identities above and inserting twice the definition of the Fourier transform,
we obtain

C̃AB(ω) =

∞∫
−∞

eiωτ CAB(τ)dτ =

∞∫
−∞

eiωτ CBA(−τ − ih̄β)dτ

=

∞∫
−∞

eiωτ 1
2π

∞∫
−∞

e−iω′(−τ−ih̄β)C̃BA(ω
′)dω′ dτ

=

∞∫
−∞

e−h̄ω′βC̃BA(ω
′)

1
2π

∞∫
−∞

eiτ(ω+ω′) dτ dω′

=

∞∫
−∞

e−h̄βω′CBA(ω
′) δ(ω + ω′)dω′ = eh̄βωC̃BA(−ω) , (3.17)

taken together
C̃AB(ω) = eh̄βωC̃BA(−ω) . (3.18)

This identity has a similar form as equation (2.41) for the response function’s Fourier
transform, which can not be obtained for correlation functions.
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3.2 Fluctuation-Dissipation Theorem

We already discussed the relation between correlation and response functions. The identity
(3.2) also holds for the Fourier transforms

χ̃′′AB(ω) =
1

2h̄
[
C̃AB(ω)− C̃BA(−ω)

]
. (3.19)

It seems natural to relate the two quantities χ̃′′AB(ω) and C̃AB(ω) in a direct way. We can
express C̃BA(−ω) via (3.18) and therefore write the response function in terms of the
correlation function

χ̃′′AB(ω) =
1

2h̄

[
C̃AB(ω)− e−h̄βωC̃AB(ω)

]
=

1− e−h̄βω

2h̄
C̃AB(ω) . (3.20)

This important relation between the correlation function and the response function is called
fluctuation-dissipation theorem. Attention should by paid to the fact that this result has been
obtained by using the explicit form of the density matrix in the canonical ensemble.

An extensive discussion of the interpretation of the fluctuation-dissipation theorem as
a relation between scattering and linear response experiments can be found in Ref. [16].
Considerations with emphasis on stochastic aspects can be found in Ref. [21].

3.3 Related Estimates at zero Temperature

In the following we will discuss estimates for minimal excitation energies and ordering
relations between correlation functions at zero temperature. By zero temperature we mean
that only the ground state |0〉 with the corresponding energy eigenvalue h̄ω0 is occupied.
In other words the density matrix reads ρ = |0〉 〈0|. We will also rely on this concept to
describe ultracold quantum gases, although the assumption, that only the ground state is
occupied, is an approximation due to the existence of quantum fluctuations.

3.3.1 Estimates for Elementary Excitations

In this section we derive a method to estimate the lowest excitation energy at zero temper-
ature. To this end we consider the spectral representation (3.7) of C̃A(ω) which, for zero
temperature, reduces to

C̃A(ω) = 2π∑
m
|〈0|A|m〉|2 δ(ω−ωm0) . (3.21)

Inserting this expression into the definition (3.8) of m(n)
A we obtain

m(n)
A = ∑

m
(h̄ωm0)

n |〈0|A|m〉|2 = ∑
m

εn
mΓm , (3.22)

where we defined εm := h̄ωm0 and Γm := |〈m|A|0〉|2. We assume that there exists at least
one excited state m 6= 0 with 〈0|A|m〉 6= 0. We define the lowest excitation energy as

ωmin := inf
εmΓm 6=0

ωm0 , (3.23)
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also referred to as elementary excitation. The infimum arises due to the fact that the
summation over all eigenvalues in equation (3.22) has to be replaced by an integration in
the case that H0 has unbound eigenstates. Then a definition using the minimum might be
undefined which coincides with the case of gapless excitations. Certainly in this case it is
unclear, whether the moments themselves are well defined.

To make quantitative predictions for the elementary excitations, we can estimate the nth
moment via

(h̄ωmin)
l ∑

m
(h̄ωm0)

n−l |〈0|A|m〉|2 ≤∑
m
(h̄ωm0)

n |〈0|A|m〉|2 , (3.24)

where l ∈ Z can be chosen arbitrarily. The inequality also holds in the case of integrals
replacing the sums. The latter follows directly from the common proof of the first mean
value theorem for integration.

We can simplify the inequality (3.24) by identifying the nth and (n− l)th moment using
equation (3.22):

(h̄ωmin)
l m(n−l)

A ≤ m(n)
A . (3.25)

If the (n− l)th moment is nonzero we can rewrite the inequality as

(h̄ωmin)
l ≤ m(n)

A

/
m(n−l)

A , (3.26)

which defines a strict upper bound for the lowest excitation energy h̄ωmin at zero tem-
perature [17]. In the case of exactly one elementary excitation energy, i.e. for all m 6= 0
where 〈0|A|m〉 6= 0, the excitation energy h̄ωm0 is exactly the same, equation (3.26) trivially
becomes an identity.

It should be emphasized that the moments arising in the estimate (3.26) can be calculated
using the sum rules (3.11) and (3.12).

3.3.2 Estimates between Moments

Whereas the calculation of some moments might be impracticable, every moment can be
estimated by two other moments via the inequality [17]:(

m(n)
A

)2
≤ m(n−1)

A m(n+1)
A . (3.27)

We proof this inequality using the notation introduced in equation (3.22).
All addends in the series (3.22) are positive and thus the series is absolutely convergent.

Therefore the Cauchy product of two moments converges to the product of both moments.
Hence we can write (

m(n)
A

)2
=

∞

∑
k=0

k

∑
p=0

εn
pΓp εn

k−pΓk−p , (3.28)

(
m(n−1)

A

) (
m(n+1)

A

)
=

∞

∑
k=0

k

∑
p=0

εn−1
p Γp εn+1

k−p Γk−p . (3.29)
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We now compare the sum over k in both equations. If the kth addend in (3.28) is smaller
then the kth addend in (3.29) for all k then the whole expression (3.28) is smaller than
(3.29). In general a sum over p can be rewritten as

k

∑
p=0

xp ≡


x0 k = 0

∑(k−1)/2
s=0 (xs + xk−s) odd k

∑(k−2)/2
s=0 (xs + xk−s) + xk/2 even k .

(3.30)

Considering the corresponding terms x of (3.28) and (3.29) we can also state that, if
xs + xk−s fulfills the desired inequality for all s, the whole inequality has to be valid. The
single term arising for k = 0 and k even, i.e. s = k/2, can be treated in the same manner, as
the term xs + xs only gives a factor of two on both sides of the inequality. Therefore we
proof the inequality xs + xk−s ≤ ys + yk−s, where x represents the right-hand side terms of
equation (3.28) and y the ones of equation (3.29). Then we have

2εn
s εn

k−s ΓsΓk−s ≤
(

εn−1
s εn+1

n−s + εn+1
s εn−1

n−s

)
ΓsΓk−s

⇔ 2εn
s εn

k−s ≤ εn−1
s εn+1

k−s + εn+1
s εn−1

k−s

⇔ 0 ≤ (εs − εk−s)
2 , (3.31)

which is, indeed, always fulfilled. Using the identity a2k + b2k − 2akbk = (ak − bk)2 we can
easily generalize the result (3.27) to(

m(n)
A

)2
≤ m(n−l)

A m(n+l)
A , (3.32)

where l must be an integer number.



4 Application to Collective Excitations of Ultracold
Quantum Gases

In the following, we will apply the estimates for elementary excitation energies derived
in Section 3.3.1 to ultracold quantum gases. In order to demonstrate the applicability of
the procedure we restrict ourselves to investigate the monopole excitation also referred to
as breathing mode with an isotropic harmonic trapping potential. The moments relevant
for these estimates are calculated via the sum rules presented in Section 3.1.2. The results
obtained are expressed in terms of the specific ground-state energies of the system, i.e.
kinetic, trapping and, if present, interaction energy.

Supplementary we will derive virial identities that enable us to avoid the calculation of
one of the specific ground-state energies. Exemplary, the monopole excitation energy for a
delta interacting Bose gas as well as for a dipolar Fermi gas is calculated in detail.

4.1 Description of Ultracold Quantum Gases

We consider the time independent Hamiltonian

H0 = Hkin + Htrap + Hint , (4.1)

with

Hkin := − h̄2

2m

N

∑
i=1

∆i , Htrap :=
N

∑
i=1

V(ri) , Hint :=
N

∑
i=1

N

∑
j (>i)

U(rij) , (4.2)

where rij := ri − rj. This Hamiltonian can in general describe the full features of a trapped
quantum gas with the fixed particle number N. To allow for any dimension D the position
operator takes the form

ri =
D

∑
ν=1

qiν eν (4.3)

with eν denoting the canonical unit vectors. We notice that, using this canonical approach,
no assumptions have been made about the underlying statistics of the particles. Thus, the
following considerations are valid for both bosonic and fermionic species.

We assume that our system is situated at zero temperature as defined in Section 3.3.
Referring to Section 3.3.1 we can estimate the elementary excitation energy for the excitation
operator A via

(h̄ωmin)
l ≤ m(n)

A

/
m(n−l)

A . (4.4)

21
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Using the sum rules (3.11) and (3.12) the first four moments can be explicitly written as

m(0)
A = 1

2 〈{A, A}〉eq = 〈A2〉eq , (4.5a)

m(1)
A = 1

2 〈[[A, H0], A]〉eq , (4.5b)

m(2)
A = 1

2 〈{[A, H0], [H0, A]}〉eq = 〈[H0, A]2〉eq , (4.5c)

m(3)
A = 1

2 〈[[[A, H0], H0], [H0, A]]〉eq . (4.5d)

We notice that by using the fluctuation dissipation theorem (3.20) at zero temperature

χ̃′′AB(ω) =
1

2h̄
C̃AB(ω) , (4.6)

we can relate the moments of χ̃′′ and C̃ via

v
(n)
A =

1
2h̄

m(n)
A . (4.7)

With only the ground state occupied at zero temperature, equilibrium averages cut down
to the pure ground-state average

〈G〉eq =
〈0|G|0〉
〈0|0〉 . (4.8)

We stress again that the moments expressed via sum rules are calculated in the equilibrium
configuration.

4.2 Sum-Rule Approach to Breathing Mode

In this section we will explore the breathing mode of ultracold quantum gases in isotropic
harmonic trapping potentials. We will first derive results, that are valid without any further
assumptions. For interacting gases we will regard a specific class of interaction potentials.
Finally we derive exact results for the limit of non-interacting gases.

4.2.1 General Results

We consider an arbitrary one-component gas in a harmonic trap

Hho |0〉 =
N

∑
i=1

Vho(ri) |0〉 = Eho |0〉 (4.9)

with the rotational symmetric potential

Vho(ri) =
1
2

mΩ2
hor2

i . (4.10)

The gas can be excited by a modulation of the trapping frequency [5] that we can describe
by the time dependent perturbation Hamiltonian

H1t = −
1
2

mΩ2(t)
N

∑
i=1

r2
i = − f (t)M , (4.11)
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where M := ∑N
i=1 r2

i denotes the monopole operator that couples to the c-number

f (t) =
1
2

mΩ2(t) . (4.12)

As M is Hermitian, we can calculate the first moments of the correlation function via
(4.5a–d). We require that [M, Hint] = 0 and find that [M, Hho] = 0, hence the arising
commutator [M, H0] has only contributions from the kinetic term Hkin. One easily finds

[M, H0] = [M, Hkin] =
h̄2

m

N

∑
i=1

(D+ 2ri ·∇i) , (4.13)

and from that

[[M, H0], M] =
4h̄2

m

N

∑
i=1

r2
i . (4.14)

This result is rather general as the calculation of these commutators does not depend on
the interaction except for the requirement that the interaction Hamiltonian commutes with
the monopole operator M.

Using equations (4.5a–c) we can now write the first three moments as

m(0)
M = N 〈r4〉eq , (4.15)

m(1)
M =

2Nh̄2

m
〈r2〉eq =

4Nh̄2

m2Ω2
ho
〈Hho〉eq , (4.16)

m(2)
M =

Nh̄4

m2

[
D2 + 4D 〈r ·∇〉eq +

〈
(r ·∇)2

〉
eq

]
, (4.17)

where we used that, for indistinguishable particles, the operator averages can not depend
on the specific particle. Although the interaction potential did not enter the calculation of
these commutators, the corresponding equilibrium averages do depend on the interaction.

Theoretically each ratio of two moments (4.15) to (4.17) can be used to obtain an upper
bound for the minimal excitation frequency via equation (4.4). We notice that the first
moment can be expressed in terms of the potential energy Eho = 〈Hho〉eq and some given
constants. As the averages within the 0th and 2th moment have no straightforward physical
interpretation, we try to find a higher moment that can be expressed in terms of energies.
But for the calculation of commutators appearing for higher moments we have to take the
explicit form of the interaction into account.

4.2.2 Non-Interacting Gases

We first consider the simplest case of a non-interacting gas. Contributions due to non
zero interaction will emerge as additional terms in the moments, that can be calculated
subsequently. The commutators

[[M, H0], H0] = [[M, H0], Hkin + Hho] =
2h̄4

m2

N

∑
i=1

∆i +2h̄2Ω2
ho

N

∑
i=1

r2
i , (4.18)

[[[M, H0], Hkin + Hho], [H0, M]] = −8h̄6

m3

N

∑
i=1

∆i +
8h̄4Ω2

ho
m

N

∑
i=1

r2
i (4.19)
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can be found by a straight forward calculation. Inserting these results into (4.5d) we find

m(3)
M = −4Nh̄6

m3 〈∆〉eq +
4h̄2Ω2

ho
m

〈
r2〉

eq

=
8Nh̄4

m2 〈Hkin〉eq +
8Nh̄4

m2 〈Hho〉eq . (4.20)

According to the inequality (4.4) the ratio of the third moment (4.20) and the first moment
(4.16) defines a rigorous upper bound for the elementary excitation of the breathing mode
[14]:

(h̄ωmin)
2 ≤ m(3)

M

/
m(1)

M = h̄2Ω2
ho

4Ekin + 4Eho

2Eho
. (4.21)

We have now achieved to express the upper bound in terms of energies. Further aspects of
this result will be discussed in Section 4.2.4.

4.2.3 Interacting Gases

Next we study the contributions of the interaction potential to the third moment. The
commutator

[[M, H0], Hint] =
2h̄2

m

N

∑
i=1

N

∑
j (>i)

(
ri ·∇i + rj ·∇j

)
U(rij) (4.22)

can then be rewritten as

[[M, H0], Hint] =
2h̄2

m

N

∑
i=1

N

∑
j (>i)

rij ·∇ijU(rij) , (4.23)

where nabla is only acting on U. We now specify to an effective dipole–dipole interaction
potential

Udd(rij) =
D2

r3
ij
−
(

D · rij
)2

r5
ij

, (4.24)

where we have D = m
√

µ0/4π or D = d/
√

4πε0 for magnetic or electric dipoles, respec-
tively. Here m denotes the magnetic moment in units of the Bohr magneton and d the
electric moment in units of Debye. Via a straight forward calculation one finds

rij ·∇ijUdd(rij) = −3 Udd(rij) . (4.25)

Therefore the additional commutator for the third moment reads

[[[M, H0], Hdd], [H0, M]] =
36Nh̄4

m2 Hdd . (4.26)

Combining the results for the non-interacting case (4.20) and equation (4.26) we obtain

(h̄ωmin)
2 ≤ m(3)

M

/
m(1)

M = h̄2Ω2
ho

4Ekin + 4Eho + 9Edd

2Eho
(4.27)

as an upper bound for the excitation energy of the breathing mode.
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The result obtained for the dipole–dipole interaction was essentially governed by the
identity

r ·∇U(r) = n U(r) (4.28)

where n = −3. It is recognized that equation (4.28) is nothing else than an equivalent
definition for the positive homogeneity of U(r), formally

U(λr) = λnU(r) ∀λ > 0 ⇔ r ·∇U(r) = n U(r) , (4.29)

known as Euler’s theorem [22]. Thus we are in the position to generalize the commutator
(4.26) for potentials U(rij) which are homogenous of degree n to

[[[M, H0], Hint], [H0, M]] =
4h̄4

m2

N

∑
i=1

N

∑
j (>i)

{
rij ·∇ij

[
rij ·∇ijU(rij)

]}
=

4n2h̄4

m2

N

∑
i=1

N

∑
j (>i)

U(rij) . (4.30)

This yields the upper bound

(h̄ωmin)
2 ≤ m(3)

M

/
m(1)

M = h̄2Ω2
ho

4Ekin + 4Eho + n2Eint

2Eho
. (4.31)

This rather general result can now be applied to the case of a delta interaction

Uδ(rij) = g δ(rij) = g
D

∏
ν=1

δ(qiν − qjν) . (4.32)

Using the well-known relation δ(λq) = δ(q)/|λ| we can write

δ(λr) = |λ|−Dδ(r) , (4.33)

where D represents the number of dimensions involved in the problem. This shows
immediately that Uδ(rij) is positive homogenous of degree −D and therefore

(h̄ωmin)
2 ≤ m(3)

M

/
m(1)

M = h̄2Ω2
ho

4Ekin + 4Eho +D2Eδ

2Eho
. (4.34)

We notice that for D = 3 this result takes exactly the same form as in the case of dipole
interaction (4.27), with Eδ replaced by Edd. Of course the specific energies Ekin and Eho
differ from system to system.

We can finally combine both previous results to the expression

ωmin ≤ Ωho

√
4Ekin + 4Eho +D2Eδ + 9Edd

2Eho
, (4.35)

which would be applicable for the breathing mode frequency of a dipolar Bose gas [23]. We
stress again that this result provides a rigorous upper bound for the elementary excitations
at zero temperature irrespective of the underlying quantum statistics. Examples of explicit
results for the entering energies will be provided in Section 4.4.



4 Application to Collective Excitations of Ultracold Quantum Gases 26

4.2.4 Exact Solution for Non-Interacting Case

To derive an exact solution for the excitation energy in the non-interacting case we regard
the Schrödinger equation

ih̄
∂

∂t

N

∏
j=1
|ψ〉j =

{
− h̄2

2m

N

∑
i=1

∆i +
1
2

m
[
Ω2

ho + Ω2(t)
] N

∑
i=1

r2
i

}
N

∏
j=1
|ψ〉j . (4.36)

Self-evidently for Ω2(t) = 0 this equations describes nothing else then N independent
D-dimensional harmonic oscillators. For this problem the moments of the correlation
function can be directly evaluated via equation (3.22).

The position operator q can be expressed through the well-known lowering and raising
operators α and α† [24]. Accordingly the excitation operator M can be rewritten in the form

M =
N

∑
i=1

r2
i =

N

∑
i=1

D

∑
ν=1

qi
2
ν =

h̄
2mΩho

N

∑
i=1

D

∑
ν=1

(
αiν + αi

†
ν

)2
. (4.37)

We omit all prefactors for simplicity, as they will not be relevant in the end. Utilizing the
rotational symmetry we can further rewrite

M =
N

∑
i=1

(
αi + α†

i

)2
. (4.38)

For the direct evaluation we have to calculate the moment

m(n)
M = ∑

{ h }
ω{h}0 |〈0 |M | { h }〉|2 , (4.39)

where we have defined the energy eigenstate

|{ h }〉 := S±
N

∏
j=1

∣∣hj
〉

j , (4.40)

where S+ denotes the symmetrization operator for bosons and S− the antisymmetrizing
operator for fermions, respectively. The ket |0〉 denotes the ground state configuration. We
now choose to represent our problem in Fock space. The operator M in the Fock space
reads [15]:

M = ∑
i,j

〈
i
∣∣∣∣ (α + α†

)2
∣∣∣∣ j
〉

a†
i aj . (4.41)

Here, a†
i , ai denote the operators that create or annihilate a bosonic or fermionic particle

with the energy h̄ωi in Fock space. We write |F〉 to denote a Fock state of the harmonic
oscillator.

For further calculations we have to distinguish between fermionic and bosonic systems.
We first regard the Bose gas at zero temperature. The state |s, t〉 labels the Fock state where
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s particles are in the lowest energy state and t particles are in the state with the energy h̄ω2.
Thus the ground state reads |N, 0〉. The nth moment expressed in the Fock space reads

m(n)
M = ∑

F
ωn

F0 |〈N, 0 |M | F〉|2 . (4.42)

We calculate the matrix element

〈N, 0 |M | F〉 = ∑
i,j

〈
i
∣∣∣ (α + α†)2

∣∣∣ j
〉 〈

N, 0
∣∣∣ a†

i aj

∣∣∣ F
〉

(4.43)

=
√

N ∑
j

〈
0
∣∣∣ (α + α†)2

∣∣∣ j
〉 〈

N − 1, 0
∣∣ aj
∣∣ F
〉

(4.44)

=
√

N
(√

2 〈N − 1, 0 | a2 | F〉+ 〈N − 1, 0 | a0 | F〉
)

. (4.45)

We recall that ωF0 denotes the difference between the total ground-state energy and the
total energy of the state |F〉. Since the term 〈N − 1, 0 | a0 | F〉 =

√
n 〈N, 0 | F〉 does only

contribute if |F〉 is the ground state, but ω00 is zero, this term does not contribute to the
sum at all. The second matrix element 〈N − 1, 0 | a2 | F〉 = 〈N − 1, 1 | F〉 contributes with
the energy difference h̄ω(N−1,1) 0 = 2h̄Ωho.

But the most important fact is, that finally only the Fock state |N − 1, 0〉 contributes to
the calculation of the moment (4.42). As discussed in Section 3.3.1 this implies that the
sum-rule estimate for the non-interacting case (4.21) is an equality rather than an inequality.
For the sum-rule estimate we are interested in the ratio m(n)

M /m(n−l)
M of two moments.

Inspecting equation (4.42) we can see that the single contributing matrix element cancels
out of the ratio. A posteriori this also justifies the neglected prefactors. The ratio reads

m(n)
M

/
m(n−l)

M = (2h̄Ωho)
l . (4.46)

We therefore have the result
ωmin = 2Ωho , (4.47)

which is exact in the regime of linear response theory. We also notice that the result for
ωmin is, indeed, independent of the choice of l.

We now turn to fermionic gases, where all states below the Fermi energy are occupied.
For a neat representation we assume spinless particles, however all arguments can be
carried out for particles with arbitrary spin. We denote the fermionic ground state by |0̃〉
and regard again the nth moment

m(n)
M = ∑

F
ωn

F0̃

∣∣〈0̃ ∣∣M ∣∣ F
〉∣∣2 = ∑

F
ωn

F0̃

∣∣∣∣∑
i,j

〈
i
∣∣∣ (α + α†)2

∣∣∣ j
〉 〈

0̃
∣∣∣ a†

i aj

∣∣∣ F
〉∣∣∣∣2. (4.48)

The matrix element
〈
i
∣∣ (α + α†)2

∣∣ j
〉

yields two terms contributing with 〈i|j〉 = δij. We
notice that the matrix element

〈
0̃
∣∣ a†

i ai
∣∣ F
〉

is only nonzero if |F〉 = |0̃〉, but again since
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ω0̃0̃ = 0 these matrix elements do not contribute at all. The nth moment then reads

∑
F

ωn
F0̃

∣∣〈0̃ ∣∣M ∣∣ F
〉∣∣2 =

= ∑
F

ωn
F0̃

∣∣∣∣∑
i,j

[
〈i | j + 2〉

√
j2 + 3j + 2 + 〈i + 2 | j〉

√
i2 + 3i + 2

] 〈
0̃
∣∣∣ a†

i aj

∣∣∣ F
〉∣∣∣∣2. (4.49)

The term
〈
0̃
∣∣ a†

i aj
∣∣ F
〉

is only nonzero if j > i, since otherwise an energy state is removed
from the ground state that is above the Fermi energy or a state below i is added, which is
already fully occupied. Since j + 2 = i contradicts j > i, equation (4.49) can be rewritten as

∑
F

ωn
F0̃

∣∣〈0̃ ∣∣M ∣∣ F
〉∣∣2 = ∑

F
ωn

F0̃

∣∣∣∣∑
i,j
〈i + 2 | j〉

√
i2 + 3i + 2

〈
0̃
∣∣∣ a†

i aj

∣∣∣ F
〉∣∣∣∣2

= ∑
F

ωn
F0̃

∣∣∣∣∑
j

√
j2 − j

〈
0̃
∣∣∣ a†

j−2aj

∣∣∣ F
〉∣∣∣∣2. (4.50)

We can read off that we have to excite a fermion out of the ground state to an energy that
is h̄ω20 higher then the ground state, or formally |F〉 = aj

†aj−2 |0̃〉. This is only possible for
a few configurations around the Fermi energy. However, the energy difference ωF0̃ is the
same for every excitation as the harmonic oscillator energies are equidistant. Thus all the
results presented for Bose gases are also valid for Fermi gases.

4.3 Virial Identities

Virial identities are useful to reduce the effort for calculating specific energy contributions
in a system as they provide a possibility to avoid the calculation of one specific ground-
state energy. We will prove rather general virial identities for canonical Hamiltonians and
exemplarily show the validity in case of a mean-field theory.

We point out, that for the approximative approaches in Section 4.4 the derived virial
identities are still valid as is shown in Sections 4.4.1 and 4.4.2.

4.3.1 Canonical Hamiltonians with Homogenous Potentials

The generalization of the classical virial theorem is already known since the very beginning
of quantum mechanics. The following derivation follows the historical approach by Born,
Heisenberg, and Jordan from 1926 [25].

We consider a Hamiltonian of the form

H = Hkin + H′(r1, . . . , rN) (4.51)

where H′ should only consist of a potential which is positive homogenous of degree n′

without explicit time dependence. We consider the virial defined by

G :=
N

∑
i=1

pi · ri . (4.52)
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The average of the total time derivative can be written in the form〈
dG
dt

〉
eq

=

〈
N

∑
i=1

dpi

dt
· ri

〉
eq

+

〈
N

∑
i=1

pi ·
dri

dt

〉
eq

. (4.53)

Next we analyze the terms of equation (4.53) subsequently. First we define the kinetic-
energy operator from the classical expression

T :=
m
2

N

∑
i=1

(
dri

dt

)2

=
N

∑
i=1

p2
i

2m
(4.54)

whereas the last equal sign is justified by the Heisenberg equation

dri

dt
=

i
h̄
[H, ri] =

pi

m
. (4.55)

Using equations (4.54), (4.55) we can write

N

∑
i=1

pi ·
dri

dt
= 2T . (4.56)

To evaluate the second addend of equation (4.53) we calculate the Heisenberg equation

dpi

dt
=

i
h̄
[H, pi] = −∇i H′ . (4.57)

Using theorem (4.29) we have

N

∑
i=1

dpi

dt
· ri = −

N

∑
i=1

ri ·∇i H′ = −n′H′ . (4.58)

As shown for equation (4.23) this argument can also be applied to interaction potentials
H′(rij) which are positive homogenous of degree n′.

Finally, we regard the first term of equation (4.53). Considering the case where the
density matrix ρ commutes with H and using the cyclic invariance of the trace we have〈

dG
dt

〉
eq

=
i
h̄
〈[H, p · r]〉eq =

i
h̄

(
〈Hp · r〉eq − 〈p · rH〉eq

)
= 0 . (4.59)

Inserting these identities into equation (4.53) we find

2 〈T〉eq = n′
〈

H′
〉

eq (4.60)

which trivially generalizes to the case of multiple potentials via

2 〈T〉eq = n′
〈

H′
〉

eq + n′′
〈

H′′
〉

eq + · · · . (4.61)

Using the positive homogeneity of the potentials Vho(r), Uδ(rij) and Udd(rij) we thus
obtain the result

2Ekin − 2Eho +DEδ + 3Edd = 0 . (4.62)

As we have used a canonical approach, this result is valid regardless of the underlying
statistics.
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4.3.2 Explicit Derivation for Gross–Pitaevskii Theory

Many of the essential properties of ultracold quantum gases can be covered by a mean-field
theory [17, 26]. For bosons at zero temperature we regard the Gross–Pitaevskii equation
that takes into account both the contact and the dipole–dipole interaction{

− h̄2

2m
∆+

mΩ2
ho

2
r2 + g |ψ(r)|2 +

∫
Vdd(r− r′)

∣∣ψ(r′)∣∣2 dDr′
}

ψ(r) = µ ψ(r) . (4.63)

Although the results obtained for the breathing mode like equation (4.27) have been
derived from a canonical Hamiltonian, we expect that the respective energies can also be
calculated within a mean-field theory. We also expect that the virial identity holds for the
mean-field theory as well.

We introduce the abbreviations

n(r) ≡ n := |ψ(r)|2 , n(r′) ≡ n′ . (4.64)

The energy functional decomposes into the following contributions

E(n) = Ekin(n) + Eho(n) + Eδ(n) + Edd(n) , (4.65)

where

Ekin(n) =
∫ h̄2

8m
(∂qν n)(∂qν n) n−1 dDr , Eho(n) =

∫ mΩ2
ho

2
(qσqσ) n dDr , (4.66a)

Edd(n) =
1
2

∫∫
Vdd(r− r′) n n′ dDr′dDr , Eδ(n) =

∫ g
2

n2 dDr . (4.66b)

Here we use Einstein notation to sum over all coordinates. Note that an extremization of
(4.65) with respect to n yields the Gross–Pitaevskii equation (4.63). If ψ0(r) is a solution of
the Gross–Pitaevskii equation, the energy functional E(n) has to be stationary at n0 := |ψ0|2.
Choosing the scaling transformation [17, p. 167]

n(r)→ (1 + ε)D n0(r + εr) , (4.67)

the stationarity of E(n) requires
∂E(n)

∂ε

∣∣∣∣
ε=0

= 0 . (4.68)

Before we calculate the left-hand side of this equation, we note the result

∂n
∂ε

∣∣∣∣
ε=0

= Dn0 + r ·∇n0 . (4.69)
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For a space-saving presentation we replace n0 with n in the following. We find

∂Ekin

∂ε

∣∣∣∣
ε=0

=

=
h̄2

8m

∫
2n−1(∂qν n) ∂qν(Dn + qσ∂qσ n)− n−2(∂qν n)(∂qν n)(Dn + qσ∂qσ n)dDr

(4.71)
= DEkin + 2Ekin +

h̄2

8m

∫
2n−1(∂qν n)(qσ∂qσ ∂qν n)− n−2(∂qν n)(∂qν n)(qσ∂qσ n)dDr

= DEkin + 2Ekin +
h̄2

8m

∫
n−1(∂qν n)(qσ∂qσ ∂qν n)− n−2(∂qν n)(∂qν n)(qσ∂qσ n)dDr

− h̄2

8m

∫
[∂qσ(n

−1qσ∂qν n)](∂qν n)dDr
(4.71)
= 2Ekin (4.70)

where we used twice the identity

∂qν(qσ∂qσ n) = qσ∂qσ ∂qν n + ∂qν n . (4.71)

By further straight forward calculations we find

∂Eho

∂ε

∣∣∣∣
ε=0

=
mΩ2

ho
2

∫
(qσqσ)(Dn + qν∂qν n)dDr = DEho +

mΩ2
ho

2

∫
(qσqσ)qν∂qν n dDr

= DEho −
mΩ2

ho
2

∫
n∂qν(qσqσqν)dDr = DEho −DEho − 2Eho = −2Eho , (4.72)

∂Eδ

∂ε

∣∣∣∣
ε=0

=
g
2

∫
2n(Dn + qν∂qν n)dDr

= 2DEδ +
g
2

∫
nqν∂qν n dDr− g

2

∫
[∂qν(nqν)]n dDr = DEδ (4.73)

and

∂Edd

∂ε

∣∣∣∣
ε=0

=
∫∫

Vdd(Dn + qν∂qν n)n′ dDr′ dDr = 2Edd −
∫∫

n ∂qν(Vddn′qν)dDr′ dDr

= −
∫∫

n(qν∂qν Vdd + Vddqν∂qν n′)dDr′ dDr

= −1
2

∫∫
[(qν∂qν + q′ν∂q′ν)Vdd] n n′ dDr′ dDr = 3Edd . (4.74)

For the last equal sign we have used again the identity (4.25). Inserting equations (4.70)
and (4.72)–(4.74) into the stationarity condition (4.68) gives the virial identity

2Ekin − 2Eho +DEδ + 3Edd = 0 , (4.75)

which is identical to the result (4.62) obtained in the previous section.
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4.4 Exemplary Calculations of Breathing Modes

Next we investigate the sum-rule expression (4.35) obtained for the breathing mode of
an ultracold quantum gas in an isotropic harmonic trap. Assuming only the presence
of contact interaction and using the virial identity (4.62) an upper bound to the lowest
excitation frequency in a Bose gas is given by

ωmin ≤ Ωho

√
2 +D+ (2−D)

Ekin

Eho
, (4.76)

where D denotes the dimension. For the dipolar Fermi gas with Eδ = 0 the upper bound
reads

ωmin ≤ Ωho

√
5− Ekin

Eho
(4.77)

in any dimension. In this section we will exemplarily calculate the respective energies of
the estimates (4.76) and (4.77) for a Bose gas with contact interaction and for a dipolar
Fermi gas.

4.4.1 Bose Gas with Delta Interaction

We consider a three-dimensional Bose gas with delta interaction. An upper bound for the
frequency of the breathing mode then follows from equation (4.76) and reads

ωmin

Ωho
≤

√
5− Ekin

Eho
. (4.78)

We introduce the dimensionless parameter for the strength of the interaction energy

P :=

√
2
π

Na
aho

, (4.79)

where a denotes the s-wave scattering length and aho :=
√

h̄/(mΩho) is referred to as the
oscillator length. In the non-interacting case P→ 0 we have Ekin = Eho and we recover the
exact result ωmin/Ωho = 2 found previously in equation (4.47). In the hydrodynamic limit
P� 1, also referred to as the Thomas–Fermi limit, the kinetic energy can be neglected [14].
Then we have ωmin/Ωho ≤

√
5. This result can also be obtained as an exact solution of the

hydrodynamic equations [17].
In order to calculate both the kinetic and the trapping energy of the system beyond the

discussed limits, we consider the stationary Gross–Pitaevskii equation (4.63), which can
also be derived by minimizing the Lagrange density L(n) = −E(n). The corresponding
energy functional E(n) is given by equation (4.65). The eigenfunction of the stationary
Gross–Pitaevskii equation in the non-interacting case is nothing else than the harmonic
oscillator ground state, i.e. a Gaussian function. To implement the features of an interacting
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Fig. 4.1: Breathing mode frequency of a Bose gas with contact interaction as function of
the dimensionless interaction strength P. The dashed line shows the frequency
in the Thomas–Fermi limit valid for P� 1, at P = 0 we have the non-interacting
case, and the zero-crossing in the second quadrant coincides with the set in of an
instability. An equivalent result has been presented by Stringari [14].

Bose gas we introduce the width of the Gaussian as an artificial variational parameter Ξ.
Then the wave function reads [27]

ψ0(r) =
N1/2

π3/2Ξ3/2 e−
3
2 Ξ−2r2

. (4.80)

This approach implies the assumption that the wave function in the interacting case takes
a similar form as in the non-interacting case. Next we minimize the Lagrange density L
with respect to Ξ. Introducing the dimensionless width ξ := Ξ/aho, we obtain the defining
equation

ξ2 − ξ−2 − Pξ−3 = 0 (4.81)

by inserting the resulting Lagrange density into the Euler–Lagrange equation.
The system specific energies (4.66a–b) in terms of ξ read

Ekin =
3
4

h̄ΩhoN ξ−2 , Eho =
3
4

h̄ΩhoN ξ2 , Eδ =
1
2

h̄ΩhoN Pξ−3 . (4.82)

If we multiply equation (4.81) with h̄ΩhoN and compare the result with the energies (4.82)
we immediately identify the virial identity (4.62). This means that we have shown that
the virial identity even holds in the regime of this specific variational approach. Thus, the
defining equation (4.81) for ξ is equivalent to the requirement that the virial identity (4.62)
should be valid.

The upper bound for the lowest excitation frequency in terms of ξ reads

ωmin

Ωho
≤ ω̃ :=

√
5− ξ−4 . (4.83)
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This upper bound coincides with the breathing-mode frequency which follows from a
time-dependent generalization of the above used variational approach [27]. Calculating
numerical solutions of equation (4.81) we obtain the breathing mode frequency (4.83) as
shown in Figure 4.1.

4.4.2 Dipolar Fermi Gas

Next we investigate a three-dimensional dipolar Fermi gas. The effective dipole–dipole
interaction potential is given by equation (4.24). An upper bound for the frequency of the
breathing mode is given by (4.77). For the calculation of the kinetic and trapping energy
we employ again a variational approach. For a detailed discussion of dipolar Fermi gases
and an extensive review of the used variational approach within a Hartree–Fock theory we
refer to Ref. [26, 28, 29]. We choose for the semiclassical Wigner function the ansatz of a
Fermi–Dirac distribution at zero temperature with the artificial dimensionless variational
parameters Rx,y,z and Kx,y,z which represent the extension of density and momentum
distribution in the corresponding directions. As we work with an isotropic trapping
potential we have the trap aspect ratio λ = 1. Nevertheless due to the dipole–dipole
interaction the gas tends to be stretched along the polarization direction. Yet, perpendicular
to the polarization direction rotational symmetry is conserved and we can, therefore,
choose Rx = Ry and Kx = Ky. It is convenient to introduce the notation

Rx = Rzκ , Kz = Kxδ , (4.84)

where now Rx, κ, Kz and δ represent the only remaining variational parameters. Extremizing
the corresponding action yields the following system of equations

R3
zκ2 K3

xδ = 0 , (4.85)

−R2
zκ2 +

K2
x

3
(
2 + δ2)− εddcd

R3
zκ2

[
F(κ)− κ F′(κ)− F(δ)

]
= 0 , (4.86)

−R2
z +

K2
x

3
(
2 + δ2)− εddcd

R3
zκ2

[
F(κ) + 2κ F′(κ)− F(δ)

]
= 0 , (4.87)

K2
x
(
δ2 − 1

)
=

3εddcd

R3
zκ2

[
−1 +

2 + δ2

2− δ2 f(δ)

]
. (4.88)

The associated energy reads
E = Ekin + Eho + Edd , (4.89)

where

Ekin =
NEF

8
K2

z
(
2κ2 + 1

)
, Eho =

NEF

8
K2

x
(
2 + δ2) , (4.90a)

Edd =
NEF εddcd

4R3
zκ2 [F(κ)− F(δ)] . (4.90b)

The function F denotes the cylinder-symmetric anisotropy function

F(a) :=
3a2

1− a2

(
1− artanh

√
1− a2

√
1− a2

)
+ 1 . (4.91)
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Fig. 4.2: Breathing mode frequency of a dipolar Fermi gas as function of dimensionless
interaction strength εdd. The ending of the graph denotes the set in of instability.

We have further defined the dimensionless parameter for the dipole–dipole interaction
strength

εdd := D2
(

m3Ωho

h̄5

)1/2

N1/6 (4.92)

and the constant

cd :=
238/3

323/6 · 35 · π2 . (4.93)

The Fermi energy of the non-interacting gas is denoted by EF and reads

EF = h̄Ωho(6N)1/3 . (4.94)

Summing up equation (4.87) and two times (4.86) yields

− R2
z
(
2κ2 + 1

)
+ K2

x
(
2 + δ2)− εddcd

R3
zκ2 [3F(κ − 3F(δ)] = 0 . (4.95)

By multiplying with NEF we can identify the energies (4.90a–b) and obtain the virial
identity (4.62). The upper bound for the breathing-mode frequency (4.77) in terms of
Kx, δ, Rz and κ then reads

ωmin

Ωho
≤ ω̃ :=

√
5− K2

x(2 + δ2)

R2
z(1 + 2κ2)

. (4.96)

Calculating the required parameters numerically, we obtain the results as shown in Fig-
ure 4.2. The numerical calculation of the breathing-mode frequency via the equations
of motion from the time-dependent variational approach [28, 29] results in practically
identical results. We therefore conclude that the sum-rule approach is again equivalent to
the time-dependent variational approach in this particular case.



5 Conclusion and Outlook

In this thesis we presented a comprehensive and detailed derivation of the sum-rule
approach for collective excitations of ultracold quantum gases and demonstrated its
applicability by investigating the breathing mode. We started by looking at the foundations
of quantum mechanical linear response theory referred to as Kubo formalism. The main
concept of this formalism is that the reaction of the system to a corresponding external
perturbation can be described in terms of response functions. One of the advantages of
these response functions is that they can be calculated in terms of thermal averages. We
discussed some general properties of response functions, thereby we focused on results
relevant for further derivations in this thesis. Especially, we derived a method to calculate
the energy-weighted moments of the response function’s Fourier transform via nested
commutators which is referred to in the literature as sum rule.

Furthermore, we investigated time-correlation functions and their relation to response
functions. This relation also manifests itself in the derived fluctuation dissipation theorem.
Similarly, as for response functions, we discussed some important properties of time-
correlation functions and presented sum rules for the calculation of their energy-weighted
moments. The obtained results were used to derive strict upper bounds for the lowest
excitation energies in the sense of linear response theory. The derived inequalities could be
expressed in terms of energy-weighted moments which could be calculated via the derived
sum rule. We also discussed in which case the equality is exact. Additionally, we proved
ordering relations between correlation functions. Although most of the presented results
are mentioned in the present literature, the detailed derivation of equations (2.67), (3.11),
and (3.12) as well as the explicit discussions in Section 3.3 were not found to be available.

In Section 4 we explored the properties of the breathing mode in an ultracold quantum
gas in an isotropic harmonic trap at zero temperature. We did so by combining the
estimates and the sum rules derived before. The application of the sum rules yielded
expressions that could be identified as the specific ground-state energies of the system,
i.e. the kinetic, the trapping and the interaction energy. These results are rather general as
they apply to both bosonic and fermionic gases in any dimension and are valid for any
positive homogenous interaction potential, e.g. contact or dipole-dipole interaction. The
non-interacting case was also investigated without using the sum rules. By doing so, we
showed that the sum-rule approach in that case delivers a result which is exact in the sense
of linear response theory.

In order to reduce the effort required for the calculation of the particular ground-state
energies, we proved well-known virial identities for systems described by a canonic
Hamiltonians, which enabled us to avoid the calculation of one arbitrary energy. We also
verified the validity of these virial identities in the Gross–Pitaevskii theory.

Finally, exemplary results for the breathing mode frequency of a delta interacting Bose
gas as well as of a dipolar Fermi gas were provided for an isotropic harmonic trap. For the
calculation of the particular ground-state energies we used a time-independent variational

36



5 Conclusion and Outlook 37

ansatz for solving the respective mean-field theories. We verified the validity of virial
identities in the regime of this ansatz. A comparison of the breathing mode frequency
obtained by the sum-rule approach with the result of the corresponding time-dependent
variational approach resulted in a trivial analytical equivalence in the case of the delta
interacting Bose gas. For the dipolar Fermi gas the equivalence could only be verified via
numerical calculations.

The whole thesis was essentially governed by the linear approximation of the formal
solution of the evolution operator (2.19). In general, it is also possible to calculate the
system response more accurately by including higher order terms. These terms can be still
calculated via equilibrium averages [30]. It is unknown to the author of this thesis whether
corresponding sum rules or energy estimates exist for these higher orders.

Furthermore, only the excitation of a breathing mode via a modulation of the trapping
frequency [5] was discussed in this thesis. As the use of Feshbach resonance evokes a
similar excitation [6, 7], it should be discussed how the sum-rule approach fits into this
experimental setup. Especially for choosing the interaction potential U(rij) as the excitation
operator, one expects to obtain a similar excitation frequency.

In this thesis we have restricted ourselves to an application of sum rules for quantum
gases in an isotropic harmonic trapping potential. In general, it is worthwhile to investigate
how an anisotropic trapping potential can enter the sum-rule approach. In particular, it
is unclear wether in this case the ratio of two moments can also be expressed in terms
of particular energies. However, using a variational approach like in Section 4.4, where
the eigenstates of the Hamiltonian are given, the sum-rule commutator averages might be
directly evaluable.

It is also of interest to investigate further excitation modes, especially the dipole mode
with the excitation operator D := ∑N

i=1 zi [17, p. 187]. In the isotropic case the first moment
reads m(1)

D = h̄2N/(2m), which is well known as f -sum rule or Thomas–Reich–Kuhn sum
rule of atomic physics [31, pp. 110–112]. This result is the basis for various results regarding
different types of sum rules [32, pp. 86–98].

A rather general result for the excitation energies in a dipolar Fermi gas was discussed
in Ref. [33]. The presented sum-rule expressions equal those derived in this thesis in the
case of an isotropic trapping potential. Beside further works on dipolar Fermi gases [34],
the sum-rule approach was also used to explore boson-fermion mixed condensates [35]
and spin-orbit coupled quantum gases [36]. This illustrates the current relevance of the
sum-rule approach in the modern field of ultracold quantum gases.

The limitations of the sum-rule approach are discussed e.g. by Li and Stringari who state
that the hydrodynamic frequencies of trapped Fermi gases are significantly overestimated
by this method [37]. In fact the ground-state energies of a hydrodynamic dipolar Fermi
gas in the stationary case [28, 29] do not differ from those in the collisionless regime [33].
Therefore the sum-rule approach predicts the same upper limits for both regimes. Since
we have shown that the sum-rule approach is exact for non-interacting gases we conclude
that the frequencies calculated in Section 4.4.2 represent the frequencies of the collisionless
regime. But we emphasize again that the results of the sum-rule approach stay correct in
the sense, that they provide at least a rigorous upper bound to the excitation frequencies
in the linear response theory. Apart from that, it would be interesting to investigate which
kind of sum rules might be able to represent excitations frequencies in other than the
collisionless regime.
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