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2 2 BOSE GASES IN RANDOM POTENTIALS

1 Introduction

Bose-Einstein condensation is a phase transition that occurs in systems of bosons at very low temperatures
if the thermal de Broglie wavelength approaches the mean particle distance. This phase transition is based
on the quantum mechanical symmetry properties of bosons and describes the transition from the gaseous
phase into a condensate phase where the ground state of the system is macroscopically occupied, that
means the total occupation number of the ground state scales with the volume of the system. It was
theoretically predicted in 1924 by Bose and Einstein [1–3] and experimentally realised for ultra-cold
diluted gases of atoms in 1995 [4, 5].

In 1988 and 1990, experiments with liquid 4He in porous media [6, 7] realized a system of interacting
bosons in a random potential and motivated among others the theoretical work of Huang and Meng in
1992 [8] which is further discussed below. In the following years different concepts for creating an artificial
and controllable disorder potential were theoretically discussed and experimentally implemented as e. g.
reviewed in Ref. [9]. The main approaches are laser-speckle potentials created by laser beams reflected
on rough surfaces or transmitted trough diffuse media and optical lattices built up of two laser beams
with incommensurate wave lengths. In 2008, it was possible in both setups to observe directly the for
disordered systems characteristic Anderson localisation [10–12]. Further concepts are the usage of wire
potentials which are created by current-carrying wires with induced disorder through the roughness and
impurity of the conductor as additionally reviewed in Ref. [13] or of optical lattices of which a certain
number of sites is randomly occupied by a first species of atoms which represents a random frozen in
random potential for a second species of atoms as suggested in Ref. [14].

Huang and Meng calculated in Ref. [8] the condensate density n0 in terms of the particle density n
of a Bose gas with contact interaction at low temperatures in a random potential within a Bogoliubov
theory and found perturbatively two different depletions of the condensate density which are on the one
hand the known depletion due to the particle interaction

8

3
√
π

(n0a)3/2 (1)

and on the other hand a depletion due to the occurrence of the disorder potential

m2

8
√
π

3

√
n0

a
R, (2)

where a denotes the s-wave scattering length of the particles, R controls the strength of the disorder
potential and h̄ was set to one. Note that (1) in [8] contains a typo as e. g. Ref. [15] confirms. The second
term denotes physically a depletion of the condensate, which we will also refer to as global condensate in
the following, due to the formation of local fragmented condensates in the valleys of the random potential.
The result for the disorder depletion (2) was confirmed by several following works [16–18]. As the terms in
(1) and (2) are in general small, most of the implemented experiments are not precise enough to measure
their influence. Nevertheless there are experimental techniques to increase the depletion due to the
particle interaction in not disordered three dimensional systems [19] by using a deep optical lattice which
increases the particle density and modifies the dispersion relation. The results for the measured depletion
in these experiments agree reasonable with the predictions of a Bogoliubov theoretical treatment.

Recently published works [20, 21] have shown that the result (2) of Huang and Meng can be reproduced
within a mean field Gross-Pitaevskii theory and therefore in general does not represent the complete result
of a Bogoliubov theory. In the following of this work we reproduce and extend the results (1) and (2) of
Huang and Meng within a Bogoliubov theory. Therefore we discuss in Section 2 the properties of a Bose
gas in a random potential within a perturbative approach and, in particular, the respective expressions
for the particle and global condensate density and the properties of the random potential itself. In order
to calculate the global condensate density we introduce a general Bogoliubov transformation in Section
3 and diagonalize the not disordered system as well as develop and apply in Section 4 a formalism to
calculate the expansion referring to the disorder potential of correlations of creation and annihilation
operators of the system. In Section 5 we conflate the results of the Sections 2–4 in order to calculate the
depletion of the condensate explicitly. Finally, we summarize our results in Section 6 and present a short
outlook of possible further calculations.

2 Bose Gases in Random Potentials

We describe a diluted homogeneous Bose gas in a random potential U(x) with the property

U∗(x) = U(x) (3)
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and with contact interaction by a grand-canonical Hamiltonian in second quantized form

Ĉ = Ĥ − µN̂ =

∫
d3x

{
ψ̂†(x)

[
− h̄2

2m
∇2 − µ+ U(x)

]
ψ̂(x) +

g

2
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)

}
, (4)

where m denotes the particle mass, µ is the chemical potential and g controls the strength of the particle
interaction which is given by

g =
4πh̄2

m
a, (5)

with the s-wave scattering length a [15]. Due to the fact that we consider a diluted gas, we can neglect
all higher terms for the interaction, e. g. three-particle interaction terms.

2.1 Equation of Motion

In the following we apply the field-theoretic background method [22–25] in order to determine the de-
pendency of the grand-canonical partition function

Z = Tr
[
exp

(
−β Ĉ

)]
(6)

on the condensate wave functions ψ(x) and ψ∗(x) which describe the macroscopic occupation of the
ground state and therefore represent the order parameters of Bose-Einstein condensation. With the
usual definition of quantum averages

〈 · 〉 =
1

Z
Tr
[
· exp

(
−β Ĉ

)]
, (7)

the condensate wave functions correspond to the expectation values of the field operators

ψ(x) =
〈
ψ̂(x)

〉
, (8)

ψ∗(x) =
〈
ψ̂†(x)

〉
. (9)

According to the background method we decompose the field operators

ψ̂(x) = ψ(x) + δψ̂(x), (10)

ψ̂†(x) = ψ∗(x) + δψ̂†(x), (11)

where the operators

δψ̂(x) = ψ̂(x)−
〈
ψ̂(x)

〉
, (12)

δψ̂†(x) = ψ̂†(x)−
〈
ψ̂†(x)

〉
, (13)

characterize the fluctuations around the respective mean value ψ(x) or ψ∗(x), so they describe the

occupation of the excited states. The definition of the fluctuation operators δψ̂(x) and δψ̂†(x) in (12)
and (13) directly yields that their expectation values vanish:〈

δψ̂(x)
〉

=
〈
δψ̂†(x)

〉
= 0. (14)

Inserting (10) and (11) into (4) yields up to second order in δψ̂† and δψ̂:

Ĉ =

∫
d3x

{
ψ∗(x)

[
− h̄2

2m
∇2 − µ+ U(x)

]
ψ(x) +

g

2
ψ∗(x)ψ∗(x)ψ(x)ψ(x)

+ δψ̂†(x)

[
− h̄2

2m
∇2 − µ+ U(x)

]
ψ(x) + ψ∗(x)

[
− h̄2

2m
∇2 − µ+ U(x)

]
δψ̂(x)

+ g δψ̂†(x)ψ∗(x)ψ(x)ψ(x) + g δψ̂(x)ψ∗(x)ψ∗(x)ψ(x)

+ δψ̂†(x)

[
− h̄2

2m
∇2 − µ+ U(x) + 2g ψ∗(x)ψ(x)

]
δψ̂(x)

+
g

2
δψ̂†(x)δψ̂†(x)ψ(x)ψ(x) +

g

2
δψ̂(x)δψ̂(x)ψ∗(x)ψ∗(x)

}
. (15)
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The terms in (15) that do not depend on δψ̂ or δψ̂† represent the usual Gross-Pitaevskii theory. Fur-

thermore, it will turn out shortly that all terms in this expression which are linear to δψ̂† or δψ̂ vanish.
The terms in (15) which are proportional to δψ̂†δψ̂ represent the Hartree and Fock contributions which

are degenerated due to the contact interaction, those which contain δψ̂†δψ̂† or δψ̂δψ̂, correspond to the
Bogoliubov contribution. Terms of third or fourth order in δψ̂ or δψ̂† would correspond to corrections
to the Bogoliubov theory. A consideration of these terms would go beyond the scope of this work, so we
have to assume that the fluctuations in (10) and (11) are small.

Considering the grand-canonical partition function Z in (6), we define the grand-canonical potential Γ
as follows:

Z = exp {−β Γ [ψ(x), ψ∗(x)]}. (16)

By analogy with quantum statistics we have to minimize Γ with respect to ψ∗. This gives with (6) and
(15) the condition

δΓ [ψ(x), ψ∗(x)]

δψ∗(x)
=

[
− h̄2

2m
∇2 − µ+ U(x) + g |ψ(x)|2

]
ψ(x)

+
1

Z
Tr

({[
− h̄2

2m
∇2 − µ+ U(x) + 2g |ψ(x)|2

]
δψ̂(x) + g ψ(x)ψ(x)δψ̂†(x)

+ 2g ψ(x)δψ̂†(x)δψ̂(x) + g ψ∗(x)δψ̂(x)δψ̂(x)

}
exp

[
−β Ĉ

])
= 0. (17)

With the quantum average defined in (7) we can rewrite (17) more concisely as

0 =

[
− h̄2

2m
∇2 − µ+ U(x) + g |ψ(x)|2

]
ψ(x) +

[
− h̄2

2m
∇2 − µ+ U(x) + 2g |ψ(x)|2

]〈
δψ̂(x)

〉
+ gψ(x)ψ(x)

〈
δψ̂(x)

〉
+ 2g ψ(x)

〈
δψ̂†(x)δψ̂(x)

〉
+ g ψ∗(x)

〈
δψ̂(x)δψ̂(x)

〉
. (18)

Taking into account (14) eq. (18) simplifies to[
− h̄2

2m
∇2 − µ+ U(x) + g |ψ(x)|2

]
ψ(x) + 2g ψ(x)

〈
δψ̂†(x)δψ̂(x)

〉
+ g ψ∗(x)

〈
δψ̂(x)δψ̂(x)

〉
= 0. (19)

Thus, we conclude that the usual Gross-Pitaevskii equation for the condensate wave function is modified

by a normal correlation
〈
δψ̂†(x)δψ̂(x)

〉
, which corresponds to the Hartree and Fock contribution, as well

as an anomalous correlation
〈
δψ̂(x)δψ̂(x)

〉
which originates from the Bogoliubov contribution.

Due to the hermiticity of the one-particle Hamiltonian the terms of (15) which are linear in δψ̂(x) read

δψ̂(x)

[
− h̄

2m
∇2 − µ+ U(x) + g|ψ(x)|2

]
ψ∗(x), (20)

where the terms of (15) which are linear in δψ̂(x) directly take the form

δψ̂†(x)

[
− h̄

2m
∇2 − µ+ U(x) + g|ψ(x)|2

]
ψ(x). (21)

We identify the prefactor of δψ̂ in (20) as the complex conjugate of the zeroth order in the fluctuation of

(19) and the prefactor of δψ̂† in (21) as the zeroth order of (19) itself. By realizing that we can neglect

terms of the structure δψ̂(x)
〈
δψ̂(x)δψ̂(x)

〉
because they correspond to higher than second order in δψ̂(x)

we deduce that (20) and (21) vanish in our approximation due to (19). Therefore we can simplify (15) to

Ĉ =

∫
d3x

{
ψ∗(x)

[
− h̄2

2m
∇2 − µ+ U(x)

]
ψ(x) +

g

2
ψ∗(x)ψ∗(x)ψ(x)ψ(x)

+ δψ̂†(x)

[
− h̄2

2m
∇2 − µ+ U(x) + 2g ψ∗(x)ψ(x)

]
δψ̂(x)

+
g

2
δψ̂†(x)δψ̂†(x)ψ(x)ψ(x) +

g

2
δψ̂(x)δψ̂(x)ψ∗(x)ψ∗(x)

}
. (22)

Thus, in the following every calculation of a quantum average is meant to be evaluated by (7) with the
Hamiltonian given in (22).
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2.2 Perturbative Approach

We expand the condensate wave function ψ in both the quantum fluctuations δψ̂ and the disorder potential
U . Therefore we choose the ansatz

ψ(x) = ψ00(x) + ψ01(x) + ψ02(x) + ψ10(x) + ψ11(x) + ψ12(x) + . . . , (23)

where the first index denotes the order of δψ̂†δψ̂ or δψ̂δψ̂ and the second index contains the order of U .
In order to simplify the perturbative calculation, we can take into account the following symmetry

considerations. Because of the spatial homogeneity of the problem, we know that all terms in this
expansion which are independent of U will be spatially constant i.e.

ψ00(x) = ψ00, (24)

ψ10(x) = ψ10. (25)

Furthermore we use the relation
ψ∗(x) = ψ(x) (26)

which is apparent due to the fact that ψ describes the ground state of the system which is a condensate
at rest and the random potential U is assumed to be real as stated in (3).

Inserting (23) into (19) with our preliminary considerations (24)–(26) in mind gives

0 =
[
−µ+ gψ2

00

]
ψ00, (27)

0 =

[
− h̄2

2m
∇2 − µ+ 3gψ2

00

]
ψ01(x) + ψ00U(x), (28)

0 =

[
− h̄2

2m
∇2 − µ+ 3gψ2

00

]
ψ02(x) + ψ01(x)U(x) + 3gψ00ψ

2
01(x), (29)

0 =
[
−µ+ 3gψ2

00

]
ψ10 + gψ00

〈
δψ̂(x)δψ̂(x)

〉
0

+ 2gψ00

〈
δψ̂†(x)δψ̂(x)

〉
0
, (30)

0 =

[
− h̄2

2m
∇2 − µ+ 3gψ2

00

]
ψ11(x) + U(x)ψ10 + 6gψ00ψ10ψ01(x) + gψ01(x)

〈
δψ̂(x)δψ̂(x)

〉
0

+ 2gψ01(x)
〈
δψ̂†(x)δψ̂(x)

〉
0

+ gψ00

〈
δψ̂(x)δψ̂(x)

〉
U

+ 2gψ00

〈
δψ̂†(x)δψ̂(x)

〉
U
, (31)

0 =

[
− h̄2

2m
∇2 − µ+ 3gψ2

00

]
ψ12(x) + U(x)ψ11(x) + 6gψ00ψ10ψ02(x) + 6gψ00ψ01(x)ψ11(x)

+ 3gψ10ψ
2
01(x) + gψ02(x)

〈
δψ̂(x)δψ̂(x)

〉
0

+ 2gψ02(x)
〈
δψ̂†(x)δψ̂(x)

〉
0

+ gψ01(x)
〈
δψ̂(x)δψ̂(x)

〉
U

+ 2gψ01(x)
〈
δψ̂†(x)δψ̂(x)

〉
U

+ gψ00

〈
δψ̂(x)δψ̂(x)

〉
U2

+ 2gψ00

〈
δψ̂†(x)δψ̂(x)

〉
U2
, (32)

where 〈 · 〉0, 〈 · 〉U and 〈 · 〉U2 denote the corresponding terms in an expansion referring to U of 〈 · 〉.

2.3 Properties of Random Potentials

A random potential U(x) is defined by its statistical properties which can be expressed in terms of its
cumulants. As we expanded in Section 2.2 the condensate wave function up to second order of U , we
only need to take care of the first and second cumulant of U .

We define the disorder average
◦ (33)

as the average of the quantity ◦ over all possible configurations of the random potential.
By demanding homogeneity we can write immediately for the first cumulant, which corresponds to the

first moment,
U(x) = U(x0) = U0 = const. (34)

Due to the structure of the Hamiltonian in (4), this constant can always be pulled into the chemical
potential µ, so that we can assume without loss of generality

U(x) = 0. (35)

With this we can immediately conclude that the disorder average of any quantity which is linear in U
vanishes, i.e. we obtain

ψ10(x) = ψ11(x) =
〈
δψ̂(x)δψ̂(x)

〉
U

=
〈
δψ̂†(x)δψ̂(x)

〉
U

= 0. (36)
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Because of (35), the second cumulant of U corresponds to its second moment. Due to homogeneity
this cumulant can only depend on the difference of the respective coordinates:

U(x)U(x′) = R(x− x′). (37)

2.4 Particle Densities

For each realisation of the disorder potential U the quantity

n [U ] =
〈
ψ̂†(x)ψ̂(x)

〉
(38)

represents the particle density.
Correspondingly the density of the globally condensed particles n0 is defined according to

√
n0 [U ] =

〈
ψ̂(x)

〉
. (39)

Using the disorder average introduced in Section 2.3 we find the following equations for the disorder
averaged particle and condensate density:

n =
〈
ψ̂†(x)ψ̂(x)

〉
, (40)

n0 =
〈
ψ̂†(x)

〉 〈
ψ̂(x)

〉
. (41)

Note that for the density of the condensed particles n0 we have to perform the disorder average (33)
before taking the square of the expression because in general these two operations will not commute.

Inserting the decomposition of the field operators ψ̂ and ψ̂† (10) and (11) and the expansion of the
condensate wave function ψ (23) by taking into account (14), (24)–(26) and (36) leads to

n = ψ00ψ00 + ψ01(x)ψ01(x) + 2ψ00ψ02(x) + 2ψ00ψ10 + 2ψ01(x)ψ11(x) + 2ψ10ψ02(x)

+ 2ψ00ψ12(x) +
〈
δψ̂†(x)δψ̂(x)

〉
0

+
〈
δψ̂†(x)δψ̂(x)

〉
U2

(42)

n0 = ψ00ψ00 + 2ψ00ψ02(x) + 2ψ00ψ10 + 2ψ10ψ02(x) + 2ψ00ψ12(x). (43)

By inserting (43) into (42) we end up with

n = n0 +
〈
δψ̂†(x)δψ̂(x)

〉
0

+ ψ01(x)ψ01(x) + 2ψ01(x)ψ11(x) +
〈
δψ̂†(x)δψ̂(x)

〉
U2
. (44)

With (42) and (43) we are able to calculate the particle and condensate density n and n0 separately as
functions of the chemical potential µ. This involves, in particular, to compute ψ12(x) from (32). However,
as long as we are only interested in the relation between the particle density and the condensate density,
we have to invert the relation n0 = n0(µ) and insert the result into n = n(µ). On the other hand, with
(44) we can directly calculate the particle density n as a function of the condensate density n0 without
taking into account ψ12(x).

This means that the particle density n decomposes into the occupation of the ground state n0 and

additional depletion terms, where
〈
δψ̂†(x)δψ̂(x)

〉
0

represents the Bogoliubov depletion due to the ex-

citation of particles irrespective of the random potential, whereas ψ01(x)ψ01(x) describes the depletion
because of the appearance of the disorder potential on the level of the Gross-Pitaevskii-equation. Finally,

the term 2ψ01(x)ψ11(x) +
〈
δψ̂†(x)δψ̂(x)

〉
U2

represents again a depletion owing to the disorder potential

but this time on the level of the Bogoliubov theory. But in all those terms we still have to replace the
chemical potential µ by an expansion analogous to (23)

µ = µ00 + µ01 + µ02 + µ10 + . . . (45)

up to the respective order, where the zeroth order is given by

µ00 = gn, (46)

as follows from considering (27) and (42) and the first order in the disorder potential U µ01 vanishes
due to (35). By inserting the expansion of the chemical potential into the different depletion terms, we

obtain in both terms ψ01(x)ψ01(x) and
〈
δψ̂†(x)δψ̂(x)

〉
U2

additional terms that are of first order in the

fluctuations and of second order in the disorder potential and therefore they correspond to depletion
terms that arise from the random potential on the level of the Bogoliubov theory.
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3 Bogoliubov Transformation

In order to calculate the correlation function
〈
ψ̂†(x)ψ̂(x)

〉
and

〈
ψ̂(x)ψ̂(x)

〉
we have to evaluate traces

as given in (7). To allow the calculation of these traces we diagonalize the terms of the Hamiltonian
(22) which do not depend on the disorder potential and regard every term that depends on the random
potential as a small perturbation.

3.1 Generalized Bogoliubov Transformation

As introduced in Ref. [26] we consider a general Hamiltonian

Ĥ =
∑
k1,k2

(
Ak1k2

â†k1
âk2

+
1

2
Bk1k2

â†k1
â†k2

+
1

2
B∗k1k2

âk1
âk2

)
, (47)

that is quadratic in the bosonic annihilation and creation operators â and â† which fulfill the commutation
relations [

â†k1
, â†k2

]
= [âk1

, âk2
] = 0 (48)[

âk1
, â†k2

]
= δk1,k2

(49)

and A and B are coefficient matrices with the property

A = A†, (50)

B = BT . (51)

Using a convenient matrix-vector notation with

âT = (â1, â2, â3, · · · ) (52)

â†T =
(
â†1, â

†
2, â
†
3, · · ·

)
(53)

we can rewrite (47) as

Ĥ = â†TAâ +
1

2
â†TBâ† +

1

2
âTB∗â (54)

and reformulate (48) and (49) as

ââT − (ââT )T = â†â†T − (â†â†T )T = 0, (55)

ââ†T − (â†âT )T = I, (56)

where I denotes the identity.

3.1.1 Bogoliubov Quasi-Particle Operators

In order to diagonalize the Hamiltonian (47) we choose a new set of operators b̂ and b̂† which depend
on the old operators â and â† according to

b̂ = U†â− V †â†, (57)

b̂† = UT â† − V T â. (58)

The yet unknown transformation matrices U and V can then be fixed by the condition that the Hamil-
tonian (47) takes the form

Ĥ = b̂†TΛb̂ + κI, (59)

where κ is a constant and Λ a diagonal matrix. By taking the hermitian conjugate of (59) and realizing
that Ĥ is an hermitian operator, we immediately obtain the conditions

Λ∗ = Λ, (60)

κ∗ = κ. (61)

By demanding that b̂ and b̂† fulfill the same bosonic commutation relations as â and â† in (55) and

(56) and inserting the definition of b̂ and b̂† from (57) and (58) we effectively end up with the conditions

U†U − V †V = I (62)

V †U∗ − U†V ∗ = 0, (63)
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where we used (55) and (56) several times.
We can express (62) and (63) and their respective complex conjugate in one matrix equation by(

U† V †

V T UT

)(
U −V ∗
−V U∗

)
=

(
I 0
0 I

)
, (64)

where
( ◦ ·
· ·
)

denotes a matrix with the dimension 2 dim(◦) and the corresponding blocks.
Interpreting (64) as the product of a matrix and its inverse we can immediately conclude(

U −V ∗
−V U∗

)(
U† V †

V T UT

)
=

(
I 0
0 I

)
. (65)

With the relations contained in (65) and the definitions (57) and (58) the inverse transformation between
old and new operators reads

â = U b̂ + V ∗b̂† (66)

â† = U∗b̂† + V b̂. (67)

3.1.2 Determination of the Bogoliubov Dispersion and Transformation Matrices

Considering the commutator of b̂j , b̂
†
j and âj with the respective representation of Ĥ in (47) and (59)

yields [
b̂j , Ĥ

]
=
(

Λb̂
)
j

(68)[
b̂†j , Ĥ

]
= −

(
Λb̂†

)
j

(69)[
âj , Ĥ

]
= (Aâ)j +

(
Bâ†

)
j

(70)

where we used (51) for (70) and (◦)j denotes the j-th component of ◦.
By using (66), (68) and (69) we obtain[

âj , Ĥ
]

=
(
UΛb̂

)
j
−
(
V ∗Λb̂†

)
j
. (71)

Inserting (66) and (67) directly into (70) yields[
âj , Ĥ

]
=
(

[AU +BV ] b̂
)
j

+
(

[AV ∗ +BU∗] b̂†
)
j

(72)

and we obtain by evaluating
[[
âj , Ĥ

]
, b̂j

]
and

[[
âj , Ĥ

]
, b̂†j

]
with (71) and (72)

UΛ = AU +BV (73)

−V ∗Λ = AV ∗ +BU∗. (74)

Applying the same argumentation to
[
â†, Ĥ

]
leads with (60) only to the complex conjugate of (73) and

(74).
We can now determine κ by inserting (66) and (67) into (47) and taking into account the commutation

relations of b̂ and b̂† and the relations (73) and (74) which yields

κ = −Tr
(
ΛV TV ∗

)
. (75)

In order to specify Λ, U and V further, we express (73) and the complex conjugate of (74) in one
matrix equation (

A B∗

−B∗ −A∗
)(

U 0
V 0

)
=

(
U 0
V 0

)(
Λ 0
0 0

)
, (76)

where we used the same notation as e. g. in (64). Considering the j-th column of this matrix equation
(76) yields (

A B
−B∗ −A∗

)(
U
V

)
j

= λj

(
U
V

)
j

, (77)

with (
U
V

)T
j

= (u1j , . . . , udim(U)j , v1j , . . . , vdim(V )j). (78)
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We can interpret (77) as an eigenvalue equation of the dimensionality 2 dim(A) which is twice of the
dimensionality of our original problem (47). By taking the complex conjugate of (77), multiplying both
sides by −1 and interchanging the upper dim(A) rows of the matrix with the lower dim(A) rows, one
can show that if λj is the eigenvalue with the eigenvector (U, V )Tj then −λj is the eigenvalue with the

eigenvector (V ∗, U∗)Tj . In the following we will apply this formalism to a positive definite Hamiltonian,
therefore Λ consists only of positive eigenvalues λj .

The diagonalisation of a general Hamiltonian as given in (47) can be performed explicitly by solving the
eigenvalue problem given in (77), with the respective coefficient matrices of the Hamiltonian, which leads
to the Bogoliubov dispersion as the resulting eigenvalues. In order to fix the transformation matrices we
have to take into account in addition the relations given in (64).

Therefore we finally fixed Λ, U and V due to the choice of A and B and can elaborate the explicit
diagonal form (59) of (47) by evaluating κ according to (75).

3.2 Application of Bogoliubov Transformation

Using the fluctuation operators δψ̂(x) and δψ̂†(x), the disorder potential U(x) and the fields ψ(x) and
ψ∗(x) in their k-representation which is defined via

f(x) =
1√
V

∑
k

f(k) exp (ikx), (79)

f†(x) =
1√
V

∑
k

f†(−k) exp (ikx), (80)

where we substitute

δψ̂(k) = âk, (81)

δψ̂†(k) = â†k, (82)

we can write the Hartree, Fock and Bogoliubov terms of (22) in k-space

ĈBog =
∑
k1,k2

[(
h̄2k2

2

2m
− µ+ 2g ψ2

00

)
â†−k1

âk2 +
g

2
ψ2

00

(
â†−k1

â†−k2
+ âk1 âk2

)]
δk1+k2,0

+
1√
V

∑
k1,k2,k3

({
U(k3) + 4g ψ00 [ψ01(k3) + ψ02(k3)]

}
â†−k1

âk2
+ g ψ00 [ψ01(k3) + ψ02(k3)]

×
(
â†−k1

â†−k2
+ âk1

âk2

))
δk1+k2+k3,0

+
1

V

∑
k1,k2,k3,k4

g

2
ψ01(k3)ψ01(k4)

(
4 â†−k1

âk2
+ â†−k1

â†−k2
+ âk1

âk2

)
δk1+k2+k3+k4,0. (83)

Note that the sum over k1 and k2 only runs over all values with

k1 6= 0 ∧ k2 6= 0, (84)

because k1 = 0 or k2 = 0 corresponds to creation or annihilation operators for the condensate which
were explicitly taken out by the ansatz (10) and (11).

The first sum of this expression is of zeroth order in U ; all the other parts are at least linear or quadratic
in U . Therefore, as described in the introduction of Section 3, we diagonalize

Ĉ0
Bog =

∑
k

[(
h̄2k2

2m
− µ+ 2g ψ2

00

)
â†kâk +

g

2
ψ2

00

(
â†−kâ

†
k + â−kâk

)]
(85)

and consider every additional term in (83) as a small perturbation. Due to the fact that (85) characterizes
the excitation out of the ground state of the system in the absence of the random potential U , we can
express the grand-canonical energy of the exited quasi-particles in zeroth order in U with (59) as

C0
ex. part. ∝

∑
k

nkλk. (86)

If one of the λk is smaller than 0, the minimal grand-canonical energy would diverge which corresponds
to an unphysical behavior. Therefore we conclude

λk > 0, (87)
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which means that the grand-canonical Hamiltonian (85) is positive definite. Note that the case k with
λk = 0, which could lead to ambiguities, does not appear due to (84) as we will see below in (96).

Following Section 3.1 we define the matrices

Ak,k′ = εkδk,k′ (88)

Bk,k′ = g ψ2
00δk,−k′ , (89)

with the abbreviation

εk =
h̄2k2

2m
− µ+ 2g ψ2

00. (90)

Consequently we have to solve the eigenvalue problem given in (77) with (88) and (89) which takes the
form 

...
(εk − λk′)uk,k′ + g ψ2

00v−k,k′
...

−(ε−k + λk′)v−k,k′ − g ψ2
00uk,k′

...


=


0

...

0

 , (91)

where we explicitly stated the k-th row of the upper half and the −k-th row of the lower half of the
resulting vector. Considering (91), only uk,k′ and v−k,k′ are coupled. Therefore we choose the following
ansatz for the eigenvectors:

uk,k′ = uk′δk,k′ (92)

vk,k′ = vk′δ−k,k′ . (93)

Inserting (92) and (93) into (91) yields the system of linear equations(
εk − λk g ψ2

00

−g ψ2
00 −εk − λk

)(
uk
v−k

)
= 0, (94)

which has a non-trivial solution only if the condition

det

(
εk − λk g ψ2

00

−g ψ2
00 −εk − λk

)
= 0 (95)

is fulfilled. With (87) the condition (95) immediately leads to

λk =
√
ε2
k − (g ψ2

00)2, (96)

uk = −v−k
g ψ2

00

εk − λk
. (97)

The transformation matrices entries uk and vk will only depend on εk and λk which are both symmetric
in k. This yields

u−k = uk, (98)

v−k = vk. (99)

With the relation given in (64) we conclude

uk = −
√
εk + λk

2λk
, (100)

vk =

√
εk − λk

2λk
, (101)

where uk and vk are fixed up to the minus sign which can be interchanged between both terms.
With (59) and (75) we can state the explicit diagonalized form of the grand-canonical Hamiltonian

(85):

Ĉ0
Bog =

∑
k

λkb̂
†
kb̂k +

∑
k

λk − εk
2

. (102)

Note that the usual Bogoluibov transformation as written in textbooks (e. g. [15]) directly introduces
the ansatz given in (92) and (93) and derive the Bogoliubov-de Gennes equation in (94) by demanding
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the conservation of the commutation relations. In Section 3.1 we derived a more general formalism which
justifies (92) and (93) and can be used for diagonalizing explicitly known quadratic Hamiltonians.

With the structure of the transformation matrices (92) and (93) and the relations in (99)–(101) we can

write the old operators â and â† in terms of the new operators b̂ and b̂† with (66) and (67) as follows:

âk = ukb̂k + vkb̂
†
−k (103)

â†k = ukb̂
†
k + vkb̂−k. (104)

Inserting (102), (103) and (104) into (83) leads to

ĈBog =
∑
k

(
λkb̂
†
kb̂k −

εk − λk
2

)
+
∑
k,k′

[(
1AUk,k′ + 1AU

2

k,k′

)
b̂†kb̂k′ +

(
2AUk,k′ + 2AU

2

k,k′

)
b̂kb̂
†
k′

+
(

3AUk,k′ + 3AU
2

k,k′

)
b̂kb̂k′ +

(
4AUk,k′ + 4AU

2

k,k′

)
b̂†kb̂
†
k′

]
, (105)

where the corresponding coefficient matrices, which are linear in the random potential U , take the form

1AUk,k′ =
1√
V
{[U(k− k′) + 4g ψ00ψ01(k− k′)]ukuk′ + g ψ00ψ01(k− k′) (ukvk′ + uk′vk)} , (106)

2AUk,k′ =
1√
V
{[U(−k + k′) + 4g ψ00ψ01(−k + k′)] vkvk′ + g ψ00ψ01(−k + k′) (ukvk′ + uk′vk)} , (107)

3AUk,k′ =
1√
V
{[U(−k− k′) + 4g ψ00ψ01(−k− k′)]uk′vk + g ψ00ψ01(−k− k′) (ukuk′ + vkvk′)} , (108)

4AUk,k′ =
1√
V
{[U(k + k′) + 4g ψ00ψ01(k + k′)]ukvk′ + g ψ00ψ01(k + k′) (ukuk′ + vkvk′)} , (109)

and those, which are quadratic in the disorder potential U , are defined via

1AU
2

k,k′ =
1√
V

[
g ψ00ψ02(k− k′) +

g

2
√
V

∑
k′′

ψ01(k′′)ψ01(k− k′ − k′′)
]

(4ukuk′ + ukvk′ + uk′vk) , (110)

2AU
2

k,k′ =
1√
V

[
g ψ00ψ02(−k + k′) +

g

2
√
V

∑
k′′

ψ01(k′′)ψ01(−k + k′ − k′′)
]

× (4vkvk′ + ukvk′ + uk′vk) , (111)

3AU
2

k,k′ =
1√
V

[
g ψ00ψ02(−k− k′) +

g

2
√
V

∑
k′′

ψ01(k′′)ψ01(−k− k′ − k′′)
]

× (4uk′vk + ukuk′ + vkvk′) , (112)

4AU
2

k,k′ =
1√
V

[
g ψ00ψ02(k + k′) +

g

2
√
V

∑
k′′

ψ01(k′′)ψ01(k + k′ − k′′)
]

(4ukvk′ + ukuk′ + vkvk′) . (113)

Due to the symmetry of the transfer matrices U and V given in (98) and (99) we conclude the following
symmetry relations of the coefficients Ajk,k′

1Ajk,k′ = 1Aj−k′,−k (114)

2Ajk,k′ = 2Aj−k′,−k (115)

4Ajk,k′ = 3Aj−k′,−k, (116)

where j = U, U2. These relations correspond to the fact that Ĉ is a hermitian operator and the coefficients
consist only of real constants and functions that are real in x-space according to (3) and (26) and therefore
fulfill in k-space

f∗(k) = f(−k) (117)

as can be read off (79) and (80) by using f(x) = f†(x). The relation (117) gives for the coefficients

iAj,∗k,k′ = iAj−k,−k′ , (118)

for i = 1, 2, 3, 4 and j = U, U2.

4 Calculation of Correlation Functions

To obtain the condensate density n0 and the additional depletion terms in (44) we have next to calculate

the correlation functions
〈
ψ̂†(x)ψ̂(x)

〉
and

〈
ψ̂(x)ψ̂(x)

〉
in zeroth, first and second order in the disorder

potential for a grand-canonical Hamiltonian as given in (105). Therefore we introduce the Dirac picture
of quantum mechanics.
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4.1 Dirac Picture

We can describe quantum mechanics basically in three different pictures, the Schrödinger picture, the
Heisenberg picture and the Dirac picture [27]. The fundamental difference of these pictures is the in-
terpretation of the propagation in time of the system. In a system which does not explicitly depend on
time, we can define the state of the system as time dependent and the observables as time independent.
This definition corresponds to the Schrödinger picture. The Heisenberg picture is defined in the same
manner but with interchanged roles of the state and the observable referring to the time dependence. In
the Dirac picture both the observables and the states propagate in time. We will define the Dirac picture
out of the Schrödinger picture but directly with an imaginary time

t→ −iτ, (119)

because we are interested in quantum statistical calculations.
Considering a grand-canonical Hamiltonian

Ĝ = Ĝ0 + V̂ , (120)

where Ĝ0 corresponds to a free, which means a diagonalized system, and V̂ denotes the interacting parts
of Ĝ, we define for a state |ψ(τ)〉 in the Schrödinger picture the transition to the Dirac picture by

|ψD(τ)〉 = Û0(τ0, τ) |ψ(τ)〉 , (121)

where τ0 denotes a fixed initial time and the time evolution operator Û0 is defined via

Û0(τ, τ ′) = exp

[
− 1

h̄
Ĝ0(τ − τ ′)

]
. (122)

On the other hand, we describe the evolution of the state in the Dirac picture by

|ψD(τ)〉 = ÛD(τ, τ ′) |ψD(τ ′)〉 . (123)

By considering a state in the Dirac picture |ψD(τ)〉, changing to the Schrödinger picture with (121),
expressing the state |ψ(τ)〉 through |ψ(τ ′)〉 by using the Schrödinger time evolution operator Û(τ, τ ′)
and changing back to the Dirac picture with (121) we obtain an explicit representation for ÛD(τ, τ ′):

ÛD(τ, τ ′) = Û0(τ0, τ)Û(τ, τ ′)Û0(τ ′, τ0), (124)

where the time evolution operator in the Schrödinger picture Û(τ, τ ′) for a time independent grand-
canonical Hamiltonian Ĝ takes the form

Û(τ, τ ′) = exp

[
− 1

h̄
Ĝ(τ − τ ′)

]
. (125)

If we demand the equality of the expectation value of any operator in the Dirac and the Schrödinger
picture, i. e.

〈ψD(τ)| ÂD(τ) |ψD(τ)〉 = 〈ψ(τ)| Â |ψ(τ)〉 , (126)

we obtain by inserting (121) and the respective relation for the adjoint

ÂD(τ) = Û0(τ0, τ)ÂÛ0(τ, τ0). (127)

Calculating the time derivative ∂
∂τ ψD(τ) by changing to the Schrödinger picture with (121), using the

imaginary-time dependent Schrödinger equation

− h̄ ∂
∂τ
|ψ(τ)〉 = Ĝ |ψ(τ)〉 (128)

and returning into the Dirac picture yields

− h̄ ∂
∂τ
|ψD(τ)〉 = V̂D(τ) |ψD(τ)〉 . (129)

By using (123) and realising that τ and τ ′ are independent variables we obtain

− h̄ ∂
∂τ
ÛD(τ, τ ′) = V̂D(τ)ÛD(τ, τ ′), (130)
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which we can integrate to end up with the Dyson series

ÛD(τ, τ ′) = I − 1

h̄

τ∫
τ ′

dτ ′′V̂D(τ ′′) +
1

h̄2

τ∫
τ ′

dτ ′′
τ ′′∫
τ ′

dτ ′′′V̂D(τ ′′)V̂D(τ ′′′) + . . . , (131)

where I denotes again the identity.
In order to rewrite (131) more conveniently we introduce the imaginary time-ordering operator

T̂τ

[
Â(τ1)B̂(τ2)

]
=

{
Â(τ1)B̂(τ2) if τ1 > τ2,

B̂(τ2)Â(τ1) if τ2 > τ1,
(132)

to end up with

ÛD(τ, τ ′) = T̂τ

I − 1

h̄

τ∫
τ ′

dτ ′′V̂D(τ ′′) +
1

2h̄2

τ∫
τ ′

dτ ′′
τ∫

τ ′

dτ ′′′V̂D(τ ′′)V̂D(τ ′′′) + . . .

 . (133)

4.2 Perturbation Theory for Quantum Averages and Wick Theorem

Using the time evolution operator in the Dirac picture (124) and in the Schrödinger picture (125) yields
with (120) and (122)

exp (−βĜ) = exp (−βĜ0)ÛD(h̄β, 0). (134)

Therefore we can write the quantum average of Â1 . . . Ân with (6), (7) and (134) as

〈
Â1 . . . Ân

〉
=

Tr
[
ÛD(h̄β, 0)Â1 . . . Ân exp (−βĜ0)

]
Tr
[
exp (−βĜ0)ÛD(h̄β, 0)

] . (135)

Additionally we obtain from the relation of an operator in the Dirac and the Schrödinger picture (122)
and (127)

lim
τ→τ0

ÂD(τ) = Â. (136)

Therefore we can rewrite the trace over n operators Â1 . . . Ân as

Tr
(
Â1 . . . Ân

)
= lim
τn↑τn−1

. . . lim
τ1↑0

Tr
{
T̂τ

[
Â1D(τ1) . . . ÂnD(τn)

]}
, (137)

where the limits lim
τn↑τn−1

. . . lim
τ1↑0

have to be evaluated from the left to the right and lim
τn↑τn−1

denotes lim
τn→τn−1
τn<τn−1

.

Note that due to the introduced imaginary times τ1, . . . , τn with τi 6= τj for i 6= j, the commutation

relations of the operators Â1, . . . , Ân are replaced by their time order since due to the definition of the
time ordering operator T̂τ in (132) we obtain

T̂τ

(
Â1(τ1)Â2(τ2)

)
= T̂τ

(
Â2(τ2)Â1(τ1)

)
. (138)

Therefore we have to be careful when introducing τ1, . . . , τn to keep the natural ordering of the operators
which means

Tr
(
Â1Â2

)
= lim
τ2↑τ1

lim
τ1↑0

Tr
{
T̂τ

[
Â1(τ1)Â2(τ2)

]}
. (139)

Using instead the limits lim
τ1↑τ2

lim
τ2↑0

would reverse the order of the operators and thus lead to a different

expression.
With the consideration in (137) we can rewrite (135) as

〈
Â1 . . . Ân

〉
= lim

τn↑τn−1

. . . lim
τ1↑0

Tr

(
T̂τ

{[
I − 1

h̄

h̄β∫
0

dτV̂D(τ) +
1

2h̄2

h̄β∫
0

dτ

h̄β∫
0

dτ ′V̂D(τ)V̂D(τ ′) + . . .
]

× Â1D(τ1) . . . ÂnD(τn)

}
exp (−βĜ0)

)(
Tr

{
exp (−βĜ0)T̂τ

[
I − 1

h̄

h̄β∫
0

dτV̂D(τ)

+
1

2h̄2

h̄β∫
0

dτ

h̄β∫
0

dτ ′V̂D(τ)V̂D(τ ′) + . . .
]})−1

, (140)



14 4 CALCULATION OF CORRELATION FUNCTIONS

where we inserted the explicit form of the time evolution operator UD in (133). Note that in (137) we
also were allowed to use the general limit τ1 → 0 but in (140) we have to set τ1 < 0 in order to keep the
natural order of the operators because τ and τ ′ run from 0 to h̄β > 0.

With the definition

〈
Â1D(τ1) . . . ÂnD

〉τ
0

=
Tr
{
T̂τ

[
Â1D(τ1) . . . ÂnD(τn)

]
exp(−βĜ0)

}
Tr[exp (−βĜ0)]

, (141)

where τ denotes that the average is time-ordered by T̂τ and 0 denotes that the average is taken with
respect to Ĝ0, we can write the expansion of (140) in V̂D as

〈
Â1 . . . Ân

〉
= lim

τn↑τn−1

. . . lim
τ1↑0

{〈
Â1D(τ1) . . . ÂnD(τn)

〉τ
0

+

h̄β∫
0

dτ

h̄

[
−
〈
V̂D(τ)Â1D(τ1) . . . ÂnD(τn)

〉τ
0

+
〈
V̂D(τ)

〉τ
0

〈
Â1D(τ1) . . . ÂnD(τn)

〉τ
0

]

+

h̄β∫
0

dτ

h̄

h̄β∫
0

dτ ′

h̄

[
1

2

〈
V̂D(τ)V̂D(τ ′)Â1D(τ1) . . . ÂnD(τn)

〉τ
0

− 1

2

〈
V̂D(τ)V̂D(τ ′)

〉τ
0

〈
Â1D(τ1) . . . ÂnD(τn)

〉τ
0

−
〈
V̂D(τ)Â1D(τ1) . . . ÂnD(τn)

〉τ
0

〈
V̂D(τ ′)

〉τ
0

+
〈
Â1D(τ1) . . . ÂnD(τn)

〉τ
0

〈
V̂D(τ)

〉τ
0

〈
V̂D(τ ′)

〉τ
0

]}
. (142)

In order to calculate expressions like
〈
Â1(τ) . . . Ân(τ)

〉τ
0
, where n is an even number, we will use a

generalized form of Wick’s theorem [27] which can be written recursively〈
Â1D(τ1) . . . ÂnD(τn)

〉τ
0

=

n∑
i=2

〈
Â1D(τ1)ÂiD(τi)

〉τ
0

〈
Â2D(τ2) . . . Â(i−1)D(τi−1)Â(i+1)D(τi+1) . . .

× ÂnD(τn)
〉τ

0
. (143)

4.3 Disorder Expansion of Correlations

In order to determine the condensate density n0 as a function of the particle density n by (44), which
involves the relations given in (27)–(31), we have to calculate the correlations of the fluctuation operators〈
δψ̂†(x)δψ̂(x)

〉
0
,
〈
δψ̂†(x)δψ̂(x)

〉
U

,
〈
δψ̂†(x)δψ̂(x)

〉
U2

,
〈
δψ̂(x)δψ̂(x)

〉
0

and
〈
δψ̂(x)δψ̂(x)

〉
U

.

Decomposing the grand-canonical Hamiltonian (22) into

Ĉ = ĈGP + ĈBog, (144)

where ĈGP denotes the Gross-Pitaevskii terms of Ĉ that do not depend on the fluctuation operators δψ̂
or δψ̂† and ĈBog is given by (105), the quantum average (7) simplifies to

〈 · 〉 =
Tr
[
· exp

(
−β ĈBog

)]
Tr
[
exp

(
−β ĈBog

)] , (145)

as the factor involving ĈGP can be taken out of the trace and cancels between denominator and numerator.
Thus we can identify with (105) referring to the notation of Section 4.1

Ĝ←→ ĈBog (146)

Ĝ0 ←→
∑
k

(
λkb̂
†
kb̂k −

εk − λk
2

)
(147)

V̂ ←→
∑
k,k′

[(
1AUk,k′ + 1AU

2

k,k′

)
b̂†kb̂k′ +

(
2AUk,k′ + 2AU

2

k,k′

)
b̂kb̂
†
k′ +

(
3AUk,k′ + 3AU

2

k,k′

)
b̂kb̂k′

+
(

4AUk,k′ + 4AU
2

k,k′

)
b̂†kb̂
†
k′

]
. (148)
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Note that V is of first and second order in U and the non-b̂ or b̂†-dependent term of Ĝ0 cancels between
denominator and numerator in case of calculating averages.

Using the k-representation of δψ̂†(x)δψ̂(x) and δψ̂(x)δψ̂(x) as defined in (79)–(82), inserting the Bo-
goluibov transformation in (103) and (104) and using the symmetry relations given in (98) and (99) we
obtain explicitly

δψ̂†(x)δψ̂(x) =
1

V

∑
k1k2

exp [ix(k1 + k2)]
(
uk1

uk2
b̂†−k1

b̂k2
+ vk1

vk2
b̂k1

b̂†−k2
+ uk2

vk1
b̂k1

b̂k2

+uk1vk2 b̂
†
−k1

b̂†−k2

)
(149)

δψ̂(x)δψ̂(x) =
1

V

∑
k1k2

exp [ix(k1 + k2)]
(
uk2vk1 b̂

†
−k1

b̂k2 + uk1vk2 b̂k1 b̂
†
−k2

+ uk1uk2 b̂k1 b̂k2

+vk1
vk2

b̂†−k1
b̂†−k2

)
(150)

and therefore have to calculate the different orders in the random potential U of the correlations of all
combinations of b̂ and b̂†.

Due to Wick’s theorem (143) we will use in the following several times〈
b̂†k1D(τ1)b̂k2D(τ2)

〉τ
0

= exp

(
τ1 − τ2
h̄

λk1

)
δk1,k2

×

{
〈n̂k1
〉0 if τ1 > τ2,

〈(n̂k1〉0 + 1) if τ2 > τ1,
(151)〈

b̂†k1D(τ1)b̂†k2D(τ2)
〉τ

0
= 0, (152)〈

b̂k1D(τ1)b̂k2D(τ2)
〉τ

0
= 0, (153)

where we evaluated all traces in the occupation number representation of the quasi-particle operators b̂
and b̂† and 〈n̂k〉0 denotes the thermal occupation of the state k in the absence of the random potential
with

〈n̂k〉0 =

− ∂
∂βλk

∑
{nk′}

exp
(
−β
∑
k′
λk′nk′

)
∑
{nk′}

exp
(
−β
∑
k′
λk′nk′

) . (154)

Evaluating sums over all possible state configurations {nk′} by canceling all not k dependent terms
between denominator and numerator as well as identifying the remaining sums as geometric sequences
yields the Bose-Einstein distribution

〈n̂k〉0 =
1

exp (βλk)− 1
. (155)

4.3.1 Zeroth Order in Disorder Potentials

From the zeroth order term in (142) and the interim results (151)–(153) we immediately obtain〈
b̂†k1

b̂k2

〉
0

= δk1,k2
〈n̂k1
〉0 , (156)〈

b̂k1
b̂†k2

〉
0

= δk1,k2
(〈n̂k1

〉0 + 1), (157)〈
b̂k1 b̂k2

〉
0

= 0, (158)〈
b̂†k1

b̂†k2

〉
0

= 0. (159)

Taking the quantum average of (149) and (150) and inserting (156)–(159) leads to〈
δψ̂†(x)δψ̂(x)

〉
0

=
1

V

∑
k

[ukuk 〈n̂k〉0 + vkvk(〈n̂k〉0 + 1)] , (160)

〈
δψ̂(x)δψ̂(x)

〉
0

=
1

V

∑
k

[ukvk 〈n̂k〉0 + ukvk(〈n̂k〉0 + 1)] . (161)

With (87) and the result for 〈n̂k〉0 in (155) the limit T −→ 0 or β −→∞ yields〈
δψ̂†(x)δψ̂(x)

〉
0,T=0

=
1

V

∑
k

vkvk, (162)

〈
δψ̂(x)δψ̂(x)

〉
0,T=0

=
1

V

∑
k

ukvk. (163)
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4.3.2 First Order in Disorder Potentials

Due to (152) and (153), only averages of products of b̂ and b̂† with an equal number of creation and
annihilation operators do not vanish. If we would apply Wick’s theorem (143) to a product with an
unequal number of creation and annihilation operators, we will end up with a term proportional to the
correlation of two creation or annihilation operators which vanishes due to (152) and (153). Therefore
we have to take into account only those terms of V in (148) which give in total averages of products of
as many creation as annihilation operators.

In the following of this Subsection we will use several times (152) and (153) without further mentioning.

Firstly we calculate
〈
b̂†b̂
〉
U

with the first order term of (142) and (148) in the disorder potential U

〈
b̂†k1

b̂k2

〉
U

= − lim
τ2↑τ1

lim
τ1↑0

( h̄β∫
0

dτ

h̄
lim
τ ′↑τ

∑
k,k′

{〈[
1AUk,k′ b̂

†
kD(τ)b̂k′D(τ ′) + 2AUk,k′ b̂kD(τ)b̂†k′D(τ ′)

]
×b̂†k1D(τ1)b̂k2D(τ2)

〉τ
0
−
〈

1AUk,k′ b̂
†
kD(τ)b̂k′D(τ ′) + 2AUk,k′ b̂kD(τ)b̂†k′D(τ ′)

〉τ
0

×
〈
b̂†k1D(τ1)b̂k2D(τ2)

〉τ
0

})
. (164)

Here we have introduced τ ′ in order to be able to evaluate the time-ordered average because a time
ordering of two operators, which are taken at the same time τ , is not possible. The relation of τ and τ ′,
τ > τ ′, follows in the same manner as argued before in (140). By applying Wick’s theorem (143) to (164)
we obtain

〈
b̂†k1

b̂k2

〉
U

= − lim
τ2↑τ1

lim
τ1↑0

{ h̄β∫
0

dτ

h̄
lim
τ ′↑τ

∑
k,k′

[
1AUk,k′

〈
b̂†kD(τ)b̂k2D(τ2)

〉τ
0

〈
b̂k′D(τ ′)b̂†k1D(τ1)

〉τ
0

+ 2AUk,k′
〈
b̂kD(τ)b̂†k1D(τ1)

〉τ
0

〈
b̂†k′D(τ ′)b̂k2D(τ2)

〉τ
0

]}
. (165)

The limit τ ′ ↑ τ can now be evaluated. Note that due to carrying out Wick’s theorem, all not con-
nected terms referring to the imaginary time canceled out, which means only terms of the structure〈
Â1(τ1)Â2(τ)

〉〈
Â3(τ)Â4(τ2)

〉
are left.

Inserting (151) and performing the τ -integral and evaluating the limits of τ2 and τ1 and the sum over
k and k′ leads to

〈
b̂†k1

b̂k2

〉
U

= −
(

1AUk2,k1
+ 2AUk1,k2

)
〈n̂k2
〉0 (〈n̂k1

〉0 + 1)×


exp [β(λk2

−λk1
)]−1

λk2
−λk1

if λk1 6= λk2 ,

β if λk1
= λk2

.
(166)

In the same manner we calculate
〈
b̂k1

b̂†k2

〉
U

,
〈
b̂k1

b̂k2

〉
U

and
〈
b̂†k1

b̂†k2

〉
U

and obtain

〈
b̂k1

b̂†k2

〉
U

= −
(

1AUk1,k2
+ 2AUk2,k1

)
〈n̂k1
〉0 (〈n̂k2

〉0 + 1)×


exp [β(λk1

−λk2
)]−1

λk1
−λk2

if λk1
6= λk2

,

β if λk1 = λk2 ,
(167)

〈
b̂k1

b̂k2

〉
U

= −
(

4AUk1,k2
+ 4AUk2,k1

)
〈n̂k1
〉0 〈n̂k2

〉0
exp [β(λk1 + λk2)]− 1

λk1
+ λk2

, (168)〈
b̂†k1

b̂†k2

〉
U

= −
(

3AUk1,k2
+ 3AUk2,k1

)
(〈n̂k1〉0 + 1)(〈n̂k2〉0 + 1)

exp [β(−λk1
− λk2

)]− 1

−λk1 − λk2

. (169)

Note that inserting the explicit expression for 〈n̂k〉0 in (155) leads to

(〈n̂k1〉0 + 1) 〈n̂k2〉0
exp [β(−λk1

+ λk2
)]− 1

−λk1 + λk2

= 〈n̂k1〉0 (〈n̂k2〉0 + 1)
exp [β(λk1

− λk2
)]− 1

λk1 − λk2

, (170)

〈n̂k1
〉0 〈n̂k2

〉0
exp [β(λk1

+ λk2
)]− 1

λk1
+ λk2

= (〈n̂k1
〉0 + 1)(〈n̂k2

〉0 + 1)
exp [β(−λk1

− λk2
)]− 1

−λk1
− λk2

. (171)

The results for
〈
b̂†k1

b̂k2

〉
U

and
〈
b̂k1

b̂†k2

〉
U

correspond to each other if we interchange k1 and k2 in

one of these two expressions, for all k1 and k2. This can be seen as a consequence of the fact that the

commutation relation
[
b̂k1

, b̂†k2

]
= δk1,k2

is already included in the zeroth order result (156) and (157)
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and therefore does not affect on the first order results. By using (114), (115) and (170) we obtain in

addition the equality of
〈
b̂†k1

b̂k2

〉
U

and
〈
b̂†−k2

b̂−k1

〉
U

as λ−k = λk. Therefore we obtain in total the

symmetry relations 〈
b̂k2

b̂†k1

〉
U

=
〈
b̂†k1

b̂k2

〉
U

=
〈
b̂†−k2

b̂−k1

〉
U

(172)

even for the case k1 = k2.

The correlations
〈
b̂k1

b̂k2

〉
U

and
〈
b̂†k1

b̂†k2

〉
U

are the hermitian conjugate of each other which can ex-

plicitly be seen by using (116), (118) and (171) in (168). Moreover we obtain by using (116) and (171)

in (169) the equality of
〈
b̂†k1

b̂†k2

〉
U

and
〈
b̂−k1

b̂−k2

〉
U

which gives in total the symmetry relation〈
b̂k1

b̂k2

〉†
U

=
〈
b̂†k1

b̂†k2

〉
U

=
〈
b̂−k1

b̂−k2

〉
U
. (173)

We can insert the results (166)–(169) in the averages of (149) and (150) and use, in order to avoid the
distinction of cases in (166) and (167), the limit

lim
α→0

exp (βα)− 1

α
= β, (174)

which can be easily seen by using the Taylor expansion of the exponential, and the relations (172) and
(173) to end up with〈

δψ̂†(x)δψ̂(x)
〉
U

= − 1

V

∑
k1k2

exp [ix(k1 + k2)]

{
(uk1

vk2
+ uk2

vk1
)
(

4AUk1,k2
+ 4AUk2,k1

)
〈n̂k1
〉0

× 〈n̂k2〉0
exp [β(λk1 + λk2)]− 1

λk1
+ λk2

+ (uk1uk2 + vk1vk2)
(

1AUk1,−k2
+ 2AU−k2,k1

)
× 〈n̂k1

〉0 (〈n̂k2
〉0 + 1)

exp [β(λk1
− λk2

)]− 1

λk1 − λk2

}
, (175)

〈
δψ̂(x)δψ̂(x)

〉
U

= − 1

V

∑
k1k2

exp [ix(k1 + k2)]

{
(vk1

vk2
+ uk1

uk2
)
(

4AUk1,k2
+ 4AUk2,k1

)
〈n̂k1
〉0

× 〈n̂k2
〉0

exp [β(λk1 + λk2)]− 1

λk1
+ λk2

+ (uk1
vk2

+ uk2
vk1

)
(

1AUk1,−k2
+ 2AU−k2,k1

)
× 〈n̂k1〉0 (〈n̂k2〉0 + 1)

exp [β(λk1
− λk2

)]− 1

λk1 − λk2

}
. (176)

Taking into account the limit

lim
β→∞

〈n̂k〉0 exp (βλk) = lim
β→∞

1

1− exp (−βλk)
= 1, (177)

where we used (87) and (155), leads to the zero-temperature results〈
δψ̂†(x)δψ̂(x)

〉
U,T=0

= − 1

V

∑
k1k2

exp [ix(k1 + k2)](uk1
vk2

+ uk2
vk1

)
4AUk1,k2

+ 4AUk2,k1

λk1
+ λk2

, (178)

〈
δψ̂(x)δψ̂(x)

〉
U,T=0

= − 1

V

∑
k1k2

exp [ix(k1 + k2)] (uk1
uk2

+ vk1
vk2

)
4AUk1,k2

+ 4AUk2,k1

λk1
+ λk2

. (179)

4.3.3 Second Order in Disorder Potentials

The second order terms of the correlations are composed of two different contributions. The first con-
tribution are the second order terms of (142) in V with the terms of V in (148) which are linear in the
random potential U . The second contribution results from the first order terms of (142) in V with the
terms of V in (148) which are quadratic in the disorder potential U . The latter contribution has the same
structure as the results given in (175) and (176) except of the replacement

iAUk,k′ → iAU
2

k,k′ . (180)

With the same argumentation as in Subsection 4.3.2, all averages of products of creation and annihila-
tion operators with an unequal number of creation and annihilation operators will vanish. Additionally we
will again use in the following (152) and (153) several times without further mentioning in this Subsection.
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It is left to calculate the first contribution terms 〈 · 〉1U2 with (142) and (148). We will begin with

computing
〈
b̂†k1

b̂k2

〉1

U2
where we directly apply Wick’s theorem (143) which again cancels out all not

connected terms as in (165)

〈
b̂†k1

b̂k2

〉1

U2
= lim

τ2↑τ1
lim
τ1↑0

( h̄β∫
0

dτ

h̄

h̄β∫
0

dτ̃

h̄
lim
τ ′↑τ

lim
τ̃ ′↑τ̃

∑
k,k′,k̃,k̃′

1

2

{
1AUk,k′

1AU
k̃,k̃′

[〈
b̂†kD(τ)b̂k2D(τ2)

〉τ
0

×
〈
b̂†
k̃D

(τ̃)b̂k′D(τ ′)
〉τ

0

〈
b̂†k1D(τ1)b̂k̃′D(τ̃ ′)

〉τ
0

+
〈
b̂†kD(τ)b̂k̃′D(τ̃ ′)

〉τ
0

〈
b̂†
k̃D

(τ̃)b̂k2D(τ2)
〉τ

0

×
〈
b̂†k1D(τ1)b̂k′D(τ ′)

〉τ
0

]
+ 1AUk,k′

2AU
k̃,k̃′

[〈
b̂†kD(τ)b̂k2D(τ2)

〉τ
0

〈
b̂†
k̃′D

(τ̃ ′)b̂k′D(τ ′)
〉τ

0

〈
b̂†k1D(τ1)b̂k̃D(τ̃)

〉τ
0

+
〈
b̂†kD(τ)b̂k̃D(τ̃)

〉τ
0

〈
b̂†
k̃′D

(τ̃ ′)b̂k2D(τ2)
〉τ

0

〈
b̂†k1D(τ1)b̂k′D(τ ′)

〉τ
0

]
+ 2AUk,k′

1AU
k̃,k̃′

[〈
b̂†
k̃D

(τ̃)b̂k2D(τ2)
〉τ

0

〈
b̂†k′D(τ ′)b̂k̃′D(τ̃ ′)

〉τ
0

〈
b̂†k1D(τ1)b̂kD(τ)

〉τ
0

+
〈
b̂†
k̃D

(τ̃)b̂kD(τ)
〉τ

0

〈
b̂†k′D(τ ′)b̂k2D(τ2)

〉τ
0

〈
b̂†k1D(τ1)b̂k̃′D(τ̃ ′)

〉τ
0

]
+ 2AUk,k′

2AU
k̃,k̃′

[〈
b̂†k′D(τ ′)b̂k2D(τ2)

〉τ
0

〈
b̂†
k̃′D

(τ̃ ′)b̂kD(τ)
〉τ

0

〈
b̂†k1D(τ1)b̂k̃D(τ̃)

〉τ
0

+
〈
b̂†k′D(τ ′)b̂k̃D(τ̃)

〉τ
0

〈
b̂†
k̃′D

(τ̃ ′)b̂k2D(τ2)
〉τ

0

〈
b̂†k1D(τ1)b̂kD(τ)

〉τ
0

]
+ 3AUk,k′

4AU
k̃,k̃′

[〈
b̂†
k̃D

(τ̃)b̂k2D(τ2)
〉τ

0

〈
b̂†
k̃′D

(τ̃ ′)b̂kD(τ)
〉τ

0

〈
b̂†k1D(τ1)b̂k′D(τ ′)

〉τ
0

+
〈
b̂†
k̃D

(τ̃)b̂k2D(τ2)
〉τ

0

〈
b̂†
k̃′D

(τ̃ ′)b̂k′D(τ ′)
〉τ

0

〈
b̂†k1D(τ1)b̂kD(τ)

〉τ
0

+
〈
b̂†
k̃D

(τ̃)b̂kD(τ)
〉τ

0

×
〈
b̂†
k̃′D

(τ̃ ′)b̂k2D(τ2)
〉τ

0

〈
b̂†k1D(τ1)b̂k′D(τ ′)

〉τ
0

+
〈
b̂†
k̃D

(τ̃)b̂k′D(τ ′)
〉τ

0

×
〈
b̂†
k̃′D

(τ̃ ′)b̂k2D(τ2)
〉τ

0

〈
b̂†k1D(τ1)b̂kD(τ)

〉τ
0

]
+ 4AUk,k′

3AU
k̃,k̃′

[〈
b̂†kD(τ)b̂k̃D(τ̃)

〉τ
0

〈
b̂†k′D(τ ′)b̂k2D(τ2)

〉τ
0

〈
b̂†k1D(τ1)b̂k̃′D(τ̃ ′)

〉τ
0

+
〈
b̂†kD(τ)b̂k̃′D(τ̃ ′)

〉τ
0

〈
b̂†k′D(τ ′)b̂k2D(τ2)

〉τ
0

〈
b̂†k1D(τ1)b̂k̃D(τ̃)

〉τ
0

+
〈
b̂†kD(τ)b̂k2D(τ2)

〉τ
0

×
〈
b̂†k′D(τ ′)b̂k̃D(τ̃)

〉τ
0

〈
b̂†k1D(τ1)b̂k̃′D(τ̃ ′)

〉τ
0

+
〈
b̂†kD(τ)b̂k2D(τ2)

〉τ
0

×
〈
b̂†k′D(τ ′)b̂k̃′D(τ̃ ′)

〉τ
0

〈
b̂†k1D(τ1)b̂k̃D(τ̃)

〉τ
0

]})
. (181)

The limits τ ′ ↑ τ and τ̃ ′ ↑ τ̃ can now easily be evaluated. By relabeling the summation indices k, k′, k̃
and k̃′ and the integration variables τ and τ̃ for every summand in a convenient way we obtain

〈
b̂†k1

b̂k2

〉1

U2
= lim

τ2↑τ1
lim
τ1↑0

{ h̄β∫
0

dτ

h̄

h̄β∫
0

dτ̃

h̄

∑
k,k′,k̃,k̃′

〈
b̂†k1D(τ1)b̂k′D(τ)

〉τ
0

〈
b̂†
k̃′D

(τ̃)b̂k2D(τ2)
〉τ

0

×
[〈
b̂†kD(τ)b̂k̃D(τ̃)

〉τ
0

(
1AUk,k′ + 2AUk′,k

)(
1AU

k̃′,k̃
+ 2AU

k̃,k̃′

)
+
〈
b̂†
k̃D

(τ̃)b̂kD(τ)
〉τ

0

×
(

3AUk,k′ + 3AUk′,k
)(

4AU
k̃,k̃′

+ 4AU
k̃′,k̃

)]}
. (182)

In order to insert our results of (151) we need one of the conditions τ < τ̃ or τ > τ̃ . Therefore we split
the integral over τ̃ into two parts

h̄β∫
0

dτ̃ =

τ∫
0

dτ̃ +

h̄β∫
τ

dτ̃ . (183)

Realising that
h̄β∫
0

dτ

h̄β∫
τ

dτ̃ =

h̄β∫
0

dτ̃

τ̃∫
0

dτ, (184)
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and relabeling the integration variable τ and τ̃ in half of the terms leads to

〈
b̂†k1

b̂k2

〉1

U2
= lim

τ2↑τ1
lim
τ1↑0

( h̄β∫
0

dτ

h̄

τ∫
0

dτ̃

h̄

∑
k,k′,k̃,k̃′

{〈
b̂†k1D(τ1)b̂k′D(τ)

〉τ
0

〈
b̂†
k̃′D

(τ̃)b̂k2D(τ2)
〉τ

0

×
[〈
b̂†kD(τ)b̂k̃D(τ̃)

〉τ
0

(
1AUk,k′ + 2AUk′,k

)(
1AU

k̃′,k̃
+ 2AU

k̃,k̃′

)
+
〈
b̂†
k̃D

(τ̃)b̂kD(τ)
〉τ

0

×
(

3AUk,k′ + 3AUk′,k

)(
4AU

k̃′,k̃
+ 4AU

k̃,k̃′

)]
+
〈
b̂†k1D(τ1)b̂k′D(τ̃)

〉τ
0

〈
b̂†
k̃′D

(τ)b̂k2D(τ2)
〉τ

0

×
[〈
b̂†kD(τ̃)b̂k̃D(τ)

〉τ
0

(
1AUk,k′ + 2AUk′,k

)(
1AU

k̃′,k̃
+ 2AU

k̃,k̃′

)
+
〈
b̂†
k̃D

(τ)b̂kD(τ̃)
〉τ

0

×
(

3AUk,k′ + 3AUk′,k

)(
4AU

k̃′,k̃
+ 4AU

k̃,k̃′

)]})
. (185)

As in Section 4.3.2 we now insert (151), perform the limits τ2 ↑ τ1 and τ1 ↑ 0 and evaluate the sum for
three of the four indices with the corresponding Kronecker delta from the correlations. The remaining
integrals are of the form

Iαα̃ =

β∫
0

dτ

τ∫
0

dτ̃ exp (τα) exp (τ̃ α̃), (186)

where we have to evaluate Iαα̃ for five different case:

case 1: α 6= 0, α̃ 6= 0, α+ α̃ 6= 0, (187)

case 2: α = 0, α̃ 6= 0, α+ α̃ 6= 0, (188)

case 3: α 6= 0, α̃ = 0, α+ α̃ 6= 0, (189)

case 4: α 6= 0, α̃ 6= 0, α+ α̃ = 0, (190)

case 5: α = 0, α̃ = 0, α+ α̃ = 0. (191)

We obtain

I1
αα̃ =

exp [β(α+ α̃)]− 1

α̃(α+ α̃)
− exp (βα)− 1

αα̃
, (192)

I2
0α̃ =

exp (βα̃)− 1

α̃2
− β

α̃
, (193)

I3
α0 = −exp (βα)− 1

α2
+
β exp (βα)

α
, (194)

I4
α−α =

exp (βα)− 1

α2
− β

α
, (195)

I5
00 =

1

2
β2. (196)

It can be easily shown by using the Taylor expansion of the exponential that

lim
α→0

I1
αα̃ = I2

0α̃, (197)

lim
α̃→−α

I1
αα̃ = I4

α−α. (198)

In order to evaluate the limit α̃ → 0 and the combined limit of α → 0 and α̃ → 0 we use the Taylor
expansion of the exponential and the binomial theorem to obtain

I1
αα̃ =

∞∑
n=2

∞∑
k=1

βn

n!

(
n− 1
k

)
α̃k−1αn−1−k. (199)

From (199) we can read off

lim
α→0
α̃→0

I1
αα̃ = I5

00, (200)

and by completing the respective sums we obtain

lim
α̃→0

I1
αα̃ = I3

α0. (201)
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With (197), (198), (200) and (201) we conclude that the expression for case 1 in (192) can be continuously
continued in order to include the cases 2 to 5 in (193)–(196). Therefore we can write (185) as

〈
b̂†k1

b̂k2

〉1

U2
= (〈n̂k1〉0 + 1) 〈n̂k2〉

∑
k

[(
1AUk,k1

+ 2AUk1,k

) (
1AUk2,k + 2AUk,k2

)(
〈n̂k〉0

×
{

exp [β(−λk1
+ λk2

)]− 1

(−λk + λk2)(−λk1 + λk2)
− exp [β(λk − λk1

)]− 1

(λk − λk1)(−λk + λk2)

}
+ (〈n̂k〉0 + 1)

×
{

exp [β(−λk1 + λk2)]− 1

(λk − λk1
)(−λk1

+ λk2
)
− exp [β(−λk + λk2)]− 1

(λk − λk1
)(−λk + λk2

)

})
+
(

3AUk,k1
+ 3AUk1,k

)
×
(

4AUk,k2
+ 4AUk2,k

)(
〈n̂k〉0

{
exp [β(−λk1

+ λk2
)]− 1

(−λk − λk1
)(−λk1

+ λk2
)
− exp [β(λk + λk2

)]− 1

(−λk − λk1
)(λk + λk2

)

}
+ (〈n̂k〉0 + 1)

{
exp [β(−λk1 + λk2)]− 1

(λk + λk2
)(−λk1

+ λk2
)
− exp [β(−λk − λk1)]− 1

(−λk − λk1
)(λk + λk2

)

})]
. (202)

As argued above we can express the second contribution to
〈
b̂†k1

b̂k2

〉
U2

through the result for
〈
b̂†k1

b̂k2

〉
U

in (166) with the replacement (180). Therefore we obtain in total

〈
b̂†k1

b̂k2

〉
U2

= (〈n̂k1〉0 + 1) 〈n̂k2
〉

{∑
k

[(
1AUk,k1

+ 2AUk1,k

) (
1AUk2,k + 2AUk,k2

)(
〈n̂k〉0

×
{

exp [β(−λk1
+ λk2

)]− 1

(−λk + λk2
)(−λk1

+ λk2
)
− exp [β(λk − λk1

)]− 1

(λk − λk1
)(−λk + λk2

)

}
+ (〈n̂k〉0 + 1)

×
{

exp [β(−λk1
+ λk2

)]− 1

(λk − λk1
)(−λk1

+ λk2
)
− exp [β(−λk + λk2)]− 1

(λk − λk1
)(−λk + λk2

)

})
+
(

3AUk,k1
+ 3AUk1,k

)
×
(

4AUk,k2
+ 4AUk2,k

)(
〈n̂k〉0

{
exp [β(−λk1

+ λk2
)]− 1

(−λk − λk1
)(−λk1

+ λk2
)
− exp [β(λk + λk2

)]− 1

(−λk − λk1
)(λk + λk2

)

}
+ (〈n̂k〉0 + 1)

{
exp [β(−λk1 + λk2)]− 1

(λk + λk2)(−λk1 + λk2)
− exp [β(−λk − λk1

)]− 1

(−λk − λk1)(λk + λk2)

})]

−
(

1AU
2

k2,k1
+ 2AU

2

k1,k2

) exp [β(−λk1
+ λk2

)]− 1

−λk1 + λk2

}
. (203)

Performing the same calculation for
〈
b̂k1 b̂

†
k2

〉
U2

,
〈
b̂k1 b̂k2

〉
U2

and
〈
b̂†k1

b̂†k2

〉
U2

yields

〈
b̂k1

b̂†k2

〉
U2

= 〈n̂k1
〉0 (〈n̂k2

〉0 + 1)

{∑
k

[(
1AUk1,k + 2AUk,k1

) (
1AUk,k2

+ 2AUk2,k

)(
〈n̂k〉0

×
{

exp [β(λk1 − λk2)]− 1

(−λk + λk1
)(λk1

− λk2
)
− exp [β(λk − λk2)]− 1

(−λk + λk1
)(λk − λk2

)

}
+ (〈n̂k〉0 + 1)

×
{

exp [β(λk1
− λk2

)]− 1

(λk − λk2
)(λk1

− λk2)
− exp [β(−λk + λk1

)]− 1

(−λk + λk1
)(λk − λk2

)

})
+
(

4AUk,k1
+ 4AUk1,k

)
×
(

3AUk,k2
+ 3AUk2,k

)(
〈n̂k〉0

{
exp [β(λk1

− λk2
)]− 1

(−λk − λk2)(λk1 − λk2)
− exp [β(λk + λk1

)]− 1

(λk + λk1)(−λk − λk2)

}
+ (〈n̂k〉0 + 1)

{
exp [β(λk1

− λk2
)]− 1

(λk + λk1
)(λk1

− λk2
)
− exp [β(−λk − λk2

)]− 1

(λk + λk1
)(−λk − λk2

)

})]

−
(

1AU
2

k1,k2
+ 2AU

2

k2,k1

) exp [β(λk1 − λk2)]− 1

λk1
− λk2

}
, (204)
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〈
b̂k1

b̂k2

〉
U2

= 〈n̂k1
〉0 〈n̂k2

〉0

{∑
k

[(
1AUk1,k + 2AUk,k1

) (
4AUk,k2

+ 4AUk2,k

)(
〈n̂k〉0

×
{

exp [β(λk1
+ λk2

)]− 1

(−λk + λk1
)(λk1

+ λk2
)
− exp [β(λk + λk2)]− 1

(−λk + λk1
)(λk + λk2

)

}
+ (〈n̂k〉0 + 1)

×
{

exp [β(λk1
+ λk2

)]− 1

(λk + λk2)(λk1 + λk2)
− exp [β(−λk + λk1

)]− 1

(−λk + λk1)(λk + λk2)

})
+
(

4AUk,k1
+ 4AUk1,k

)
×
(

1AUk2,k + 2AUk,k2

)(
〈n̂k〉0

{
exp [β(λk1 + λk2)]− 1

(−λk + λk2
)(λk1

+ λk2
)
− exp [β(λk + λk1)]− 1

(λk + λk1
)(−λk + λk2

)

}
+ (〈n̂k〉0 + 1)

{
exp [β(λk1

+ λk2
)]− 1

(λk + λk1)(λk1 + λk2)
− exp [β(−λk + λk2

)]− 1

(λk + λk1)(−λk + λk2)

})]

−
(

4AU
2

k1,k2
+ 4AU

2

k2,k1

) exp [β(λk1
+ λk2

)]− 1

(λk1
+ λk2

)

}
, (205)

〈
b̂†k1

b̂†k2

〉
U2

= (〈n̂k1
〉0 + 1)(〈n̂k2

〉0 + 1)

{∑
k

[(
1AUk,k1

+ 2AUk1,k

) (
3AUk,k2

+ 3AUk2,k

)(
〈n̂k〉0

×
{

exp [β(−λk1 − λk2)]− 1

(−λk − λk2
)(−λk1

− λk2
)
− exp [β(λk − λk1)]− 1

(λk − λk1
)(−λk − λk2

)

}
+ (〈n̂k〉0 + 1)

×
{

exp [β(−λk1
− λk2

)]− 1

(λk − λk1
)(−λk1

− λk2
)
− exp [β(−λk − λk2

)]− 1

(λk − λk1
)(−λk − λk2

)

}
+
(

3AUk,k1
+ 3AUk1,k

)
×
(

1AUk,k2
+ 2AUk2,k

)(
〈n̂k〉0

{
exp [β(−λk1

− λk2
)]− 1

(−λk − λk1)(−λk1 − λk2)
− exp [β(λk − λk2

)]− 1

(−λk − λk1)(λk − λk2)

}
+ (〈n̂k〉0 + 1)

{
exp [β(−λk1

− λk2
)]− 1

(λk − λk2
)(−λk1

− λk2
)
− exp [β(−λk − λk1

)]− 1

(−λk − λk1
)(λk − λk2

)

})]

−
(

3AU
2

k1,k2
+ 3AU

2

k2,k1

) exp [β(−λk1 − λk2)]− 1

−λk1
− λk2

}
. (206)

With the relation λ−k = λk due to (96), the symmetry properties of the coefficients in (114)–(116) and
(118) and the explicit form of 〈n̂k〉0 in (155) we obtain as in Subsection 4.3.2 the relations

〈
b̂k2

b̂†k1

〉
U2

=
〈
b̂†k1

b̂k2

〉
U2

=
〈
b̂†−k2

b̂−k1

〉
U2
, (207)〈

b̂k1
b̂k2

〉†
U2

=
〈
b̂†k1

b̂†k2

〉
U2

=
〈
b̂†−k2

b̂†−k1

〉
U2
. (208)

Inserting the results given in (203)–(206) into the average of (149), using (207) and (208) and relabeling
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the summation indices in a convenient way leads finally to

〈
δψ̂†(x)δψ̂(x)

〉
U2

=
1

V

∑
k1,k2

exp [ix(k1 + k2)]

(
2(uk1

vk2
+ uk2

vk1
) 〈n̂k1

〉0 〈n̂k2
〉0

×

{∑
k

[(
1AUk1,k + 2AUk,k1

) (
4AUk,k2

+ 4AUk2,k

)(
〈n̂k〉0

{
exp [β(λk1

+ λk2
)]− 1

(−λk + λk1
)(λk1

+ λk2
)

− exp [β(λk + λk2)]− 1

(−λk + λk1
)(λk + λk2

)

}
+ (〈n̂k〉0 + 1)

{
exp [β(λk1 + λk2)]− 1

(λk + λk2
)(λk1

+ λk2
)

− exp [β(−λk + λk1
)]− 1

(−λk + λk1)(λk + λk2)

})]
−
(

4AU
2

k1,k2
+ 4AU

2

k2,k1

) exp [β(λk1
+ λk2

)]− 1

2(λk1 + λk2)

}

+ (uk1
uk2

+ vk1
vk2

) 〈n̂k1
〉0 (〈n̂k2

〉0 + 1)

{∑
k

[(
1AUk1,k + 2AUk,k1

) (
1AUk,−k2

+ 2AU−k2,k

)(
〈n̂k〉0

{
exp [β(λk1 − λk2)]− 1

(−λk + λk1
)(λk1

− λk2
)
− exp [β(λk − λk2

)]− 1

(−λk + λk1
)(λk − λk2

)

}
+ (〈n̂k〉0 + 1)

{
exp [β(λk1

− λk2
)]− 1

(λk − λk2)(λk1 − λk2)
− exp [β(−λk + λk1

)]− 1

(−λk + λk1)(λk − λk2)

})
+
(

4AUk,k1

+ 4AUk1,k

) (
3AUk,−k2

+ 3AU−k2,k

)(
〈n̂k〉0

{
exp [β(λk1 − λk2)]− 1

(−λk − λk2
)(λk1

− λk2
)

− exp [β(λk + λk1
)]− 1

(λk + λk1
)(−λk − λk2

)

}
+ (〈n̂k〉0 + 1)

{
exp [β(λk1

− λk2
)]− 1

(λk + λk1
)(λk1

− λk2
)

− exp [β(−λk − λk2)]− 1

(λk + λk1
)(−λk − λk2

)

})]
−
(

1AU
2

k1,−k2
+ 2AU

2

−k2,k1

)
× exp [β(λk1

− λk2
)]− 1

λk1 − λk2

})
. (209)

Due to the fact that (44) does not depend on ψ12(x), the explicit form of
〈
δψ̂(x)δψ̂(x)

〉
U2

is not needed,

as it only contributes to ψ12(x) in (32).

Thus, we obtain with the limit in (177) for the case T → 0

〈
δψ̂†(x)δψ̂(x)

〉
U2,T=0

=
1

V

∑
k1,k2

exp [ix(k1 + k2)]

{
2(uk1vk2 + uk2vk1)

×

[∑
k

(
1AUk1,k

+ 2AUk,k1

)(
4AUk,k2

+ 4AUk2,k

)
(λk + λk2

)(λk1
+ λk2

)
−

(
4AU

2

k1,k2
+ 4AU

2

k2,k1

)
2(λk1

+ λk2
)

]

+ (uk1uk2 + vk1vk2)
∑
k

(
4AUk,k1

+ 4AUk1,k

)(
3AUk,−k2

+ 3AU−k2,k

)
(λk + λk1

)(λk + λk2
)

}
, (210)

5 Calculation of Particle Density

With the results for the expansion in the disorder potential U of the correlations
〈
δψ̂†(x)δψ̂(x)

〉
and〈

δψ̂(x)δψ̂(x)
〉

up to second order we are able to calculate the condensate density n0 in terms of the

particle density n by (44) where we restrict ourself to the case T = 0 and can therefore use (162), (163),
(178), (179) and (210). In addition we have to apply the thermodynamic limit

N,V →∞, (211)

where we keep the particle density n constant. The limit (211) implies

∑
k

→ V

(2π)3

∫
d3k. (212)
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5.1 Bogoliubov Depletion

As described in Subsection 2.4, the term
〈
δψ̂†(x)δψ̂(x)

〉
0

represents the Bogoliubov depletion which

occurs because of the interaction of the particles in zeroth order referring to the random potential U .
With (90), (96), (101) and (162) we obtain in the thermodynamic limit (211) and (212)

〈
δψ̂†(x)δψ̂(x)

〉
0,T=0

=

∫
d3k

(2π)3

h̄2k2

2m + µ−
√

h̄2k2

2m

√
h̄2k2

2m + 2µ

2
√

h̄2k2

2m

√
h̄2k2

2m + 2µ
, (213)

where we inserted the solution

ψ00 =

√
µ

g
(214)

of (27). Note that we can drop the second solution ψ00 = 0 because the whole system is described by

ψ00 in zeroth order of the fluctuation operators δψ̂† and δψ̂ and the limit of vanishing disorder potential
and therefore the trivial solution of ψ00 would immediately lead in this case with (42) and (43) to
the unphysical result n = n0 = 0. Using spherical coordinates, performing the angular integrals and
substituting

ε =
h̄2k2

2m
(215)

leads to 〈
δψ̂†(x)δψ̂(x)

〉
0,T=0

=
1

π2

(
m

2h̄2

)3/2

lim
L→∞

L∫
0

dε

(√
ε+ 2µ− µ√

ε+ 2µ
−
√
ε

)
, (216)

where we introduced the ultraviolet cutoff L in order to regularize the divergent radial integrals. Calcu-
lating the integrals and inserting the expansion (1 + x)n/2 = 1 + n

2x+O
(
x2
)

yields

〈
δψ̂†(x)δψ̂(x)

〉
0,T=0

=
1

π2

(
m

2h̄2

)3/2

lim
L→∞

[
23/2

3

√
µ

3
+

2

3

√
L

3
O
(

1

L2

)
− 2µ

√
LO

(
1

L

)]
, (217)

where we can evaluate the limit easily because the different integrands in (216) regularize each other and
obtain 〈

δψ̂†(x)δψ̂(x)
〉

0,T=0
=

1

3π2

(
mµ

h̄2

)3/2

. (218)

The term
〈
δψ̂†(x)δψ̂(x)

〉
0,T=0

itself is of first order in δψ̂†(x)δψ̂(x) and therefore we have to insert for

the chemical potential µ the expansion given in (45) without µ10 and, as argued in Section 2.4, the
vanishing µ01 contribution. With (5) and (46) we obtain in zeroth order of the disorder potential〈

δψ̂†(x)δψ̂(x)
〉

0,T=0
=

8

3
√
π

(an)
3/2

+O (R) , (219)

where the term O (R) corresponds to the contribution due to µ02 which is of the order of U2 but, as
we perform the disorder average in (42), µ02 is proportional to the second cumulant R as it was defined
in (37). This result correspond to the Bogoliubov depletion in (1) with the zeroth order identification
n = n0 of (44) in (1).

5.2 Gross-Pitaevskii Disorder Depletion and Chemical Potential

In order to calculate the depletion term on the level of the Gross-Pitaevskii theory in (44) and the
expansion of µ in (45) with (42) we need to determine ψ01(x), ψ02(x) and ψ10 out of (28)–(30). Applying
a Fourier transformation as defined in (79) to (28) yields with (214)

ψ01(k) = −

√
µ
gU(k)

h̄2k2

2m + 2µ
. (220)

Therefore we obtain in the thermodynamic limit

ψ01(x)ψ01(x) =
µV

g

∫
d3k

(2π)3

∫
d3k′

(2π)3
exp [ix(k + k′)]

U(k)U(k′)(
h̄2k2

2m + 2µ
)(

h̄2k′2

2m + 2µ
) . (221)
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We calculate the disorder average U(k)U(k′) by inserting the inverse transformation of (79)

f(k) =
1√
V

∫
d3xf(x) exp (−ixk) (222)

for U(k) and U(k′), using the definition of the second cumulant in (37) and applying the Fourier trans-
formation (79) to R(x− x′) and obtain by evaluating the integrals in the thermodynamic limit

U(k)U(k′) =
(2π)3

√
V
R(k)δ(k + k′). (223)

Inserting this result into (221) yields

ψ01(x)ψ01(x) =
µ
√
V

g

∫
d3k

(2π)3

R(k)(
h̄2k2

2m + 2µ
)2 . (224)

By Fourier transforming (29) we obtain for ψ02 in the thermodynamic limit (211) and (212)

ψ02(k) = −
√
V

∫
d3k′

(2π)3

ψ01(k′)U(k− k′) + 3
√
µgψ01(k′)ψ01(k− k′)

h̄2k2

2m + 2µ
. (225)

Inserting the result for ψ00 in (214), for ψ01(k) in (220) and the second cumulant of U in k-space (223)
leads to

ψ00ψ02(x) =

√
V

2g

∫
d3k

(2π)3

R(k)
h̄2k2

2m + 2µ

(
1− 3µ

h̄2k2

2m + 2µ

)
. (226)

In order to calculate ψ10 by (30) we have to evaluate
〈
δψ̂(x)δψ̂(x)

〉
0,T=0

. By using (100), (101) and

(163) we obtain in the thermodynamic limit〈
δψ̂(x)δψ̂(x)

〉
0,T=0

= −
∫

d3k

(2π)3

µ

2
√

h̄2k2

2m

√
h̄2k2

2m + 2µ
. (227)

This integral can not be regularized by introducing an ultraviolet cutoff as we did in (216). Therefore
we use the dimensional regularization as described e. g. in Ref. [28], i. e. we calculate the integral in
d-dimensions and continue the solution analytically to d = 3. In order do so we will use the identity

1

ay
=

1

Γ (y)

∞∫
0

dτ exp (−aτ)τy−1, (228)

which we will refer to as the Schwinger trick and where Γ (y) denotes the gamma function of y. The
analytical continuation of the results can be done by continuing the gamma function

Γ (y) =

∞∫
0

dt exp (−t)ty−1, (229)

which is defined via (229) only for y > 0, with its functional equation

Γ (y + 1) = yΓ (y) , (230)

to negative values of y. The integral in (227) in d-dimensions reads

〈
δψ̂(x)δψ̂(x)

〉
0,T=0

= − Sd

√
2m

h̄2

d
µ

4(2π)d

∞∫
0

dε

√
ε
d−3

√
ε+ 2µ

∣∣∣∣∣∣
d=3

, (231)

where Sd denotes the surface of the d-dimensional unit sphere, which is the result of the d-dimensional
angular integral with the special value

S3 = 4π. (232)

Inserting the Schwinger trick (228) with a = ε+ 2µ and y = 1
2 and performing the ε and τ integral leads

to the result 〈
δψ̂(x)δψ̂(x)

〉
0,T=0

= − Sd

√
2m

h̄2

d
µ

4(2π)d
Γ
(
d−1

2

)
Γ
(
1− d

2

)
Γ
(

1
2

)
(2µ)1−d/2

∣∣∣∣∣
d=3

. (233)
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Inserting d = 3 and (232) and using

Γ

(
1

2

)
=
√
π, (234)

Γ (1) = 1, (235)

where the first equation can be easily shown by substituting t = x2 in (229) and performing the Gaussian
integral and the second equation follows immediately from (229), and (230) yields〈

δψ̂(x)δψ̂(x)
〉

0,T=0
=

1

π2

(
mµ

h̄2

)3/2

. (236)

Therefore we obtain for ψ10 with (30), (214), (218) and (236)

ψ10 = −
√
g

µ

5

6π2

(
mµ

h̄2

)3/2

. (237)

In order to evaluate the remaining integrals in (224) and (226) we have to assume a model for the
disorder correlation R(x− x′). The most simple model we could choose is

R(x− x′) = Rδ(x− x′), (238)

which correspond to a complete randomly arranged potential with no correlation at two different places.
Applying the Fourier transformation (79) on (238) leads to

R(k) =
1√
V
R. (239)

With the model given in (239), (224) takes the form

ψ01(x)ψ01(x) =
2

π2

(
m

2h̄2

)3/2
µ

g
R

∞∫
0

dε

√
ε

(ε+ 2µ)
2 , (240)

where we already have evaluated the angular integral and substituted ε = h̄2k2

2m . Using the Schwinger
trick (228) with a = ε+ 2µ and y = 2 and evaluating the integrals yields with (230), (234) and (235)

ψ01(x)ψ01(x) =

√
π

2

(
m

2πh̄2

)3/2
R

g

√
µ. (241)

Inserting (5) and (46) yields for the zeroth order in the fluctuation operators δψ̂† and δψ̂

ψ01(x)ψ01(x)δψ̂†=0,δψ̂=0 =
m2

8π3/2h̄4

√
n

a
R, (242)

which is the same result as (2), where we can use again the zeroth order identification n = n0 of (44)
in (2), as the results of Ref. [8] does not include terms of the order of a Bogoliubov disorder depletion
[20, 21] which would be the result of a consideration of higher than zeroth order terms of (44) in (1) or
(2).

Using the model in (239) in (226) leads to a divergent integral which we again regularise dimensionally.
Inserting (239) into (226), using the substitution (215), the Schwinger trick twice (228) with a1 = ε+ 2µ,
y1 = 1, a2 = ε+ 2µ and y2 = 2 and the definition of the gamma function (229) yields in d-dimensions

ψ00ψ02(x) =
2d/2−1Sd
πd/2

(
m

2πh̄2

)d/2
R

g
µd/2−1

[
Γ
(
d
2

)
Γ
(
1− d

2

)
Γ (1)

− 3

2

Γ
(
d
2

)
Γ
(
2− d

2

)
Γ (2)

]∣∣∣∣∣
d=3

. (243)

Using (232) and evaluating the gamma functions for d = 3 with (230), (234) and (235) leads to

ψ00ψ02(x) = −7

2

√
π

2

(
m

2πh̄2

)3/2
R

g

√
µ. (244)

Inserting the expansion of the chemical potential in (45) and our previous results (214), (218) and
(237) into (42) yields in zeroth order of the disorder potential

n =
µ00 + µ10

g
− 8

3

√
2

π

(
m

2πh̄2

)3/2√
µ00

3
+ . . . . (245)
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Solving (245) for µ10 and inserting (46) leads to

µ10 =
8

3

√
2

π

(
m

2πh̄2

)3/2√
g

5√
n

3
. (246)

By inserting (241) and (244) into (42) we obtain in zeroth order of the fluctuation operators

n =
µ00 + µ02

g
− 6

√
π

2

R

g

(
m

2πh̄2

)3/2√
µ00 + . . . , (247)

where we already used that µ01 is vanishing as argued in Subsection 2.4. Solving (247) for µ02 and
inserting (46) yields

µ02 = 6

√
π

2
R

(
m

2πh̄2

)3/2√
g
√
n. (248)

Note that due to the fact that we inserted (43) into (42) no chemical potential dependent term that is as
well of zeroth order in the fluctuation operators as of zeroth in the disorder potential occurs in (44) and
we therefore do not have to calculate µ12, as all µ-dependent terms are itself of higher as zeroth order in
the fluctuation operators or the random potential.

Inserting the expansion of the chemical potential µ in (45) up to first order in the fluctuation operators
and zeroth order in the disorder potential into (241), expanding the result up to first order in µ10

µ00
and

using the definition of the interaction strength g in (5) and the results for µ00 (46) and (246) leads to

ψ01(x)ψ01(x) =
m2

8π3/2h̄4

√
n

a
R+

2

3

m2

π2h̄4 anR. (249)

Note that we only have to insert terms of the expansion of µ that are of zeroth order in the disorder
potential U because ψ01(x)ψ01(x) itself is of second order in U .

Inserting the expansion of µ (45) up to second order in the random potential and zeroth order in
fluctuation operators into (218), expanding the result up to first in µ02

µ00
and using (5), (46), µ01 = 0 and

(248) yields 〈
δψ̂†(x)δψ̂(x)

〉
0,T=0

=
8

3
√
π

(an)3/2 + 3
m2

π2h̄4 anR. (250)

5.3 Bogoliubov Disorder Depletion

The Bogoliubov disorder depletion term in (44) is described by ψ01(x)ψ11(x) and
〈
δψ̂†(x)δψ̂(x)

〉
U2

.

Inserting (178), (179), (214), (218), (236), (237) and the Fourier transformation (79) of ψ11(x) and
ψ01(x) into (31) yields

ψ11(k) =
1

h̄2k2

2m + 2µ

1

3π2

(
mµ

h̄2

)3/2 [
10gψ01(k) +

5

2

√
g

µ
U(k)

]
−

√
gµ

h̄2k2

2m + 2µ

1√
V

×
∑
k′

4AUk−k′,k′ + 4AUk′,k−k′

λk−k′ + λk′
(uk−k′uk′ + vk−k′vk′ + 2uk′vk−k′ + 2uk−k′vk′). (251)

Therefore we obtain by applying a Fourier transformation (79) and using (109), (214), (220) and (223)
in the thermodynamic limit (211) and (212)

ψ01(x)ψ11(x) = −
√
V

∫
d3k

(2π)3

5

6π2

(
mµ

h̄2

)3/2

R(k)
h̄2k2

2m − 2µ(
h̄2k2

2m + 2µ
)3 −

√
V

∫
d3k

(2π)3

∫
d3k′

(2π)3
µR(k)

× 1(
h̄2k2

2m + 2µ
)2

uk−k′uk′ + vk−k′vk′ + 2uk′vk−k′ + 2uk−k′vk′

λk−k′ + λk′

[
(uk′vk−k′

+ uk−k′vk′)−
2µ

h̄2k2

2m + 2µ
(uk−k′uk′ + vk−k′vk′ + 2uk′vk−k′ + 2uk−k′vk′)

]
. (252)

Inserting the definition of the transformation coefficients uk and vk in (100) and (101) and using the
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explicit form of εk in (90) and of λk in (96) leads to

ψ01(x)ψ11(x) = −
√
V

∫
d3k

(2π)3

5

6π2

(
mµ

h̄2

)3/2

R(k)
h̄2k2

2m − 2µ(
h̄2k2

2m + 2µ
)3 −

√
V

∫
d3k

(2π)3

∫
d3k′

(2π)3
µR(k)

× 1(
h̄2k2

2m + 2µ
)2

1√
h̄2k′2

2m

√
h̄2k′2

2m + 2µ

√
h̄2(k−k′)2

2m

√
h̄2(k−k′)2

2m + 2µ

× 1√
h̄2k′2

2m

√
h̄2k′2

2m + 2µ+

√
h̄2(k−k′)2

2m

√
h̄2(k−k′)2

2m + 2µ

({
µ2 +

h̄2k′2

2m

h̄2(k− k′)2

2m

+
1

2
µ

[
h̄2k′2

2m
+
h̄2(k− k′)2

2m

]
−

√
h̄2k′2

2m

√
h̄2k′2

2m
+ 2µ

√
h̄2(k− k′)2

2m

×

√
h̄2(k− k′)2

2m
+ 2µ

}
− 2µ

h̄2k2

2m + 2µ

{
µ2 +

5

2

h̄2k′2

2m

h̄2(k− k′)2

2m
+

1

2
µ

[
h̄2k′2

2m

+
h̄2(k− k′)2

2m

]
− 3

2

√
h̄2k′2

2m

√
h̄2k′2

2m
+ 2µ

√
h̄2(k− k′)2

2m

√
h̄2(k− k′)2

2m
+ 2µ

})
. (253)

In order to rewrite this expression we scale the length by a characteristic length Λ. As (253) is a term
of first order in the fluctuations and of second order in the disorder potential, we replace the chemical
potential µ by µ00. With (5) and (46) we obtain

h̄2k2

2m
+ 2µ =

h̄2

2m
16πan

(
k2

16πan
+ 1

)
, (254)

which suggests the choice

Λ =
1

4
√
π
√
an
. (255)

With the substitutions

κ = kΛ ∧ κ′ = k′Λ, (256)

we obtain

ψ01(x)ψ11(x) = −
√
V

5

96π5

m2

h̄4Λ2

∫
d3κR

(κ
Λ

) κ2 − 1

(κ2 + 1)
3 −
√
V

2

(2π)6

m2

h̄4Λ2

∫
d3κ

∫
d3κ′R

(κ
Λ

)
× 1

(κ2 + 1)
2

1√
κ′2
√
κ′2 + 1 +

√
(κ− κ′)2

√
(κ− κ′)2 + 1

1√
κ′2
√
κ′2 + 1

× 1√
(κ− κ′)2

√
(κ− κ′)2 + 1

({
1

4
+ κ′2(κ− κ′)2 +

1

4

[
κ′2 + (κ− κ′)2

]
−
√
κ′2
√
κ′2 + 1

√
(κ− κ′)2

√
(κ− κ′)2 + 1

}
− 1

κ2 + 1

{
1

4
+

5

2
κ′2(κ− κ′)2

+
1

4

[
κ′2 + (κ− κ′)2

]
− 3

2

√
κ′2
√

κ′2 + 1
√

(κ− κ′)2
√

(κ− κ′)2 + 1

})
. (257)

Using the definitions and expressions in (90), (96), (100), (101), (106)–(109), (113), (210) (214), (220),
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(225) and the substitutions in (256) we obtain in the thermodynamic limit (211) and (212)

〈
δψ̂†(x)δψ̂(x)

〉
U2,T=0

=
√
V

4

(2π)6

m2

h̄4Λ2

∫
d3κ

∫
d3κ′

(
−

R
(

κ−κ′
Λ

)
2
√
κ2

3√
κ2 + 1

3√
κ′2
√
κ′2 + 1

× 1(√
κ2
√
κ2 + 1 +

√
κ′2
√
κ′2 + 1

){1

4

(
κ2 + κ′2

)
+

1

4

−
κ2κ′2 − 1

2

(
κ2 + κ′2

)
− 1

2

(κ− κ′)2 + 1
+

2κ2κ′2 − 1
4

(
κ2 + κ′2

)
− 1

4[
(κ− κ′)2 + 1

]2 }

+
R
(

κ−κ′
Λ

)(
κ2 + 1

2

)
κ2(κ2 + 1)

√
κ′2
√
κ′2 + 1

(√
κ2
√
κ2 + 1 +

√
κ′2
√
κ′2 + 1

)2
×
{

1

2
κ2κ′2 +

1

4

(
κ2 + κ′2

)
− 1

2

√
κ2
√
κ2 + 1

√
κ′2
√
κ′2 + 1 +

1

4

−
2κ2κ′2 + 1

2

(
κ2 + κ′2

)
− 2
√
κ2
√
κ2 + 1

√
κ′2
√
κ′2 + 1 + 1

2

(κ− κ′)2 + 1

+
5
2κ

2κ′2 + 1
4

(
κ2 + κ′2

)
− 3

2

√
κ2
√
κ2 + 1

√
κ′2
√
κ′2 + 1 + 1

4[
(κ− κ′)2 + 1

]2 }

+R
(κ

Λ

) κ2 − 1
2

2
√
κ2

3√
κ2 + 1

3

κ′2

2(κ′2 + 1)2

)
. (258)

In the limit of the model given in (239) we obtain with the definition of the characteristic length Λ in
(255)

2ψ01(x)ψ11(x) +
〈
δψ̂†(x)δψ̂(x)

〉
U2,T=0

= c
m2

h̄4 naR, (259)

where the dimensionless number c is defined by the following integrals:

c = − 5

3π4

∫
d3κ

κ2 − 1

(κ2 + 1)
3 +

1

π5

∫
d3κ

∫
d3κ′

[
− 1√

κ′2
√
κ′2 + 1

√
(κ− κ′)2

√
(κ− κ′)2 + 1

× 1

(κ2 + 1)
2

1√
κ′2
√
κ′2 + 1 +

√
(κ− κ′)2

√
(κ− κ′)2 + 1

({
κ′2(κ− κ′)2 +

1

4

[
κ′2 + (κ− κ′)2

]
−
√
κ′2
√

κ′2 + 1
√

(κ− κ′)2
√

(κ− κ′)2 + 1 +
1

4

}
− 1

κ2 + 1

{
5

2
κ′2(κ− κ′)2

+
1

4

[
κ′2 + (κ− κ′)2

]
− 3

2

√
κ′2
√
κ′2 + 1

√
(κ− κ′)2

√
(κ− κ′)2 + 1 +

1

4

})
− 1

2
√
κ2

3√
κ2 + 1

3

× 1√
κ′2
√
κ′2 + 1

(√
κ2
√
κ2 + 1 +

√
κ′2
√
κ′2 + 1

){1

4

(
κ2 + κ′2

)
+

1

4
−

κ2κ′2 − 1
2

(
κ2 + κ′2

)
− 1

2

(κ− κ′)2 + 1

+
2κ2κ′2 − 1

4

(
κ2 + κ′2

)
− 1

4[
(κ− κ′)2 + 1

]2 }
+

κ2 + 1
2

κ2(κ2 + 1)
√
κ′2
√
κ′2 + 1

(√
κ2
√
κ2 + 1 +

√
κ′2
√
κ′2 + 1

)2
×
{

1

2
κ2κ′2 +

1

4

(
κ2 + κ′2

)
− 1

2

√
κ2
√
κ2 + 1

√
κ′2
√

κ′2 + 1 +
1

4
− 1

(κ− κ′)2 + 1

[
2κ2κ′2

+
1

2

(
κ2 + κ′2

)
− 2
√
κ2
√

κ2 + 1
√
κ′2
√

κ′2 + 1 +
1

2

]
+

1[
(κ− κ′)2 + 1

]2 [5

2
κ2κ′2

+
1

4

(
κ2 + κ′2

)
− 3

2

√
κ2
√
κ2 + 1

√
κ′2
√

κ′2 + 1 +
1

4

]}
+

κ2 − 1
2

2
√
κ2

3√
κ2 + 1

3

κ′2

2(κ′2 + 1)2

]
. (260)

5.4 Result for the Depletion at T = 0 in Case of Delta-Correlated Disorder
Potentials

In this section we derived for (44) in the case of a delta-correlated random potential (238) at T = 0 with
(249), (250), (259) and (260) the result

n0 = n− cBog

√
an

3 − cGP
m2

h̄4

√
n

a
R− cBogU

m2

h̄4 anR, (261)
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√
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Figure 1: Plot of the ratio of the global condensate and particle density as function of the disorder strength
with constant s-wave scattering length where the cases of a pure Gross-Pitaevskii theory, of the
calculation by Huang and Meng in [8] and of our calculation for both signs of cBogU in (261)
are shown, where the corresponding critical disorder strength for a vanishing condensate are
indicated.

which is plotted in Fig. 1 with the constants

cBog =
8

3
√
π
, (262)

cGP =
1

8
√
π

3 , (263)

cBogU =
11

3π2
+ c. (264)

Note that cBogU is composed out of the contribution due to the expansion of the chemical potential in
(249) and (250) and c in (259). As the explicit value of c is not known, we have taken into account both
signs of cBogU in Fig. 1.

The case of a vanishing global condensate corresponds to a quantum phase transition from the con-
densate phase into a Bose glass phase [29] which was recently studied in a non-perturbative approach in
Ref. [21]. Depending on the underlying theory as indicated in Fig. 1 we obtain from (261)

RGP
c =

h̄4

m2

√
an

cGP
, (265)

RHM
c =

h̄4

m2

√
an

cGP
− h̄4

m2

cBog

cGP
a2n, (266)

R
cBog

<
>0

c =
h̄4

m2

√
an− cBoga

2n

cGP + cBogU

√
a3n

. (267)

5.5 Validity of the Expansion

The result given in (261) is valid as long as the depletion terms containing cBog, cGP and cBogU are small.
In the limit of a vanishing disorder potential, which is realized by cGP = cBogU = 0, this condition is

obviously fulfilled for a small s-wave scattering length a.
A description of the system within a Gross-Pitaevskii theory would lead to the result given by (261)

with cBog = cBogU = 0 where the depletion term is small for small R or large a.
Taking into account both depletion processes our result (261) is valid for s-wave scattering lengths of

the order of the s-wave scattering length a(n,R) that minimizes the depletion.
Neglecting all depletion terms that are of first order in the fluctuations and of second order in the

disorder potential yields the result (261) with cBogU = 0 and corresponds to the result of Huang and
Meng in [8] at T = 0. The corresponding depletion terms are minimal for the s-wave scattering length

a(n,R) =
1

8
√
π

m

h̄2

√
R

n
, (268)
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Figure 2: Plot of the ideal s-wave scattering length referring to the validity of our expansion for the
result of Huang and Meng in (268) and for our result in (269), where both signs of cBogU are
considered, as a function of the disorder strength.

which can be easily seen by determining the zeroth of the first derivation of (261) with respect to a,
realizing that a is in general positive, the depletion diverges to ∞ for a→ 0, a→∞ and inserting (262)
and (263).

Considering the complete result (261) yields the condition

a2 =
1

3

cGP

cBog

m2

h̄4

R

n
− 2

3

cBogU

cBog

m2

h̄4 R

√
a

3

√
n
. (269)

Depending on the yet unknown sign of cBogU, minimizing the depletion terms in (261) leads to a lowered
result in case of cBogU > 0, or a raised result in case of cBogU < 0 for a(n,R) as shown in Fig. 2. As
Fig. 2 and (269) show we obtain in the case of cBogU < 0 a rapidly divergent behavior and for cBogU > 0

a minimizing s-wave scattering length with the upper boundary of
(

1
2
cGP

cBogU

1√
n

)2/3

because R is greater

than zero due to (3) and (37).

6 Conclusion and Outlook

In this thesis we studied the depletion of the global Bose-Einstein condensate in a disorder potential
within a Bogoliubov theory. We described a generalized Bogoliubov transformation and obtained the
general temperature dependent expansion of correlations of the Bogoliubov quasi particle operators in
k-space up to second order in the interaction terms of (105) in (156)–(159), (166)–(169) and (203)–(206).

The result of the disorder depletion of Huang and Meng in [8] was reproduced on the level of a Gross-
Pitaevskii theory (242) and the general expressions of the disorder depletion on the level of a Bogoliubov
theory (257) and (258) were derived, where an expansion of the chemical potential as described in Section
5.2 has to be taken into account. In the case of a delta correlated random potential we obtain for the
condensate density n0 in terms of the particle density n at T = 0 the result (261), where the term
proportional to naR corresponds to the yet unknown qualitative form of an additional disorder depletion
within a Bogoliubov theory, as c denotes a numerical constant.

The systematic difference to the calculations of Huang and Meng is the treatment of the disorder average
and the chosen Bogoliubov transformation. They directly decompose the field operators into fluctuations
and a disorder averaged background which corresponds with (39) to the square root of the condensate
density. In the following they choose a Bogoliubov transformation which introduces fluctuation operators
that diagonalizes the not disordered system and a function of space that is proportional to the disorder
potential which correspond to our quasi particle operators in Section 3 and ψ01(x). This combination of
averaged background and Bogoliubov transformation excludes terms of the order of a Bogoliubov disorder
depletion, as the transformation separates the influence of the disorder potential and of the fluctuations.
In order to take into account the Bogoliubov disorder depletion, terms that are proportional to the product
of quasi particle operators and components of the disorder potential have to be considered within the
transformation which in this case would not diagonalize the system anymore. Note that the power of one
half of the Fourier component of the disorder potential in the Bogoliubov transformation in Ref. [8] is a
typo as a consideration of units show.
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The next obligatory step would be the analytic or numerical determination of the constant c for the
delta correlated disorder potential in (260), where the definition of c contains ultraviolet divergences,
which can be regularized or renormalized, as well as infrared divergences. The latter infrared divergences
are well known for beyond Bogoliubov calculations, firstly treated in [30] and reviewed e. g. in Ref. [31],
and they occur in (260) due to the expansion of the Bogoliubov theory in the disorder potential. They
could be treated e. g. within a renormalisation group approach [32]. Supplementary, further calculations
could include a numerical or perturbative treatment of non-zero temperatures. Furthermore it could
be physically interesting to treat also other models of the disorder correlation R(x), e. g. a Gaussian
function as done e. g. in Ref. [33], which contains the result of Huang and Meng in (2) in the limit of a
vanishing correlation length, or a confining potential within a Thomas-Fermi approximation which would
be a better approximation to experimental setups. In addition, our results can be specified to a pure
Hartree-Fock theory by dropping the Bogoliubov terms in (22) which would lead to

λk = εk, (270)

u2
k = 1, (271)

vk = 0, (272)
2Aik,k′ = 3Aik,k′ = 4Aik,k′ = 0, (273)

in Section 3, where i = U, U2. The resulting simplification of the expressions in Section 5 could make
it possible to obtain a general temperature dependent result which could then be compared with the
corresponding ones of Ref. [34].
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