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1 Introduction to fractional particle statistics
In quantum mechanics, the indistinguishability of identical particles has deep consequences
for the behaviour of many-particle quantum systems: Particles obey different particle statis-
tics, that determine the occupation number of energy eigenstates at a specific thermody-
namic temperature. In conventional quantum statistical mechanics (QSM) [1], we find two
different categories of particles - bosons and fermions - obeying either Bose-Einstein (BE)
statistics and Fermi-Dirac (FD) statistics, respectively. The deviations of these statistics
from the Maxwell-Boltzmann statistics (MB) in the classical limit cause quantum phe-
nomena like Bose-Einstein condensation, suprafluidity, the Pauli exclusion principle being
responsible for the structure of all visible materia and many more.

The indistinguishability of identical particles implies, that the physical state of a many-
particle quantum system must not be changed by exchange of two or more identical par-
ticles. Regarding an N -particle wave function, we can only receive a phase factor after
particle exchange.
Usually, one considered permutation of particle coordinates giving rise to particle exchange
and received possible phase factors λ = ±1 which are eigenvalues of a permutation oper-
ator acting on the many-particle wave function. From the mathematical point of this ap-
proach, there is no rule or restriction on which sign has to be taken. However, the so-called
symmetrization postulate has been established: A many-particle state may be constructed
by arbitrary linear combinations of direct product states of the different one-particle states.
As an empirical result of numerous experiments, all many-particle wave functions are con-
structed in a way, that an arbitrary permutation of particles, i.e. a sequence of many single
permutations of two particles, can only effect the wave-function in two ways:
Firstly λ = 1 for all permutations, i.e. the initial many-particle wave function is totally
symmetric. Secondly λ = ±1, depending on the permutation being even or odd, where the
initial wave function is totally antisymmetric. Particles, that show first (second) kind of ex-
change behaviour in a large system of identical particles are being called bosons (fermions).
The exchange behaviour directly determines the counting of accessible single-particle states:
The fermionic particle exchange behaviour mathematically implies the Pauli principle: Each
single-particle state can only be occupied by one particle, if we neglect internal quantum
numbers. For the bosonic exchange behaviour we cannot derive any restriction of occupa-
tion numbers whatsoever. With this information, one can further derive the two kinds of
particles statistics, namely FD and BE distribution functions.

In large contrast to the conventional theory of QSM, if one abandones the non-physical per-
mutation of particles coordinates and instead correctly considers adiabatic transport giving
rise to particle exchange, one finds that the structure of the phase factors is dependent on
the spatial dimension and, therefore, the topology of the single-particle configuration space.
It has been shown [2], that the dimension d of configuration space determines the allowed
values for the phase factors: Again, the indistinguishability of identical particles is the root
of causality. One has to exclude those points from the many-particles configuration space,
that correspond to a coincidence of position of two particles. As a consequence, the group
structure of particle trajectories is determining the effects of adiabatic transport giving rise
to particle exchange.
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In d ≥ 3 spatial dimensions, we find the permutation group SN since all different paths for
adiabatic exchange can be smoothly transformed into one another. This basicly leads to
the same characterization of particles being either bosons of fermions. It should be noted
however, that with the correct arguments of Ref. [2], there is no symmetrization postulate
needed in order to recover boson and fermion statistics.
The more ground-breaking result of this work was, that for systems of low spatial dimen-
sionalty, i.e. d = 1 and d = 2, we find arbitrary exchange phase factors χ(α) = eiαπ that
in principle can lead to a continuum of statistics other than BE and FD, which we will call
fractional exchange statistics.
In 2-dimensional systems, the group structure of paths of identical particles is found to be
the braid group BN , where we can find arbitrary phase factors other than χ(0) = 1 and
χ(1) = −1 for bosons and fermions. Therefore, statistics other than FD and BE is expected
and a wider category of particles is being labeled as anyons. One can imagine, that for each
value of the statistical exchange parameter α we find a different class of particles, including
the special cases α = 0 and α = 1 for bosons and fermions, respectively.
From the arbitrary exchange factor, it is not directly possible to derive a generalized distri-
bution function, similar to the procedure for FD and BE. Therefore, in d = 2 the anyonic
exchange phase factor α was implemented in a dynamical model [3, 4]. Anyons are repre-
sented by a Hamiltonian for Newtonian particles of ficticious charge q with a delta-function
flux tube vector potential attached. The phase factors arise due to interactions between
particles and the gauge field of the flux tube of other particles while moving around them,
known from the Aharonov-Bohm effect.
Since then, those model particles are used as synonym for anyons in the narrow sense. The
flux tube model allows one to develop quantum mechanics of anyon systems. However,
it induces non-trivial particle interactions, that so far made it unpossible to receive the
spectrum of an N -anyon problem for N > 2. As a consequence, statistical mechanics of a
many-particle system of anyons in the narrow sense is very difficult to handle. An ideal gas
of anyons can only be described so far by a virial expansion to the second order [5].
The ideal anyon gas was succesfully applied to describe the fractional quantum Hall effect
(FQHE), where a 2d electron gas in a very strong magnetic field condenses to an incompress-
ible quantum fluid with fractionally elementary charged excitations [6, 7]. The Laughlin
wave-functions [8] describing quasiparticle and quasi-hole excitations in the FQHE ground
state were found to obey anyonic exchange behaviour. The anyon parameter α is fixed by
the Landau level filling factor (LLFF), i.e. the number of electrons per number of Landau
levels available. While at first only the notion of fractional electric charge has been experi-
mentally observed [9], the direct evidence of the fractional exchange phase factors was seen
in 2005 [10].
For a long time, fractional exchange statistics in 1d, as predicted by the theory [2], were
unexplored. This is because particle exchange in 1d always goes along with a scattering
process, which cannot easily be un-tangled. Still, based on the theory of exactly solv-
able 1d interacting systems, models of anyons in 1d have been proposed and investigated
[11, 12, 13], which will be discussed in Section 6.

As seen from the boson and fermion case, the different exchange statistics α of particles
determine a possible limitation of the number of accessible particle states. Therefore, one
must conjecture that fractional α will have a non-trivial influence on the exclusion proper-
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ties of particle states.
Motivated by his work on the FQHE hierarchy states [14], Haldane proposed a different
theory to recover fractional particle statistics. Without specification of dimensionality, he
introduced a statistical interaction leading to a generalized exclusion principle for quasi-
particles as elementary excitations of condensed matter systems [15]. This is carried out
through an interpolation in the combinatorial approach to QSM between boson and fermion
borders. The physical idea is, that in a system of very strong or singular interaction be-
tween particles, the number of available slots in one quantum level depends on the number
of particles already occupying this level. The category of particles obeying this general-
ized exclusion principle is called exclusons with fractional exclusion statistics g. Haldane
claimed, that the exclusion parameter g for FQHE quasiparticles is equal to the anyonic
exchange parameter α. This claim was confirmed by numerical [16] as well as analytical
means [17]. From Haldane’s intermediate counting of states, it has been achieved [18] to
develop QSM and, as a consequence, thermodynamics of a gas of excluson particles. Since
then, many authors have contributed to this research field and applied the ideal excluson
gas (IEG) model to several problems, as shown in Section 6.

Mathematically, the concept of fractional exclusion statistics g in arbitrary dimensions seems
unrelated to the fractional exchange statistics α resulting from braiding properties of parti-
cle trajectories in low spatial dimensions. Therefore, particles that each follow one of those
statistics belong to different classes of particles. One main difference is that anyon statis-
tics are usually assigned to Newtonian point particles, while excluson statistics are assigned
to elementary excitations of condensed matter system. More specifically, it is known that
the ideal anyon gas is not equivalent to the IEG. In a couple of systems including FQHE
systems, however, a coincidence of the two concepts was shown [13, 17]. One can imagine
that the Haldane statistical interaction inducing fractional exlcusion statistics of excitations
in condensed matter systems is resulting from the anyon gauge field of real particles that
form the system. We must not be confused by the fact, that the term anyon is widely used
in the literature for any class of particles obeying fractional statistics, including exclusons.

In this work I will discuss the distribution functions and thermodynamic properties of an
ideal quantum gas of identical particles obeying Haldane fractional exclusion statistics in d
spatial dimensions, both for a free and a harmonically trapped ideal gas. We will start by
developing QSM of excluson particles by the state counting approach of Haldane in Section 2.
An expression for the distribution function interpolating between FD and BE distributions
is derived and further investigated. Also, the grand-canonical partition function is derived,
which enables us to establish thermodynamics of an ideal gas of excluson particles in Section
3. It is shown, that all thermodynamic functions can be expressed by evaluating a single
type of integral function, which is then calculated numerically and by series representation
in low-temperature/high-density and high-temperature/low-density limits. In Section 4, the
theory of the ideal gas is transferred to the harmonically trapped gas. Section 5 will feature
some slightly different results for excluson gases with a state density, that is constant in
energy. The last Section will feature some applications of the model of the IEG to physical
problems.
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2 Intermediate quantum statistical mechanics
From the starting point of a generalized exclusion principle, this Section will feature the
development of QSM of an excluson many-particle system by deriving the grand-canonical
partition function as well as implicit and explicit expressions for the intermediate distribu-
tion function.

2.1 Haldane exclusion statistics
Haldane [15] implemented fractional statistics in the state counting approach to statistical
mechanics, which is formulated as follows [1]: Regarding a system with an extensively
large number N of identical particles, we divide all possible one-particle states into a big
number of cells, each containing a large number pi of states. By counting the number of
all configurations, i.e. ways to put Ni particles into cell i, we receive the total number of
many-particle states of N particles occupying a group of each pi states

W =
∏
i

(d({Ni}) +Ni − 1)!
Ni!(d({Ni})− 1)! . (1)

using the dimension d({Ni}) of the subspace HNi of the i-th cell many-particle Hilbert space
with coordinates of Ni − 1 particles held fixed.
Since for bosons we can have an arbitrary number of particles occupying a single state, the
dimension of the Hilbert space does not reduce as particles are being added, i.e. we have
d({Ni + ∆Ni}) = d({Ni}). For fermions, the dimension is always reduced by 1 for each
identical particle added, as a consequence of the common Pauli principle. This leads to the
exclusion statistics parameter g = 0 for bosons and g = 1 for fermions.

The key argument of Haldane is, that the dimension d({Ni}) changes as we add new particles
∆Ni to the system with fixed size and boundary conditions. Haldane defined the statistical
interaction g through the linear dependence

g = −d({Ni + ∆Ni})− d({Ni})
∆Ni

, (2)

which can be expressed as a differential relation in the limit of large Ni:

g = −∂d({Ni})
∂Ni

. (3)

An expression for the dimension d({Ni}) is found by integrating Eq. (3):

d({Ni}) = pi − g(Ni − 1) (4)

The integration constant pi may be regarded as the total number of possible single-particle
states when one particle is present. From the last equation, we can see that the generalized
dependence of the number of accessible states in the i-th cell on the number of particles Ni

already present in the cell interpolates between the two border cases: For bosons, we have
a complete independence on Ni, while for fermions each identical particle locally present
reduces the number of available states by one.
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Inserting (4) in the number of many-body states (1) yields

W = eS =
∏
i

[pi + (Ni − 1)(1− g)]!
Ni![pi − gNi − (1− g)]! . (5)

We identify W with eS , since the quantity S, which is proportional to the logarithm of the
number of accessible states, is identical to the entropy if we calculate pi by extremizing W
with variation of Ni.
In the thermodynamic limit, both Ni and pi will become infinite. However, the average
occupation number n̄i = Ni

pi
of cell i stays finite. Considering a grand-canonical ensemble

with thermodynamic temperature T and chemical potential µ, the grand-canonical partition
function is given by

Z =
∑
{Ni}

W ({Ni})e−β
∑

i
Ni(εi−µ) (6)

with β = 1
kBT

. The sum is to be taken over all sets of particle numbers {Ni} that satisfy
the constraints of fixed energy

E =
∑
i

εiNi, (7)

and total particle number
N =

∑
i

Ni. (8)

The first equation expresses that the simple sum of the single-state eigenenergies gives us
the total energy of the microsystem, which determines the class of systems regarded by this
theory as ideal gases. In order to calculate the grand-canonical partition function, we can
just consider the summand with the most probable set of particle numbers, i.e. the set {Ni}
that maximizes W ({Ni}) under the constraints (7) and (8). Equivalently, we maximize the
quantity S = lnW ({Ni}) by variation of {Ni} to find the most probable average occupation
number n̄i and then approximate

∑
{Ni}W ({Ni}) ≈W ({Ni = pin̄i}). Starting with

S = ln
(∏

i

[p+ (Ni − 1)(1− g)]!
Ni![p− gNi − (1− g)]!

)
, (9)

we can carry out the logarithm of this product by using the Stirling expansion to first order,
i.e lnN ! ≈ N lnN , yielding

S =
∑
i

{
[p+ (Ni − 1)(1− g)] ln[p+ (Ni − 1)(1− g)]

−Ni ln(Ni)− [p− gNi − (1− g)] ln[p− gNi − (1− g)]
}
. (10)

The constraints (7) and (8) are implemented by the method of Lagrangian multipliers. The
Lagrangian multipliers β for the fixed energy and βµ for the particle number are added to
the function S to give the new function

S̃({Ni}, β, µ) = S + β

(
E −

∑
i

εiNi

)
+ βµ

(∑
i

Ni −N
)
, (11)
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which is extremized yielding

∂S̃

∂Ni
= 0 = (1− g) ln[pi +Ni(1− g)]− ln(ni) + g ln(pi − gNi) + β(µ− εi). (12)

After taking the derivative, terms of O(1), as 1 or g for instance, can be neglected compared
to ln(p). We can now separate the terms and take the exponential of the equation yielding

eβ(εi−µ)+ln(Ni) = e(1−g) ln[pi+Ni(1−g)]eg ln[pi−gNi]. (13)

Using the average occupation number n̄i we get

eβ(εi−µ) =
[
1 + 1

n̄i
− g

]1−g [ 1
n̄i
− g

]g
. (14)

We now set eβ(εi−µ) = ξi and w(ξi) = 1
n̄i
− g to get the implicit equation

ξi = w(ξi)g[1 + w(ξi)]1−g. (15)

The result w(ξ) of this equation gives us the most probable average occupation number

n̄i = 1
w(ξi) + g

. (16)

One can directly see that the special cases of g = 0 (bosons) and g = 1 (fermions) reduce
equation (15) to w = ξ − 1 and w = ξ, respectively. The generalized occupation number
function (16) is then identified with the well-known BE and FD distribution.
In the MB limit, with e

εi−µ
kBT = wg(1 +w)1−g being very large, we can furthermore see, that

also wg and therefore w has to be very large, allowing us to perform the approximation
ξ ≈ wgw1−g = w. Neglecting g for large w, our distribution function (16) reduces to the
well-known MB distribution n = e−β(εi−µ) irrespective of g, which is also valid for FD and
BE statistics with sufficiently low particle density and/or high temperature.

We will now regard properties of Eq. (15) at T → 0. First of all, ξ is clearly non-negative.
It is claimed [5, 18] that then also w(ξ) is non-negative, limiting the average occupation
number to ni ≤ 1/g and therefore showing us pseudo-fermion behaviour with generalized
exclusion for g 6= 0.

Especially at T = 0, for εi < µ we find w(ξ) → 0 and therefore ni = 1
g , because w(ξ) > 0.

For εi > µ we find w(ξ)→∞ and ni = 0, from the argument above. This nicely illustrates
a generalized Pauli exclusion principle, with exclusons of g 6= 0 having a Fermi surface at
T = 0, which separates occupied states of average occupation ni = 1

g from unoccupied
states.
The border is found in momentum space, where all eigenstates are occupied with a mean
number of 1

g particles, up to the generalized Fermi momentum pF which in d spatial dimen-
sions is defined by the following equation:

N =
∑
sz

∑
|p|≤pF

1
g

= gsV

(2πh̄)d
∫
|p|≤pF

1
g
. (17)
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The sum sz is taken over different spin projections, yielding a degeneracy factor gs = 2s+ 1
for spin s particles. The integral is calculated using the volume of the d-dimensional unit
sphere Kd = πd/2

Γ(d/2+1) yielding

N = gsV

(2πh̄)d
1
g

πd/2

Γ(d/2 + 1)pF
d (18)

and finally

pF = h

π1/2

[
Γ(d/2 + 1) g

gs

N

V

] 1
d

. (19)

With the usual energy momentum relation of free mass m particles ε(p) = p2

2m we get the
generalized Fermi energy

εF =
(

h2

2πm

)[
Γ(d/2 + 1) g

gs

N

V

]2/d
. (20)

This result can be reduced to the fermionic case, when setting g = 1 and gs = 2. In d = 3
dimensions we receive the fermionic Fermi energy ε̄F

ε̄F (d = 3) = h̄2

2m

(
3π2N

V

)2/3
(21)

with Γ(5
2) = 3

4
√
π. Leaving gs as an unknown parameter, we get the following relation

εF (g) = g2/dε̄F (22)

for free particles, which will be used in later results.
In order to connect statistical mechanics to the thermodynamics of an ideal gas of parti-
cles, we shall use the result for the most probable average occupation number n̄i, i.e. the
distribution function (16), to get the grand-canonical partition function (6)

Z = W ({ni = pin̄i})e−β
∑

i
ni(εi−µ) (23)

and then derive the grand-canonical thermodynamic potential Ω = −kBT lnZ:

Ω = −kBT
[
lnW ({ni = pin̄i})− β

∑
i

ni(εi − µ)
]
. (24)

While the first summand is known from the calculation of the entropy in Eq. (10), the
second summand can be rewritten using Eq. (15) giving the simple result

Ω = −kBT
∑
i

pi ln
[1 + (1− g)n̄i

1− gn̄i

]
. (25)

Using the result for the distribution function n̄i in Eq. (16) we get

Ω = −kBT
∑
i

pi

(
1 + 1

wi

)
(26)

with wi according to Eq. (15).

9



2.2 Explicit expressions for the distribution function
As a second part of this section, we will shed more light on possibilities to get explicit expres-
sions of the intermediate distribution function. In order to illustrate how the interpolation
between FD and BE distribution functions looks like, we will calculate the distribution func-
tion for special values of g. Also, one can give useful series represenations for the distribution
function ng(ε) and wg(ε).

2.2.1 Evalutation in special cases

If we look at the implicit equation (15), one can see that for the values g = 1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , we

will receive an algebraic equation of order n ≤ 4, which can generally be solved analytically.
To this end have to obtain solutions w(ξ) of the following equations:

w2 + w − ξ2 = 0 ; g = 1
2 ,

w3 + w2 − ξ3 = 0 ; g = 2
3 ,

w3 + 2w2 + w − ξ3 = 0 ; g = 1
3 ,

w4 + w3 − ξ4 = 0 ; g = 3
4 ,

w4 + 3w3 + 3w2 + w − ξ4 = 0 ; g = 1
4 . (27)

Solving the equation for g = 1
2 is rather easy, yielding one positive solution

n(ε) = 2√
1 + 4e2β(ε−µ)

. (28)

The equations of order n = 3 can be solved by Cardano’s method. However, a calculation
via Mathematica for n ≥ 3 is more comfortable. For both values g = 1

3 ,
2
3 we find one

real solution which can be written down in closed form using the abbriviation a1,2(ξ) =
27ξ3 + 3

√
3
√

27ξ6 ± 4ξ3 ± 2:

n1,2(ε) = 3(
2

a1,2(ξ)

)1/3
+
(
a1,2(ξ)

2

)1/3
∓ 1

. (29)

The corresponding expressions for g = 1
4 ,

3
4 are more complicated and will not be given here.

In Fig. 1, we can see the distribution functions n(ε) for various values of g, compared to
the FD (g = 1) and BE (g = 0) distributions.

2.2.2 Lagrange reversion theorem

While at first it was thought that an analytic expression for the distribution function could
only be given for the special cases above, it has been achieved [19, 20] to solve the implicit
equation (15) for any value of the parameter g using the Lagrange reversion theorem [21],
which will be illustrated in the following: In general, a solution y of an implicit equation of
the type

y = a+ xφ(y) (30)
can be obtained by introducing an arbitrary function g, which can be expressed as

g(pi) =
∫
δ(f(p))g(p)|f ′(pi)|dp, (31)

10



g = 1 � 4

g = 1 � 3

g = 1 � 2

g = 2 � 3

g = 1

g = 0

-4 -2 2 4

Ε - Μ

kT

1

2

3

4

nHΕL

Figure 1: Distribution functions ng(ε) for several values of g.

using the definition of the delta distribution and δ(f(p)) =
∑
i

1
|f ′(pi)|δ(p− pi) for f(pi) = 0.

With the implicit equation (30), we can write f(p) = a+ xφ(p)− p with f(y) = 0 yielding

g(y) =
∫
δ(xφ(p)− p+ a)g(p)[1− xφ′(p)]dp (32)

for xφ′(p) < 1, which will limit the parameter range. With the integral representation of
the Dirac δ-function we get:

g(y) =
∫ ∫

dp
dk

2πe
{ik[xφ(p)−p+a]}g(p)[1− xφ′(p)]. (33)

Splitting the exponential function and using the exponential row yields

g(y) =
∞∑
n=0

∫ ∫
dp
dk

2π
[ikxφ(p)]n

n! g(p)[1− xφ′(p)]eik(a−p). (34)

We can use the n-th derivation of eik(a−p) with respect to a ro rewrite the factor (ik)n:

g(y) =
∞∑
n=0

(
∂

∂a

)n ∫ ∫
dp
dk

2π
[xφ(p)]n

n! g(p)[1− xφ′(p)]eik(a−p). (35)

The integral over k is then identified with δ(a− p), allowing us to also perform the integral
over p yielding

g(y) =
∞∑
n=0

(
∂

∂a

)n { [xφ(a)]n

n! g(a)[1− xφ′(a)]
}
. (36)
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The sum is now being split into two parts

g(y) =
∞∑
n=0

(
∂

∂a

)n xn
n! φ(a)ng(a)−

∞∑
n=0

(
∂

∂a

)n xn+1

n! φ(a)nφ′(a)g(a). (37)

For the first sum, we will split the term for n = 0 which is equal to g(a), and for the second
sum we will use the identity φ(a)nφ′(a)g(a) = 1

n+1(φn+1)′g(a) and shift the indices from n
to n+ 1 yielding

g(y) = g(a) +
∞∑
n=1

(
∂

∂a

)n xn
n! φ(a)ng(a)−

∞∑
n=1

(
∂

∂a

)n−1 xn

n! (φ(a)n)′g(a). (38)

By using
(
∂
∂a

)n
(...) =

(
∂
∂a

)n−1
(...)′ in the first sum, we can reassamble the two sums:

g(y) = g(a) +
∞∑
n=1

xn

n!

(
∂

∂a

)n−1 {
[φ(a)ng(a)]′ − [φ(a)n]′g(a)

}
. (39)

With [φ(a)ng(a)]′ = φ(a)ng′(a) + [φ(a)n]′g(a) we get the final result:

g(y) = g(a) +
∞∑
n=1

xn

n!

(
∂

∂a

)n−1 [
φ(a)ng′(a)

]
. (40)

For g being the identity function, i.e. g(y) = y, we finally receive a general solution y of the
implicit equation (30):

y = a+
∞∑
n=1

xn

n!
dn−1φ(y)n

dyn−1

∣∣∣
y=a

. (41)

2.2.3 Series representations

With the Lagrange reversion theorem we now have a tool to obtain explicit series rep-
resentations of the distribution function, which is only given implicitly so far. The first
application of (41) is to expand wi(ξ) by rewriting the implicit formula (15) alternatively
with introducing Θ = ξ1/g and ν = 1−g

g :

w = Θ(1 + w)−ν . (42)

We now set y = w, a = 0, x = Θ and φ(w) = (1 + w)−ν . Because of the restriction
xφ′(p) < 1 in the derivation above, the following expansion is valid for small values of ξ:

w =
∞∑
n=1

Θn

n!
dn−1φn(w)
dwn−1

∣∣∣
w=0

. (43)

One can find a closed expression for the n-th derivation of φn(w) = (1 + w)−νn, using a
generalized faculty, the Pochhammer symbol (z)m = Γ(z+m)

Γ(z) and therefore we get [19, 20]:

w = Θ
(

1 + ν
∞∑
m=1

(−1)mΘm

m! (mν + ν + 1)m−1

)
. (44)
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In order to validate this expansion, we can reduce it to the results for the distribution
function of the previous chapter for specific values of g. As an example we consider g = 1

2 ,
where the corresponding function w(ξ) to the distribution function (28) is

ws1/2 = −1
2 + 1

2

√
1 + 4ξ2. (45)

This function will be expressed by its Taylor expansion, using the expansion f(x) =
√

1 + x
around the point x = 0:

√
1 + x =

∞∑
n=0

(
2n
n

)
(−1)n

(1− 2n)4nx
n. (46)

With x = 4ξ2 we find:

ws1/2 = −1
2 + 1

2

∞∑
n=0

(2n)!
(n!)2

(−1)n

(1− 2n)ξ
2n. (47)

We can split the term for n = 0, which is equal to 1, from the sum yielding

ws1/2 = 1
2

∞∑
n=1

(2n)!
(n!)2

(−1)n

(1− 2n)ξ
2n. (48)

This expansion is now compared to the result of the Lagrange reversion (44) for g = 1
2 . We

can see that ν = 1 and yield

wL1/2 = ξ2
[
1 +

∞∑
m=1

(−1)m (m+ 2)m−1
m! ξ2m

]
. (49)

With the definition of the Pochhammer symbol applied to integer numbers, we find (m +
2)m−1 = (2m)!

(m+1)! . We can now include the term m = 0, which is equal to 1, in the sum:

wL1/2 =
∞∑
m=0

(2m)!
m!(m+ 1)!(−1)mξ2(m+1). (50)

We now switch indices to n = m+ 1 yielding:

wL1/2 =
∞∑
n=1

(−1)n−1 (2n− 2)!
(n− 1)!n!ξ

2n =
∞∑
n=1

(−1)n (2n)!n
(n!)2(−1)(2n− 1)(2n)ξ

2n. (51)

We immediately see, that this is the same expression as the Taylor expansion (48) of our
result ws1/2:

wL1/2 = 1
2

∞∑
n=1

(2n)!
(n!)2

(−1)n

(1− 2n)ξ
2n. (52)

A second application of the Lagrange reversion theorem is possible for large values of ξ
[20, 22]. We can see from Eq. (14), that the distribution function can be defined through
the following implicit equation [22]

n̄ = 1
ξ
ψ(g, n̄) (53)

13



with ψ(g, n̄) = (1− gn̄)g[1 + (1− g)n̄]1−g. This implicit equation can be solved by applying
Eq. (41) with x = 1

ξ , a = 0 and φ(y) = ψ(g, n̄). We find

n(g, ξ) =
∞∑
m=0

1
(m+ 1)!ξm+1

(
dm

dnm
φm+1(g, n)

)∣∣∣∣∣
n=0

. (54)

Again, we find a closed expression for the m-th derivation of φm+1(g, n) yielding

n(g, ξ) =
∞∑
m=0

(gm+ g −m)m
m!

(−1)m

ξm+1 . (55)

2.3 Mutual statistics
In some physical problems, we will have to regard multiple particle species, with the single
particle Hilbert space dimension depending on the number of particles {Ni} of all particle
species i. The term particle species is ment in a general way, distinguishing also identical
particles with different momenta. Following Wu [18], we regard more than one particle
species i, j, and alternatively write the change of dimension of the single particle Hilbert
space of particle species i as

∆di = −
∑
j

gij∆Nj (56)

which defines the mutual statistics gij . For the total number of Ni-particle states with Ni

particles occupying pi single particle states we receive:

W =
∏
i

[
pi +Ni − 1−

∑
j gij(Nj − δij)

]
!

(Ni)!
[
pi − 1−

∑
j gij(Nj − δij)

]
!
. (57)

This generalized statistics becomes important in real physical problems being described by
fractional exclusion statistics. It is not possible to derive an expression for the distribu-
tion function as in the non-mutual case. However, one can find [18] implicit equations for
the occupation numbers ni and give an expression similar to (25) for the grand-canonical
thermodynamic potential, that in principle allows developing all other thermodynamic func-
tions.

3 Thermodynamics of the ideal excluson gas
We regard the thermodynamics of an ideal gas of excluson particles with no mutual statistics,
being held in a d-dimensional rigid box of volume V . In this section, we will show that
all thermodynamic functions of interest can be expressed and calculated by evaluating a
single type of integral function. The connection between the statistical mechanics of the
previous chapter and the thermodynamics is being established by further evaluating the
thermodynamic potential (26). In the thermodynamic limit, when the eigenenergies lie very
close together, one can transform the sum over the energy levels εi into an integral yielding

Ω = −kBT
∫ ∞

0
dεD(ε) ln

(
1 + 1

w

)
(58)
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with a specific state density D(ε) that results from the energy levels εp of different problems.
For an ideal gas of particles we find the d-dimensional state density as

D(ε) = cεd/2−1, (59)

with the constant
c = gs

(2πm
h2

)d/2 V

Γ(d/2) . (60)

Inserting the ideal state density into the thermodynamic potential and integrating by parts,
we receive

Ω = −kBTc
[

1
d/2ε

d/2 ln
(

1 + 1
w

)∣∣∣∣∞
0
−
∫ ∞

0

1
d/2ε

d/2 1
1 + 1/w

∂(1/w)
∂ε

dε

]
. (61)

The first term vanishes, regarding w →∞ for ε→∞. We can evaluate the derivative using
∂ε
∂w = w(1+w)

g+w kBT from Eq. (15), yielding

Ω = − c

d/2

∫ ∞
0

εd/2

w + g
dε. (62)

Introducing the dimensionless energy t = βε, the dimensionless chemical potential η = βµ

and the dimensionless parameter x = λdT
gs

N
V with the thermal wavelength λT =

√
βh2

2πm we
find

Ω = −kBT
x

Id/2(η, g) (63)

with the Calogero-Sutherland integral function

In(η, g) = 1
Γ(n+ 1)

∫ ∞
0

dt
tn

w(et−η) + g
, (64)

for which we find
∂

∂η
In(η, g) = In−1(η, g). (65)

From the grand-canonical thermodynamic potential given in Eq. (63) we can derive all
thermodynamic functions of interest. For the equation of state Ω = −pV we find

pV

NkBT
= 1
x
Id/2(η, g). (66)

The total particle number N is defined by

N = −∂Ω
∂µ

∣∣∣
T,V

= −β∂Ω
∂η

∣∣∣
T,V

. (67)

Using relation (65) we find
x = Id/2−1(η, g). (68)

The internal energy is obtained from the thermodynamic potential Ω = −kBT lnZ as follows

E = −∂ lnZ
∂β

∣∣∣
T,V

(69)
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yielding
E

kBTNd/2
= 1
x
Id/2(η, g). (70)

The universal relation between pressure and internal energy is is found to be pV = 2
dE. We

receive identical results, if we simply express the total energy E and particle number N of
the system, given by Eqs. (7) and (8), as integrals in the thermodynamic limit:

N =
∫ ∞

0
n̄(ε)D(ε)dε, (71)

and
E =

∫ ∞
0

εn̄(ε)D(ε)dε. (72)

We now have to find methods for evaluating the integrals In either numerically for finite
temperatures or analytically in special cases, for instance in the limit of high density/low
temperature (large values of parameter x) or low density/high temperature (small values of
parameter x).
In the integrand of (64), we recognize the distribution function n̄i = 1

w+g . In the pre-
vious Section we have seen, that, in principle, it is possible to obtain an expression for
the distribution function of excluson states with energy ε for any value of the statistical
parameter g. However, regarding the expressions for g = 1

3 ,
2
3 , we can also imagine the

distribution functions becoming arbitrarily complicated for most values of g. Therefore,
the finite and low-temperature thermodynamics are evaluated without explicit specifica-
tion of the function w(ξ). Afterwards, the implicit equation (15) is being used to re-
express the Calogero-Sutherland integral functions as integrals over the variable w: We
find t = ln

[(
w
w0

)g ( 1+w
1+w0

)1−g
]
, while w0 is defined by the equation e−βµ = wg0(1 + w0)1−g,

and dt
dw = w+g

w(w+1) yielding

In(w0, g) = 1
Γ(n+ 1)

∫ ∞
w0

{
ln
[(

w
w0

)g ( 1+w
1+w0

)1−g
] }n

w(w + 1) dw. (73)

3.1 Finite temperature properties
In order to calculate the Integrals In in Eq. (73) numerically, we will consider them as func-
tions of the fugacity z = eβµ, by expressing the variable w0 through 1

z = wg0(1 + w0)1−g.
For g = 0 the fugacity lies in the range of 0 ≤ z ≤ 1, since the chemical potential is strictly
non-positive. For all other values of g we can find any positive value of the fugacity. Large
values of z correspond to low-temperature or high-density limits, while small values of z
resemble high-temperature or low-density properties. As z approaches zero, we receive MB
behaviour.

The results of the numerical evaluation of the Calogero-Sutherland integral functions I1/2
and I3/2 over a range of the fugacity can be viewed in Fig. 2 and Fig. 3. It is the shape
of these functions, that influences the variation of thermodynamic functions over different
values of g. For g ≥ 1

2 the functions are concave, while for g ≤ 1
2 they are convex for small
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Figure 2: Calogero-Sutherland integral function I1/2 as a function of the fugacity z = eβµ

for several values of g.
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Figure 3: Calogero-Sutherland integral function I3/2 as a function of the fugacity z = eβµ

for several values of g.
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Figure 4: Thermodynamic equation of state in d = 3 as a function of the fugacity z = eβµ

for several values of g.

values of z and then change to concave behaviour.
The pressure as a function of z can be received from Eqs. (66) and (68):

pV

NkBT
=

Id/2(z, g)
Id/2−1(z, g) . (74)

As an example, the case d = 3 is given in Fig. 4. One can see, that all curves for g > 1
2

show a fermionic monotone increase. In contrast, for g < 1
2 we find a bosonic decrease of

the pressure for small values of z until a minimum is reached and then the curve switches
to fermionic behaviour. For all values of g, we obtain the classical result pV = NkBT for
an ideal gas in the MB limit as z → 0. One can imagine, that the statistical interactions of
exclusons is divided into a long-ranged attractive part, i.e. for low-density limits and small
fugacity, and a short-ranged repulsive part, , i.e. for high-density limits and large fugacity.
The attractive part, in other words the initial negative slope, is only found for g < 1

2 , while
the repulsive part is found for all g > 0. One can see, that the repulsive interaction prevents
all systems of g 6= 0 from forming a Bose-Einstein condensate.
The isochoric specific heat CV =

(
∂E
∂T

)
V

can be calculated from pV = 2
dE and Eqs. (65)

and (74) yielding [23]

CV
kBN

= d/2
[
(d/2 + 1)

Id/2(z, g)
Id/2−1(z, g) − d/2

Id/2−1(z, g)
Id/2−2(z, g)

]
. (75)

In order to eliminate the fugacity and, hence, the chemical potential µ from the thermody-
namic formula we extract the temperature from Eq. (68) and identify all other constants
with the Fermi energy ε̄F (20) for g = 1 yielding

T

TF
= Γ(d/2 + 1)

[Id/2−1(z, g)]2/d
(76)
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using the characteristic Fermi temperature TF = ε̄F
kB

. From this we can obtain an explicit
temperature dependence of thermodynamic quantities at constant particle density ρ = N

V .
Further numerical results for thermodynamic functions of the IEG as well as other spatial
dimensional cases are calculated in an analogue way, and may be viewed in the literature
[23].

3.2 Low-temperature properties
The low-temperature properties of the IEG for g > 0 can be established by a variation of
the fermionic Sommerfeld expansion with our generalized excluson statistics ng(ε).

3.2.1 Generalized Sommerfeld expansion

We take a step back and consider general integrals of the type I =
∫∞

0 F (ε)n(ε)dε with any
thermodynamic function F (ε), which will be left arbitrary, so that we can get results not
only for an ideal gas of exclusons, but also for a modified density function for harmonically
trapped exclusons. Following Ref. [19], we solve these integrals by a variation of the
fermionic Sommerfeld expansion [24]: we first substitute y = βε − βµ and then divide the
resulting integral into parts yielding

I =
∫ ∞

0
F (ε)n(ε)dε = 1

β

∫ ∞
−βµ

dyF

(
y

β
+ µ

)
n(y) = 1

β

∫ ∞
0

dyFn+ 1
β

∫ 0

−βµ
dyFn. (77)

Next, we add and subtract
∫ 0
−βµ Fa with a being an arbitrary constant, which we will later

choose to be a = 1
g , so that the expansion reduces to the known fermionic result for g = 1:

Iβ =
∫ ∞

0
dyF

(
y

β
+ µ

)
n(y) +

∫ 0

−βµ
dyF

(
y

β
+ µ

)
[n(y)− a] +

∫ 0

−βµ
dyF

(
y

β
+ µ

)
a. (78)

With substituting y by −y in the second integral and setting the lower border to −∞ since
βµ� 1 for low enough temperatures, we find the two functions F± = F (µ± kBTy) giving
us:

Iβ = a

∫ 0

−βµ
dyF +

∫ ∞
0

dyF+n(y) +
∫ ∞

0
dyF−[n(−y)− a]. (79)

The functions F± can now be expanded around µ. The similar Taylor expansions allow us
to combine the two integrals yielding

Iβ = a

∫ 0

−βµ
dyF +

∫ ∞
0

dy

( ∞∑
m=0

(kBT )m

m!
dmF (µ)
dym

ym
)
{n(y) + (−1)m[n(−y)− a]}. (80)

Dividing by β = 1
kBT

and resubstituting to ε we find

I = a

∫ µ

0
F (ε)dε+

∞∑
i=0

Ci(a) 1
i!
diF (µ)
dεi

(kBT )i+1 (81)

with the coefficients

Ci(a) =
∫ ∞

0
dyyi{n(y) + (−1)i[n(−y)− a]}. (82)
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By the study of specific values of the statistical parameter g, it has been claimed [25] that
C0(a) = 0. However, there also exists a proof of this assumption [22] for all values of g.
This is an important fact, since we will use the expansion to the first (or higher) order in
all following calculations and neglect the zeroth order. For the purpose of the proof and for
further evaluation, we will reexpress (82) as an integral over the variable w by using Eq.
(15). Following Ref. [22] we will do this in multiple steps: First, we split the integral (82)
into two parts:

Ci(g) = Ai(g) +Bi(g), (83)
with the respective abbreviations

Ai(g) =
∫ ∞

0
dy

yi

w(g, ey) + g

Bi(g) = (−1)i
∫ ∞

0
dyyi

[ 1
w(g, e−y) + g

− 1
g

]
. (84)

Secondly, we substitute ey = ξ in the first integral Ai(g) and e−y = ξ in the second integral
Bi(g) yielding

Ai(g) =
∫ ∞

1

lnj ξ
ξ

1
w + g

dξ, (85)

and

Bi(g) = −
∫ 0

1

1
ξ

(−1)i(− ln ξ)i
( 1
w + g

− 1
g

)
dξ =

∫ 1

0

lni ξ
ξ

( 1
w + g

− 1
g

)
dξ. (86)

In order to get to the variable w, we take the logarithm of Eq. (15) and find the substitution
ln ξ = g lnw + (1− g) ln(1 + w). We will not have to make a substitution for ξ itself, since
it gets cancelled from the expression for the derivative:

dξ

dw
= gwg−1(1 + w)1−g + (1− g)wg(1 + w)−g = g

w
ξ + 1− g

w + 1ξ = ξ(w + g)
w(w + 1) . (87)

The first integral Ai(g) in terms of w results in:

Ai(g) =
∫ ∞
w1

dw
[g lnw + (1− g) ln(1 + w)]i

w(w + 1) (88)

with w1 = w(ξ = 1, g), which satisfies the equation

1 = wg1(1 + w1)1−g. (89)

For the second integral Bi(g) we find similarly:

Bi(g) =
∫ w1

0 dw[g lnw + (1− g) ln(1 + w)]i ξ(w+g)
w(w+1)

g−w−g
ξg(w+g)

= −
∫ w1

0 dw [g lnw+(1−g) ln(1+w)]i
g(w+1) . (90)

The borders are found according to the asymptotic behaviour of the function w(ξ), as
investigated in Section 2. For prooving C0(g) = 0, we will calculate A0(g) and B0(g) and
use the following identity

lnw1 − ln(1 + w1) = −1
g

ln(1 + w1), (91)
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which is obtained by taking the logarithm of Eq. (89). For B0(g) we get

B0(g) = −1
g

∫ w1

0
dw

1
w + 1 = −1

g
ln(1 + w1), (92)

and for A0(g)
A0(g) =

∫ ∞
w1

dw
1

w(w + 1) = ln(w1 + 1)− lnw1. (93)

With Eqs. (83) and (91) we immediately receive C0(g) = 0 for all values of g.
Having shown C0(g) = 0, we can expand the results of the generalized Sommerfeld expansion
to the first order yielding:∫ ∞

0
dεn(ε)F (ε) = a

∫ µ

0
F (ε) + C1(a) dF (ε)

dε

∣∣∣∣
ε=µ

(kBT )2 +O(kBT )3. (94)

This result can be reduced to the results of the fermionic Sommerfeld expansion when setting
g = 1. The first order of the fermionic Sommerfeld expansion [24] is in principle:∫ ∞

0
dεF (ε)nFD(ε) =

∫ µ

0
dεF (ε) + F ′(µ)

β2

∫ ∞
−∞

dyyη(y) +O(T 4) (95)

with y = β(ε−µ) and η(y) = nFD(ε)−Θ(µ−ε). We now regard the generalized expansion to
the first order, setting g = 1

a = 1. As shown earlier, our distribution function n(ε) becomes
the Fermi-Dirac distribution nFD(ε) and the expansion becomes∫ ∞

0
dεF (ε)nFD(ε) =

∫ µ

0
dεF (ε) + F ′(µ)

β2

∫ ∞
0

dy {nFD(y)− [nFD(−y)− 1]} y. (96)

To show, that the second integral is equal to the fermionic one, we substitute y by −y in
the second part of the integral. This allows us to combine both parts of the integral using
the stepfunction Θ(−y) = Θ(µ− ε):∫ ∞

0
dynFD(y)y +

∫ 0

−∞
dy[nFD(y)− 1]y =

∫ ∞
−∞

dy[nFD(y)−Θ(−y)]y. (97)

As a result, our generalized Sommerfeld expansion reduces to the fermionic expansion for
g = 1:∫ ∞

0
dεF (ε)nFD(ε) =

∫ µ

0
dεF (ε) + F ′(µ)

β2

∫ ∞
−∞

dy[nFD(y)−Θ(µ− ε)]y +O(kBT )3. (98)

3.2.2 Expansion of thermodynamic functions

The Sommerfeld expansion can now be applied to give low-temperature expansions for the
Calogero-Sutherland integral functions In(η, g) in Eq. (64). This allows us to get expressions
for the chemical potential µ, the internal energy E and the specific heat CV of an ideal gas
of exclusons. For now it is sufficient to use the expansion to the first order to show the
principle. For the final results of the thermodynamic functions, terms of higher order in
Eq. (81) are not altered by the following procedure and can later on easily be added to the
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results for the expansion of order one. We will now choose a = 1
g and leave the coefficient

C1(g)
C1(g) =

∫ ∞
0

dy

{
ng(y)−

[
ng(−y)− 1

g

]}
y (99)

as a constant. A concrete evaluation of the coefficients will follow later. Writing equation
(71) alternatively as

ρ = N

V
= K

∫ ∞
0

dεF (ε)n(ε) (100)

with K = 1
(2π)d/2Γ(d/2)

(
m
h̄2

)
and expanding it to the second power yields

ρ = K

[
1
g

∫ µ

0
dεF (ε) + C1(g) dF (ε)

dε

∣∣∣∣
ε=µ

(kBT )2 +O(kBT )3
]
. (101)

We split the integral as follows

a

∫ µ

0
dεF (ε) = 1

g

∫ εF

0
dεF (ε) + 1

g

∫ µ

εF

dεF (ε). (102)

The first integral is equal to ρ
K , since it equals Eq. (101) at T = 0, where µ = εF . For the

second integral, we use the mean value theorem for integration with ε̃ being a value between
µ and εF :

1
g

∫ µ

0
dεF (ε) = ρ

K
+ 1
g

(µ− εF )F (ε̃). (103)

Since we are approximating for low temperatures, we can assume that ε̃ and the chemical
potential are very close to the Fermi energy εF . Inserting the previous equation into Eq.
(101) yields

ρ = K

[
ρ

K
+ 1
g

(µ− εF )F (εF ) + C1(g)F ′(εF )(kBT )2 +O(kBT )3
]
. (104)

This allows us to give an expression for the chemical potential with arbitrary state density
F (ε), additionally considering terms up to O(kBT )4, yielding

µ

εF
= 1− gC1(g)εF

F ′(εF )
F (εF )

(
kBT

εF

)2
− gC2(g)(εF )2F

′′(εF )
F (εF )

(
kBT

εF

)3

−gC3(g)(εF )3F
′′′(εF )
F (εF )

(
kBT

εF

)4
− g

εF
O(kBT )5. (105)

Next, we can evaluate the energy equation (72) with the Sommerfeld expansion:

E = 1
g

∫ µ

0
dεD(ε)ε+ C1(g)d(D(ε)ε)

dε

∣∣∣
ε=µ

(kBT )2 +O(kBT )3. (106)

Again, we split the integral yielding

E = 1
g

∫ εF

0
dεD(ε)ε+ a(µ− εF )D(ε̃)ε̃+ C1(a)(kBT )2[D′(µ)µ+D(µ)] +O(kBT )3. (107)
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We will label the first integral as
∫ εF

0 dεD(ε)ε = E0, since it is temperature independent.
Next, we approximate ε̃ ≈ εF and µ ≈ εF and replace (µ− εF ) with Eq. (105):

E = E0
g
−D(εF )εF gC1(g)D

′(εF )
D(εF ) (kBT )2 1

g
+ C1(g)(kBT )2(D′(εF )εF +D(εF )) +O(kBT )3.

(108)
By adding the terms of higher order in kBT the internal energy is expressed by

Eg(T ) = E0
g

+ C1(g)D(εF )(kBT )2 + C2(g)[D′′(εF )εF + 2D′(εF )](kBT )3

+C3(g)[D′′′(εF )εF + 3D′′(εF )](kBT )4 +O(kBT )5. (109)

For the specific heat CV = ∂E
∂T we receive

Cg,V (T ) = 2C1(g)D(εF )k2
BT + 3C2(g)[D′′(εF )εF + 2D′(εF )]k3

BT
2

+4C3(g)[D′′′(εF )εF + 3D′′(εF )]k4
BT

3 +O(T 4). (110)

3.2.3 Evaluation of Sommerfeld coefficients

To fully evaluate the thermodynamic expressions of the ideal excluson gas, we must at least
be able to calculate the coefficient C1(g). With the explicit expressions for the distribution
function n(ε) derived in Section 2, this is not possible. However, as seen above, we can use
Eq. (15) to re-express the integral Ci(g) as two integrals Ai(g) in (88) and Bi(g) in (90)
over the variable w. These integrals shall now be further evaluated. Following Ref. [22], we
start by rewriting the integrand in Ai(g)

Ai(g) =
∫ ∞
w1

dw
{g[lnw − ln(1 + w)] + ln(1 + w)}i

w(w + 1) (111)

with the binomial theorem:

Ai(g) =
i∑

m=0

(
i

m

)
gmTi,m, (112)

where we have introduced the abbreviation

Ti,m =
∫ ∞
w1

dw
[lnw − ln(1 + w)]m[ln(1 + w)]i−m

w(w + 1) . (113)

The summand Ti,i for m = i can be evaluated if we see that the denominator is the inner
derivative of the numerator:∫ ∞
w1

dw
[lnw − ln(1 + w)]i

w(w + 1) = − [ln(w1)− ln(1 + w1)]i+1

i+ 1 = (−1)i

gi+1(i+ 1)[ln(1+w1)]i+1. (114)

Identity (91) has been used in the second step. Since we now know the stem function of
f(w) = [lnw−ln(1+w)]i

w(w+1) , we can partially integrate Ti,m in order to adjust the denominator of
the integrand in Ai(g) to 1

w+1 , as in Bi(g) yielding

Ti,m = (−1)m

gm+1(m+ 1)[ln(1 + w1)]i+1 + m− i
m+ 1Ui,m+1(w1,∞) (115)
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with the integral

Ui,m+1(w1,∞) =
∫ ∞
w1

[lnw − ln(1 + w)]m+1[ln(1 + w)]i−m−1

w + 1 dw. (116)

Expressing Ai(g) in (112) with the two previous results yields

Ai(g) = giTi,i +
i−1∑
m=0

(
i

m

)
gm

m+ 1

{(−1)m

gm+1 [ln(1 + w1)]i+1 + (m− i)Ui,m+1(w1,∞)
}
. (117)

By using the following two identities

i∑
m=0

(
i

m

)
(−1)m

m+ 1 = 1
i+ 1;

(
i

m

)
i−m
m+ 1 =

(
i

m+ 1

)
, (118)

we find

Ai(g) = 1
g(i+ 1)[ln(1 + w1)]j+1 −

i−1∑
m=0

(
i

m+ 1

)
gmUi,m+1(w1,∞). (119)

We will now regard the integral Bi(g) in (90)

Bi(g) = −
∫ w1

0
dw
{g[lnw ln(1 + w)] + ln(1 + w)}i

g(w + 1) (120)

and expand the integrand according to the binomial theorem yielding

Bi(g) = −
i∑

m=0

(
i

m

)
gm−1Ui,m(0, w1). (121)

with Ui,m(0, w1) =
∫ w1

0 dw [lnw ln(1+w)]m[ln(1+w)]i−m
w+1 . We split the term Ui,0 for m = 0 which

is easily calculated as

Ui,0 =
∫ w1

0

[ln(1 + w)]i

w + 1 dw = 1
i+ 1[ln(1 + w1)]i+1, (122)

and shift indices in the remaining sum from m to m+ 1 yielding

Bi(g) = − 1
g(i+ 1)[ln(1 + w1)]i+1 −

i−1∑
m=0

(
i

m+ 1

)
Ui,m+1(0, w1). (123)

The results for Ai(g) and Bi(g) can be added, cancelling all notion of w1, to give a closed
form for Eq. (83):

Ci(g) = −
i−1∑
m=0

(
i

m+ 1

)
gm
∫ ∞

0
dw

[lnw − ln(1 + w)]m+1[ln(1 + w)]i−m−1

w + 1 . (124)

By substituting w = 1−t
t we obtain:

Ci(g) =
i−1∑
m=0

(
i

m+ 1

)
(−1)i−m−1gm

∫ 1

0

dt

t
[ln(1− t)]m+1(ln t)i−m−1. (125)
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From this equation we can see, that Ci(g) is a polynomial in g of order i− 1. The general
structure is as follows:

Ci(g) =
i−1∑
m=0

(
i

m+ 1

)
gm(−1)i−m−1Ii−m,m+1. (126)

The coefficients Ii−m,m+1 are integrals of the type

Iq,p =
∫ 1

0

dt

t
[ln(1− t)]p(ln t)q−1. (127)

Those integrals have solutions that can be expressed [26] in terms of the Riemann zeta
function. As a result, the first coefficients are as follows [5]:

C1(g) = ζ(2) = π2

6 ,

C2(g) = 2(1− g)ζ(3),

C3(g) = 3
2(4− g − 4g2)ζ(4). (128)

Only in the strict fermion case g = 1 the even Sommerfeld coefficients vanish.

3.2.4 Results

To conclude the low-temperature properties of the exclusons gas, we insert the results for the
generalized Sommerfeld ceofficients Ci(g) into the expressions for thermodynamic functions
within the Sommerfeld expansion of Section 3.2.2. From Eq. (105), we get the actual
dependence of the chemical potential µ on g by considering that the Fermi energy εF is
also dependent on g according to εF ∝ g2/d, for the IEG. We therefore use Eq. (22) to
write the chemical potential µg(T ) in terms of the fermionic Fermi energy ε̄F and the Fermi
temperature TF = ε̄F

kB
, and see, that all arising powers of g cancel out:

µg(T )
ε̄F

= g2/d − gC1(g)ε̄F
F ′(εF )
F (εF )

(
T

TF

)2
− gC2(g)(ε̄F )2F

′′(εF )
F (εF )

(
T

TF

)3

−gC3(g)(ε̄F )3F
′′′(εF )
F (εF )

(
T

TF

)4
+O

(
T

TF

)5
. (129)

Using the state density of d-dimensional ideal exclusons (59), we get the chemical potential
µg(T ) of the d-dimensional ideal excluson gas:

µg(T )
ε̄F

= g2/d − g1−2/d(d/2− 1)ζ(2)
(
T

TF

)2
− g1−4/d(1− g)(d/2− 1)(d/2− 2)2ζ(3)

(
T

TF

)3

−g1−6/d(4− g − 4g2)(d/2− 1)(d/2− 2)(d/2− 3)3
2ζ(4)

(
T

TF

)4
+O

(
T

TF

)5
. (130)
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From Eq. (110) we obtain the specific heat:

Cg,V

ε̄
d/2
F kBKV

= g1−2/d2ζ(2)
(
T

TF

)
+ g1−4/d(1− g)d(d/2− 1)3ζ(3)

(
T

TF

)2

+g1−6/d(4− g − 4g2)d(d/2− 1)(d/2− 2)3ζ(4)
(
T

TF

)3

+O
(
T

TF

)4
. (131)

We can see, that for d = 2 all terms of the expansions vanish. For the chemical potential we
receive the temperature independent result µ

ε̄F
= g, similar to the low-temperature behaviour

of the ideal Fermi gas in 2d, where we receive µ = ε̄F [5] for low but finite temperatures. For
the heat capacity we obtain the linear temperature dependence as CV

NkB
= 2

xζ(2), independent
on the statistical parameter g. This was known for a long time from the compliance of Fermi
and Bose gases in d = 2 [27]. Corrections to these asymptotic results in d = 2 are further
investigated in Section 5.

3.3 High-temperature properties
In this section, we will expand the equation of state in the virial form, i.e. in form of a power
series with respect to powers of the particle density ρ = N

V . In Section 2.2.2 we derived a
series expansion for the the distribution function n(ε) = 1

w(ξ)+g in (55) for large values of ξ:

ng(ξ) =
∞∑
m=0

bm(g)
(1
ξ

)m+1
(132)

with the coefficients bm(g) = (−1)m (gm+g−m)m
m! , yielding b0(g) = 1 and b1(g) = −(2g − 1)

etc. High-temperature/low density limits correspond to small values of the fugacity z = eβµ

and to large values of ξ = 1
z e
t. Therefore, the integrals In = Γ(n + 1)−1 ∫∞

0 dtng(ξ)tn in
(64) can be expanded as:

In = 1
Γ(n+ 1)

∞∑
m=0

bm(g)zm+1
∫ ∞

0
tne−(m+1)tdt. (133)

Multiple integration by parts yields

In(g, z) =
∞∑
m=0

cn,m(g)zm+1 (134)

with the coefficients
cn,m(g) = bm(g)

(m+ 1)n+1 . (135)

To expand the equation of state in virial form, we have to eliminate the fugacity z from
Eqs. (68) and (70). Applying the expansion for In to Eq. (68) gives us:

x =
∞∑
m=0

cn,m(g)zm+1 (136)
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with fixed n = d/2− 1. This series is to be reverted in order to receive a function z = z(x).
The inverted series is of the following form:

z = r1x+ r2x
2 + r3x

3 + .... . (137)

If this series is inserted in the series for x (136) we receive the equation

x = (cn,0r1)x+ (cn,1r2
1 + cn,0r2)x2 + (cn,2r3

1 + 2cn,1r1r2 + cn,0r3)x3 + .... , (138)

which allows us to calculate the coefficients rn,m of the inverted series step by step:

rn,1 = 1
cn,0

,

rn,2 = − 1
c3
n,0
cn,1,

rn,3 = 1
c5
n,0

(2c2
n,1 − cn,0cn,2),

... (139)

The inverted series can be used to replace the series expansion of Eq. (70)

Ex

NkBTd/2
=
∞∑
m=0

cn+1,mz
m+1 (140)

yielding
E

NkBTd/2
=
∞∑
m=0

rd/2,m+1x
m. (141)

With the definition of cn+1,m in (135), the respective coefficients are easily calculated yield-
ing

rd/2,1 = 1,

rd/2,2 = 1
2d/2

(g − 1/2),

rd/2,3 = 1
2d/2−2 (g − 1/2)2 − (3g − 2)(3g − 1)

3d/2+1 ,

... (142)

With pV = 2
dE and the definition of the dimensionless parameter x from page 15 we see,

that the equation of state has the form of a virial expansion. Expanded to the first power,
the equation of state in the MB limit e

µ
kBT � 1 becomes:

pV = NkBT

[
1 + (g − 1/2) λ

d
T

2d/2
ρ+O(ρ)2

]
. (143)

From this result, we can confirm the numerical results of Section 3.1: In the high-temperature/low-
density limits, the statistical interaction of an ideal gas of exclusons of parameter g is attrac-
tive for g < 1/2 and repulsive for g > 1/2. However, we have to note that from these results
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it has also been shown in Ref. [28], that for g < 1/2 the statistical interaction becomes
repulsive in the high-density limit.
By differentiating the expansion of the internal energy in (141) with respect to the tem-
perature, we receive a corresponding expansion for the heat capacity for small values of
x:

CV
NkBd/2

=
∞∑
m=0

rd/2,m+1(1−md/2)xm. (144)

4 Harmonically trapped excluson gas
The proceedings in realizing experimental methods in order to create ultracold quantum
gases have shown that it is possible to build magnetic particle traps, which show geometries
that practically freeze out degrees of freedom of the particles perpenticular to certain axes
(cigar-shaped trap) or planes (disk-shaped trap) [29]. At very low temperatures, one can
then produce a quantum gas effectively residing in d = 1 and d = 2 spatial dimensions,
allowing researchers to observe the effects of low dimensionality predicted by the theories.
Therefore, we also regard a d-dimensional ideal excluson gas in a harmonic trap with fre-
quencies ωi for i = 1, ..., d. In general, the Hamiltonian of a particle in a harmonic trap
potential is given by:

H = p̂2

2m + m

2

d∑
i=1

ω2
i x̂

2
i . (145)

From the energy spectrum, one can establish a thermodynamic limit for infinite particle
number N and volume V and derive a state density function D(ε), which is defined using
the geometric mean of the trap frequencies ω̄ = (

∏
i ωi)1/d [30]:

D(ε) = εd−1

Γ(d)(h̄ω̄)d . (146)

Due to the finite size, i.e. particle number and volume, of a harmonically trapped system one
can also establish finite-size corrections to the state density above, which will be neglected
however. With the given state density, we can use the same methods as in the ideal case.
Starting from Eq. (58) for the grand-canonical thermodynamic potential with arbitrary
state density, we also arrive at the Calogero-Sutherland integral functions In, for the values
n = d, d−1 and d−2. Additionally, we have to consider that the effective volume of the gas
is equal to the harmonic volume Vh = ω̄−d. In this section, we will just mention a couple of
analytical results for the respective thermodynamic functions without any derivation. For
finite temperature numerical findings as in Section 3.1 see Refs. [11, 31, 32].

4.1 Low-temperature properties
In Section 3.2.2 we derived low-temperature results for excluson properties within the Som-
merfeld expansion for arbitrary density functions. From Eq. (105), together with the results
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for the coefficients Ci(g) in (128) and Eq. (146), we find

µg(T )
ε̄F

= g1/d − g1−1/d(d− 1)ζ(2)
(
T

TF

)2
− g1−2/d(1− g)(d− 1)(d− 2)2ζ(3)

(
T

TF

)3

−g1−3/d(4− g − 4g2)(d− 1)(d− 2)(d− 3)3
2ζ(4)

(
T

TF

)4
+O(T/TF )5 (147)

with the trapped generalized Fermi energy ε̃F = g−1/dε̄F . For the heat capacity we obtain
from Eq. (110):

Cg,V

ε̄dFkBK̃
= g1−1/d2ζ(2)

(
T

TF

)
+ g1−2/d(1− g)d(d− 1)6ζ(3)

(
T

TF

)2

+g1−3/d(4− g − 4g2)d(d− 1)(d− 2)6ζ(4)
(
T

TF

)3
+O(T/TF )4 (148)

with K̃ = Vh
h̄dΓ(d) . We see that for the d = 1 trapped excluson gas the low-temperature

expansions vanish, analogous to the d = 2 ideal gas. This will be further discussed in
Section 5.

4.2 High-temperature properties
A high-temperature expansion of the Calogero-Sutherland integral function completely ana-
logue to Section 3.3 gives us the equation of state in the viral form:

E

NkBTd
= pV

NkBT
=
∞∑
m=0

sd,m+1x
m. (149)

with coefficients

sd,1 = 1,

sd,2 = 1
2d (g − 1/2),

sd,3 = 1
2d−2 (g − 1/2)2 − (3g − 2)(3g − 1)

3d+1 ,

... (150)

5 Gas with constant density of states
As seen from the low-temperature approximations of the chemical potential and the specific
heat, in d = 2 (d = 1) the terms of the asymptotic expansions for the ideal (trapped)
excluson gas vanish. This behaviour is found, when we have a density of states that is
constant in energy. Regarding a more general dispersion relation ε(p) = aps, we find a
constant density of states of ideal gases for d = s.
It is possible to obtain exact expressions for thermodynamic functions of the IEG with
constant density of states [22, 33]. This is because we can solve the Calogero-Sutherland
integral function I0(g, η) from (73), which gives us the solution of Eq. (68):

x = I0(g, η) =
∫ ∞
w0

dw
1

w(w + 1) = ln
(

1 + 1
w0

)
. (151)
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Now we can express w0 in terms of the dimensionless parameter x:

w0 = 1
ex − 1 . (152)

This expression can be plugged into the defining equation for w0 = w(ε = 0), namely
e−η = wg0(1 + w0)1−g, to give an exact result for the dimensionless chemical potential η of
the excluson gas with constant density of states:

ηg(x) = gx+ ln(1− e−x). (153)

If we approach the high density/low-temperature limits, i.e. for large values of x, we recover
the asymptotic result via Sommerfeld expansion µ

ε̄F
= g. Next we can calculate the internal

energy from Eq.’s (70) and (65)

Ex

NkBT
= I1(g, η) =

∫ η

−∞
I0(g, η)dη =

∫ η

−∞
x(η)dη. (154)

Using the exact result for the dimensionless chemical potential, we find dη
dx = g + 1

ex−1 and
can switch variables to x in the integral yielding the equation of state

E

NkBT
= pV

NkBT
= 1
x

(1
2gx

2 +
∫ x

0

x′

ex′ − 1dx
′
)
. (155)

For increasingly large values of x, we see that the integral approaches the integral definition
of the Riemann Zeta-function ζ(s) =

∫∞
0

xs−1

ex−1dx, giving us the low-temperature result

E

NkBT
= pV

NkBT
= 1

2gx+ 1
x
ζ(2). (156)

The isochoric specific heat is obtained from Eq. (155) by CV = ∂E
∂T , which will be done for

the IEG in d = 2 representative for all systems with constant state density. We can perform
the derivative from the previous equation if we note that for the dimensionless parameter
x in d = 2 we find the temperature dependence x = TF

T with fixed particle density N
V .

Furthermore, dx
dT = −TF

T 2 yields

CV
NkB

= 2
x

∫ x

0

x′

ex′ − 1dx
′ − x

ex − 1 . (157)

Also this exact result for an excluson gas with constant density of states does not depend
on the parameter g. For very large values of x, we retain the low-temperature asymptotic
result CV

NkB
= 2

xζ(2), from the definition of the Riemann zeta-function. In Fig. 5 we can see
the specific heat as a function of the reduced temperature T/TF for the d = 2 IEG. We find
linear behaviour CV

NkB
= 2 T

TF
ζ(2) for low temperatures, as well as the classical MB result

for high temperatures. In the high-temperature/low density limits (x very small), we can
obtain the virial expansion of the equation of state by expanding the integrand in Eq. (155)
around the point x′ = 0:

x′

ex′ − 1 = 1− 2
x

+
∞∑
n=1

(−1)n+1

(2n)! Bnx
′2n (158)
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Figure 5: Isochoric heat capacity as a function of reduced temperature T/TF for the d = 2
IEG with any value of g.

with the Bernoulli numbers B1 = 1
6 , B2 = 1

30 , B3 = 1
42 ..., which are defined as Taylor

coefficients of this specific series. One can integrate each term yielding the virial expansion
of the equation of state for constant density of states

pV

NkBT
= 1 + a2x+

∞∑
n=1

(−1)n+1

(2n+ 1)!Bnx
2n (159)

with the second virial coefficient a2 = 1
2(g − 1

2). This virial expansion is included in the
more general case in Section 3.3, as can be seen by comparison of the respective coefficients.
We find that only the second virial coefficient a2 does depend on g. These results of the
excluson gas with constant density of states, when applied to the IEG in d = 2, are identical
with calculations for the d = 2 ideal Fermi and Bose gas [5] when setting g = 1 and g = 0
respectively: Only the second virial coefficient differs in d = 2 Fermi and Bose gases. Hence,
the specific heat is identical for d = 2 ideal Fermi and Bose gases, as shown.

6 Applications of the ideal excluson gas model
In the previous Sections, we have developed QSM and thermodynamics for a quantum gas of
particles, that obey fractional exclusion statistics. This last Section is dedicated to the ques-
tion, in which cases the simple interpolation (5) in the counting of states between fermionic
and bosonic boarders can be applied to physical problems.
Also, assumption (7), while developing the basic theory, has to be fulfilled for real parti-
cles. For instance, this is not the case for free anyons in the narrow sense since already the
2-anyon spectrum is unrelated to the single-state energies [5].
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Murthy and Shankar showed, that one can derive generalized exclusion from gas models
within the virial expansion [34]. In order to do so, they extended the Haldane exclu-
sion statistics to infinite dimensional single-particle Hilbert spaces, i.e. particles in the
continuum, and showed, that the statistical parameter g is completely determined by the
high-temperature limit of the second virial coefficient a2 according to the following relation:

1
2 − g = −2a2. (160)

This result is compatible with the second virial coefficient of the excluson gas in Eqs. (143)
and (159). In principle, the relation above can be applied to any system of interacting
particles, for which a virial expansion in the high-temperature limit is possible. From a
more phenomenological view, the main argument for the occurance of generalized exclusion
is that adding one particle to the system, which induces a phase shift of all other particles,
results in an identical energy shift for all particles that can push one state above a fixed
energy cutoff of the system. This will also happen for a continuus energy scale with high-
energy cutoff.
The relation (160) was applied to show, that anyons confined to the LLL obey fractional
exclusion statistics with the statistical parameter g being equal to the exchange statistics
α. Therefore, in agreement with the initial motivation for fractional exclusion statistics,
the prominent application of 2d anyons modelling quasiparticles in the FQHE is equivalent
to fractional exclusion particles with statistical parameter g fixed by the LLFF and mutual
statistics for quasi-holes and quasiparticles.

The IEG has been investigated as a promising alternate method to describe the highly
non-trivial problem of interacting quantum gases, that are usually examined by approx-
imations via low-order pertubation theory or mean-field theory. Especially, for the class
of interacting 1d many-body quantum systems that can be solved by the thermodynamic
Bethe ansatz (TBA) [35], it has been established that, with fractional exclusion particles
and mutual statistics, one can obtain equivalent results for the thermodynamic functions
[13, 23, 36]. The dynamical interaction of the TBA, that has the form of a coupling term in
the many-particle Hamiltonian, is completely transmuted into the Haldane statistical inter-
action that arise from the generalized exclusion statistics. TBA solvable systems include the
Yang-Yang δ-function gas [35] and the Calogero-Sutherland model (CSM) [37, 38]. Because
of the equivalence of thermodynamic functions in d = 1, the IEG is seen as a valid method
to generalize the CSM to higher spatial dimensions [23].

Also in the CSM context, a notion of fractional exchange statistics was introduced, that
led to a second-quantized description of 1d anyons [13]. The results were in agreement
with the CSM and the application of fractional exclusion statistics. While for second-
quantized bosons (fermions), the operators b̂†j , b̂j , that create and annihilate a particle at
spot j, commutate (anticommutate), the anyonic operators satisfy generalized commutation
relations [11, 13, 39]:

[âj , â†k]α = âj â
†
k − e

−iαπsgn(j−k)â†kâj = δjk,

[âj , âk]α = âj âk − eiαπsgn(j−k)âkâj = 0. (161)
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with sgn(j − k) = 0 for j = k. Kundu found, that the problem of a 1d multi-δ-function
interacting Bose gas could be solved through the model of a δ-function interacting anyon
gas obeying the commutation relations as in Eq. (161) [12]. Moreover, the anyon statistical
parameter and the dynamic coupling constant of this model were found to induce Haldane
fractional exclusion statistics [11].
Quasiparticles in the 1d Luttinger liquid, whose creation operators induce an anyonic ex-
change phase α, were also considered in Ref. [34] and were shown to obey fractional exclusion
with g = α after Eq. (160). In accordance, it has been shown that the low-temperature
properties of the Luttinger liquid are reproduced by the 1d IEG with exclusion statistics g
equal to the controlling parameter of the Luttinger liquid [40].

As a motivation for further studies, I will conclude this work by briefly presenting a recently
proposed setup to create fractional statistics in 1d optical lattices (OL) [39]. Optical particle
traps provide a way of creating ultracold quantum gases, alternative to magnetical traps as
in Section 4. One realization of an optical trap is the OL, where an interference pattern
of overlapping laser beams provides a periodic potential for particles, because of the stark
shift of the gas atoms. Interacting OL bosons may be described by the Bose-Hubbard model
and, at zero temperature, exist in the three different quantum phases of superfluid, Mott
insulator and, under influence of a disorder potential, Bose glass [41].
An Anyon-Hubbard model is now created from the Bose-Hubbard model with a variant of
a Jordan-Wigner transformation [39]

âj = b̂je
iαπ
∑j−1

i=1 n̂i (162)

that maps the operators of the anyon system onto bosonic operators using the particle
number operator n̂j = b̂†j b̂j , which is valid for both bosons and anyons. In Ref. [39] it is
shown, that the mapped anyon operators satisfy the anyonic commutation relations (161).
The Hamiltonian of the Anyon-Hubbard model

Ha = −J
L∑
j

(â†j âj+1 + h.c.) + U

2

L∑
j

n̂j(n̂j − 1) (163)

is thus mapped onto a bosonic Hamiltonian

Hb = −J
L∑
j

(b̂†j b̂j+1e
iαπn̂j + h.c.) + U

2

L∑
j

n̂j(n̂j − 1) (164)

with the tunneling amplitude J between two neighboring lattice sites and the on-site inter-
action energy U . This Hamiltonian Hb describes bosons with tunneling amplitude Jeiαπnj ,
depending on the occupation nj of lattice site j and the exchange statistics angle Θ = απ
as seen in Fig. 6a.
The anyonic exchange phase shall be realized by inducing a phase-shifted hopping term.

In Fig. 6b the physical concept with an OL, that is tilted by the energy ∆, is visualized.
For the case of allowed occupancies nj = 0, 1, 2, it is proposed to use four external radia-
tion fields 1,2,3 and 4 with detuning δ in order to establish a transition from the different
occupational states to an excited state |e〉. This assisted tunneling can address each dif-
ferent hopping process from one occupational state to another and induce an occupation
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Figure 6: (a) Mapping between lattice anyons and bosons with occupation dependent hop-
ping amplitude. (b) Assisted tunneling process inducing an occupation dependent,
relative exchange phase (from Ref. [39]).

dependent relative phase. Most importantly, in the reference paper it is shown that the
induced phase shift of the hopping amplitude, and thus the exchange statistics α, can be
directly controlled and tuned by variation of frequency, intensity, polarization, direction and
detuning δ of the external radiation fields.
Via examination of quantum phase diagrams, the possibility was shown to induce a quan-
tum phase transition from a superfluid into a Mott insulating phase by simply increasing
the statistical angle Θ at fixed ratio J/U of tunneling amplitude and interaction energy. It
is proposed to start the experiment by realizing a superfluid Bose gas at Θ = 0 and then to
continuously increase the statistical angle to a critical value Θc beyond which the gas will
be in a Mott insulating phase. To summarize, the proposed experiment not only provides
a method to realize fractional statistics in 1d, but also to directly tune the exchange statis-
tics establishing a quantum phase transition that could continuously transmute bosons into
fermions, giving researchers further insight into fundamental quantum phenomena.
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