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Zusammenfassung

In dieser Arbeit wird ein neuer Ansatz zur Behandlung des Bose-Hubbard Modells,
insbesondere der Thermodynamik des Suprafluid-Mott Isolator Phasenübergangs,
untersucht. Dieser Ansatz ist von einem hybriden Typ, in dem Sinne, dass die Mo-
lekularfeldtheorie numerisch exakt behandelt wird und anschließend eine störungs-
theoretische Entwicklung um diese numerisch bekannten Eigenfunktionen und Ei-
genwerte analytisch durchgeführt wird. Das erhaltene Resultat für die Spitze der
Mott-Phase mit einem Teilchen pro Gitterplatz am Temperaturnullpunkt weicht
nur um 5% von dem Ergebnis von Quanten Monte-Carlo Simulationen ab. Dies ver-
bessert bereits merkbar die Molekularfeldtheorie, deren Vorhersage um 17% von dem
Quanten Monte-Carlo Resultat abweicht. Die Rechnungen liefern in bestimmten Re-
gionen des Phasendiagramms unphysikalische Resultate, da dort die Störungsreihe
nicht konvergiert, was diskutiert wird. Das korrigierte Resultat für das großkano-
nische Potential ermöglicht es, thermodynamische Größen auf verschiedenen Linien
in verschiedenen Phasendiagrammen bei fester Temperatur zu analysieren, wobei je
einer der Parameter des Bose-Hubbard Modells konstant gehalten wird. Sowohl der
Ordnungsparameter als auch die Teilchenzahl und die Entropie werden auf horizon-
talen und vertikalen Linien analysiert. Des Weiteren werden der Ordnungsparameter
und die Entropie auf Linien konstanter Teilchenzahl untersucht und diskutiert, was
die für das Experiment realistischere Situation ist. Im letzten Kapitel wird dann
die Temperatur bei konstanter Entropie und Teilchenzahl betrachtet. Das erlaubt
eine Diskussion der Temperaturänderung bei einem adiabatischen Anschalten eines
optischen Gitters. Dies wird quantifiziert, indem ein dreidimensionales einfach ku-
bisches Gitter betrachtet wird, wofür die Parameter des Bose-Hubbard Modells in
Abhängigkeit der Gittertiefe berechnet werden können. Dadurch ist es möglich, die
Temperatur eines stark wechselwirkenden Bose-Gases vorherzusagen, nachdem ein
optisches Gitter adiabatisch eingeschaltet wurde, solange die Teilchenzahl und die
initiale Entropie bekannt sind. Dies ist für Experimente von großem Interesse, wo
es nur schwer möglich ist, die Temperatur eines stark wechselwirkenden Systems zu
bestimmen.



Abstract

In this thesis a new approach to the Bose-Hubbard model, in particular to the ther-
modynamics of the superfluid-Mott insulator transition, is pursued. This approach
is of a hybrid type, meaning that the mean-field Hamiltonian is treated exactly us-
ing numerical methods and then a perturbative expansion around these numerically
known eigenfunctions and eigenenergies is carried out analytically. The obtained re-
sult for the tip of the unity filling Mott lobe at zero temperature only deviates by 5%
from quantum Monte-Carlo data. This already notably improves mean-field theory
which produces a deviation of 17%. These calculations yield non-physical results
in certain regions of the phase diagram, as the perturbative expansion is not con-
verging there, which will be discussed. The corrected result for the grand-canonical
potential makes it possible to analyze thermodynamic quantities on different lines
in different fixed-temperature phase diagrams where either one of the parameters of
the Bose-Hubbard model is fixed. The order parameter, the particle number and the
entropy will be analyzed on horizontal and vertical lines. Further the order param-
eter and the entropy will be analyzed and physically discussed on lines of constant
particle number, which is more realistic in the experiment. In the final chapter,
the temperature for constant entropy and particle number will be considered. This
enables a discussion of the change in temperature when an optical lattice is adiabat-
ically turned on. This will be made quantitative, by considering a three-dimensional
simple cubic lattice structure for which the parameters of the Bose-Hubbard model
can be calculated in terms of the lattice depth. By this, it is then possible to predict
the temperature of a strongly correlated Bose gas after an optical lattice is adiabat-
ically turned on, as long as the particle number and the initial entropy are known.
This is of great interest for the experiment, where it is rather difficult to measure
the temperature of a strongly correlated system.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, the field of ultracold atoms is at the frontier of modern quantum physics.
One of the reasons for this are the great advances in cooling techniques starting in
the 1970s, which were honoured with the Nobel prize in 1997 [1–3]. On the one
hand this led to the great success of the experimental realization of Bose-Einstein
condensation, which was honoured with the Nobel prize in 2001 [4, 5]. On the other
hand it also led to the possibility of loading ultracold atoms into optical lattices,
i.e. periodic potentials created by laser light, see section 1.3 [6].
These systems make it possible to realize and test a great variety of condensed mat-
ter systems, including those not that easily accessible with ordinary matter, like
systems with strong correlations [7]. A great advantage of these systems is the un-
precedented control over the system parameters which allow for a lot of interesting
possibilities to observe novel physical phenomena and test theoretical models.
Because of these great advances in controllability and the remarkable unification
of quantum optics, atomic and condensed matter physics these advances were even
called the third quantum revolution in Ref. [8] after the first one at the beginning of
the 20th century and the second one connected to the gain in experimental control
over single particles and the investigation of the non-locality of quantum mechanics
[9].
One example for the great success of the field of ultracold atoms in optical lattices
is the experimental realization of the superfluid to Mott insulator transition [7], see
sections 1.4 and 2.4, which is a prime example for the effect of strong correlations.
Also topological systems could be realized [10–13] and many people believe that
this newly formed field will also find applications in quantum computing [14, 15],
quantum simulation [16–18] as well as quantum metrology [19]. Besides also provid-
ing fundamental insights into quantum theory [20] and quantum field theories [21],
ultracold atoms can also provide tests for research fields that seem totally unrelated
like quantum gravity [22].
The superfluid-Mott insulator transition in particular is believed to find a lot of
applications itself, which makes the transition of interest in general [19, 23, 24].
A reason why the thermodynamics of the transition is of particular interest is the
following: Nowadays a lot of experiments are done with ultracold atoms in optical
lattices. To this end particles are trapped [25] and then an optical lattice is adia-
batically turned on. In the case of bosonic atoms, on which this thesis will focus,
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CHAPTER 1. INTRODUCTION

the system then undergoes a transition from a superfluid to a Mott insulator phase
[7, 26]. Unfortunately there is no viable possibility known to determine the tem-
perature of a strongly correlated system [27]. But because initial temperature and
entropy can be determined from the theory of weakly interacting Bose gases [28],
we can infer the temperature of the system after the lattice is turned on by entropy
matching. This can be provided by a good thermodynamic understanding of the
transition, which is why it is of great practical interest.

1.2 Historical overview

In 1937 deBoer and Verwey found a class of materials, including for example NiO,
that should be conducting following ordinary band theory but experimentally turned
out to be of bad conductivity or even insulating [29]. In the same year Mott and
Peierls proposed that these findings could be explained by strong electrostatic inter-
actions preventing the electrons from moving and thus from conducting [30]. This
was further investigated and understood by Mott approximately 10 years after [31].
Today these materials that should be conducting following band theory but actually
are insulating due to strong correlations are called Mott insulators.
In 1963 Hubbard proposed a simple model describing electrons in solids [32]. The
second quantized Hamiltonian of the model in the canonical ensemble is given by

ĤH =
∑
i,j∈Λ

∑
σ=±1

Tij ĉ
†
i,σ ĉj,σ +

1

2
I
∑
i∈Λ

∑
σ=±1

n̂i,σn̂i,−σ, (1.1)

see section 2.2 for a brief overview of second quantization. Here, ĉ†i,σ and ĉi,σ are the
creation and annihilation operators creating/annihilating an electron in the Wannier
state of atom i with magnetic spin quantum number σ⁄2, Λ denotes the “lattice”
of atoms, n̂i,σ = ĉ†i,σ ĉi,σ is the occupation number operator and Tij, I ∈ R are real
numbers in order for the Hamiltonian to be Hermitian, whose precise definitions are
unimportant here.
This model uses a simple dynamical picture to describe electrons in one energy band.
They can tunnel from an atom i to an atom j with amplitude Tij and they feel an
interaction with strength I when both a spin up as well as a spin down electron are
at the same atom. This model actually describes a transition from a conducting
metal to a Mott insulator phase and thus captures the surprising effects found in
the 1930s. Since then there has been a lot of interest in metal-insulator transitions.
In 1989 Fisher et al. investigated a model analogous to the Hubbard model describ-
ing spinless bosons, the Bose-Hubbard model [33]. Originally they thought that this
model could describe 4He in porous media, granular superconductors or Josephson
junctions. The Hamiltonian of the model without disorder is given by

ĤBH = −
∑
i,j∈Λ

Jij â
†
i âj +

V

2

∑
i∈Λ

n̂i(n̂i − 1)− (µ− J0)
∑
i∈Λ

n̂i, (1.2)

where now â†i and âi create/annihilate bosons in the respective Wannier states.
Again the occupation number operator is denoted by n̂i = â†i âi. The first term
again describes a tunneling/hopping process, which is connected to an energy gain
if Jij > 0, which is typically the case, due to the delocalization. Usually discussions
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1.2. HISTORICAL OVERVIEW

Figure 1.1: Zero temperature phase diagram of the Bose-Hubbard model with only
nearest-neighbour hopping of strength J . The dashed lines, besides the one indi-
cating the critical value of J , represent lines of constant particle number, MI is an
abbreviation of Mott insulator and SF abbreviates superfluid. Taken from Ref. [33].

of the model are restricted to nearest neighbour hopping, which we will also do in
the following. The second term describes the repulsive interaction if two or more
bosons occupy the same state. The last term is simply added to go over to the
grand-canonical ensemble, i.e. it fixes the mean particle number through introduc-
tion of a chemical potential µ. The J0 is simply some offset which we will absorb
into the chemical potential in the following.
Fisher et al. showed that this model also describes a phase transition from a super-
fluid phase to a Mott insulating phase. They constructed the phase diagram for the
zero temperature case in the µ–J plane, see figure 1.1. You can clearly see that the
Mott phases have lobe like shapes, one for each integer mean particle number per
site. We will follow their arguments for constructing the phase diagram in section
2.4.
In 1998 then Jaksch et al. proposed that ultracold atoms in an optical lattice, to

be introduced in section 1.3, should be an almost perfect realization of the Bose-
Hubbard model [26]. Only four years later Greiner et al. reported the first ex-
perimental observation of the superfluid to Mott insulator transition using a Bose-
Einstein condensate of 87Rb atoms [7]. We will comment more on this in section
1.4.
After the publication of Fisher et al. there has been a lot of theoretical interest in
the Bose Hubbard model, which was then revived again after the proposal of Jaksch
et al. and the experiment of Greiner et al..
Shortly after the original publication of the model, people started studying it using
quantum Monte Carlo (QMC) simulations [34–38]. These works where mostly re-
stricted to one-dimensional systems and zero temperature but also included effects
of disorder and nearest neighbour interactions. After the experimental realization
of Greiner et al., Batrouni et al. expanded their QMC treatment to also include a
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CHAPTER 1. INTRODUCTION

Figure 1.2: Comparison of the results for the n = 1 Mott lobe in three dimensions
at T = 0. The dot-dashed blue line is the original mean-field result of Fisher et al.
[33], the dotted black line is from a strong coupling expansion [46] and the red dots
are from QMC simulations [27]. Here t denotes the hopping parameter and U the
on-site repulsion. Taken from Ref. [47].

trapping potential [39]. A couple of years later Capogrosso-Sansone et al. investi-
gated the Bose-Hubbard model at finite temperature, also including the effects of
a trapping potential in two and three dimensions with QMC simulations, setting
todays standard in accuracy of the Mott-superfluid phase boundary [27, 40]. Fur-
thermore they also provided a discussion of the thermodynamics of the transition
[27], which will also be the main topic of this thesis. Besides all these works relying
on QMC simulations there have also been other numerical treatments, e.g. using
the density matrix renormalization group (DMRG) [41–44] or dynamical mean-field
theory [45].
Although these numerical methods provide accurate data, they can not provide the

same physical insights that an analytical approach can. Thus, there has also been a
lot of effort in treating the Bose-Hubbard model analytically. In the original paper,
Fisher et al. made use of the mean-field approximation, to be discussed in detail
in section 2.5, and also used the framework of the renormalization group. Further
analytical treatments also often made use of mean-field type approximations [26,
48–51] but also renormalization group methods [52] and strong coupling expansions
[46, 53, 54]. All of these analytical methods only investigated the T = 0 case. Works
on the finite temperature case mostly started appearing only after 2000 [55–61].
It turned out that there was still a rather big discrepancy between the analytically
found results and the (pretty much exact) QMC simulations, see figure 1.2. So,
there was the need to go to higher order calculations in order to fit the QMC data
better. There are some higher order analytic approaches for zero temperature [47,
62–66] but higher order results for finite temperature are still rather rare [67, 68].
Recent approaches made use of an effective action approach [67] and a strong cou-
pling expansion based on the Green’s function [68]. Both approaches made use of
a perturbative expansion around the part of the Hamiltonian that is diagonal in
the occupation number representation. This allows for an analytic treatment be-
cause the action of the creation and annihilation operators on these states is known.
Our approach will differ from the previous ones, as we will treat the mean field
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1.3. OPTICAL LATTICES

Hamiltonian exactly using numerical methods and then analytically find a pertur-
bative expansion around it using the numerically known mean field eigenenergies
and -states.

1.3 Optical Lattices

Atomic energy levels get shifted in external oscillating electric fields, like that of
laser light, which is called the AC Stark effect [69]. This shift is proportional to
the intensity of the electric field [6]. It follows from this that when two sufficiently
detuned, to not induce unwanted energetic transitions, counter propagating laser
beams interfere and form a standing wave, the generated intensity profile acts as a
periodic potential on atoms in the intersection of the beams. A typical form of an
optical lattice looks like

Vlat(x) = V0

d∑
i=1

sin2(kixi), (1.3)

where x ∈ Rd is the position vector, V0 is the potential depth, the ki = 2π
λi

are the
wave vectors and the λi are the wavelengths of the lasers generating the lattice in
the ith direction.
One-dimensional lattices [71–74] can be generated by this but also higher dimen-
sional lattices can be achieved using mutually orthogonal counter-propagating pairs
of laser beams [75–77], see figure 1.3. Apart from these simple cubic geometries also
others can be realized, for example hexagonal [78, 79], body-centered cubic [78], tri-
angular [80] or more complex geometries like the Kagomé lattice [81]. Even periodic
boundary conditions can be realized [82].
Due to their periodicity, atoms confined to an optical lattice, show a band structure
in their spectrum and various other solid-state phenomena. It is thus possible to
study condensed matter physics using ultracold atoms in optical lattices. There are
however huge advantages of optical lattices over ordinary matter like crystals, etc.:
Besides having no defects the big upside is the huge controllability of the system
parameters. By varying the wavelength and the intensity of the generating lasers it
is possible to change the lattice spacing and the potential height and with this also
the interaction and tunneling strengths of the particles confined to the lattice. On-
site interactions can further be controlled using Feshbach resonances, which allow
the tuning of the scattering length with electromagnetic fields [83, 84]. Also long-
range interactions can be realized by diple-dipole interactions [85] and three-body
interactions are also possible [86]. Further you can create artificial magnetic fields
by laser assisted tunneling allowing to test magnetic lattice models [87]. It is even
possible to create phonon-like modes through atom-light interactions in an optical
cavity [88]. It is nowadays also possible to address and manipulate single sites of a
lattice and thus prepare states of arbitrary filling [89, 90].
Due to these great upsides, ultracold atoms in optical lattices provide a unique test-
ing ground for solid-state phenomena. One great example of this is the observation
of the superfluid-Mott insulator transition [7] but also a lot of other phenomena
have been observed. In particular topological phases and other related topological
phenomena, in which there has been a great interest in the last few decades, could
be realized with ultracold atoms in optical lattices [10–13].
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CHAPTER 1. INTRODUCTION

Figure 1.3: a) Two pairs of counter propagating laser beams create a lattice of one-
dimensional tubes; b) three pairs generate a simple cubic structure. Taken from
Ref. [70].

Maybe surprisingly also theories of high-energy physics and other seemingly un-
related areas of physics can be modeled and tested. For example abelian as well
as non-abelian gauge theories like quantum chromodynamics or the other theories
building the standard model of particle physics can be tested [21], possibly giving
insights into outstanding problems like quark confinement. Recently it has even
been proposed that it should be possible to test the AdS/CFT1 correspondance
with ultracold atoms [22], which is related to quantum gravity.

1.4 The Superfluid-Mott Insulator Transition

As already stated above, the Bose-Hubbard model shows a phase transition that
was observed using ultracold atoms in an optical lattice. We can get an intuitive
understanding for why there is a phase transition occurring in the Bose-Hubbard
model by looking at two different limiting cases.
The first one is the case where U⁄J � 1. Note that we changed notation U ≡ V from
the notation of the original paper of Fisher et al. to the nowadays more commonly
used one. In this limiting case we can neglect J , so that the remaining Hamiltonian
decomposes into a sum over local one-site Hamiltonians (with an optical lattice in
mind) that are diagonal in the occupation number representation. Thus, every site

1this is an abbreviation for anti-de Sitter/conformal field theory
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1.4. THE SUPERFLUID-MOTT INSULATOR TRANSITION

is occupied by the same number n0 of particles. The ground state of the system is
thus given by

|ψ(J = 0)〉 =
∏
i∈Λ

(
â†i

)n0

√
n0!
|0〉. (1.4)

This is a Mott insulating state, because the particles are prevented from hopping,
and thus from conducting, by strong interactions between the particles. It is char-
acterized by a finite excitation gap and zero compressibility ∂ρ⁄∂µ ∼ ∂n⁄∂µ, where
ρ is the particle density directly related to the number of particles per site.
If on the contrary U⁄J � 1 we can neglect U . The model then describes non-
interacting bosons hopping freely through the lattice, which will of course all con-
dense into the ground state with lattice momentum q = 0, i.e. they form an ideal
Bose-Einstein condensate. The ground state of the system is simply given by

|ψ(U = 0)〉 =
(
â†q=0

)N
|0〉 =

(
1√
NS

∑
i∈Λ

â†i

)N

|0〉, (1.5)

whereN is the number of particles andNS is the number of sites. Due to the particles
freely hopping through the lattice this state is superfluid. It is characterized by off
diagonal long range order which is defined by the condition

inf
{
〈â†i âj〉

∣∣∣ i, j ∈ Λ
}
6= 0, (1.6)

which can be understood as particles on opposite ends of the lattice still affecting
each other.
Because the system shows two different phases in the two limits investigated, some-
where in between a phase transition has to occur. Because we can achieve this by
solely varying the system parameters, which we can (theoretically) also do at T = 0,
this phase transition is not driven by thermal fluctuations like an ordinary phase
transition. It is rather driven by quantum fluctuations and is thus called a quantum
phase transition [91].
This transition is interesting in its own right, as it is the simplest quantum phase
transition that can not be mapped to a known higher dimensional classical phase
transition [91]. However, there are also multiple applications envisioned for this
transition going beyond purely theoretical interest.
Jaksch et al. for example, proposed that the superfluid-Mott insulator transition
could be used to prepare a large number of qubits for quantum computation and
quantum information processing [23]. The Mott insulator states could also be used
as a quantum memory [24]. Further it was argued, that the superfluid-Mott insula-
tor transition could be used in high precision quantum interferometry [19]. Another
application of the transition was proposed by Capogrosso-Sansone et al. They ar-
gued that it might be possible to use the transition at the tip of a Mott lobe to
study scattering amplitudes of quantum field theories, calling it an “ultracold su-
percollider” [27].
In the lab the superfluid-Mott insulator transition can be observed through time-
of-flight imaging [7], i.e. the optical lattice and the trap are shut down so that the
atoms can expand freely and interfere. This interference pattern is then measured.
In the superfluid phase, where the particles are coherently spread over the entire
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CHAPTER 1. INTRODUCTION

Figure 1.4: Lattice filling and interference pattern after shutting down the lattice
and trap potentials in the two phases, top: superfluid, bottom: Mott insulator.
Taken from Ref. [93].

lattice, an interference pattern is clearly visible. If the atoms were in the Mott phase
prior to the shut down, you can just see an unstructured Gaussian distribution, due
to the atoms being fully incoherent in the Mott phase. These two situations are
depicted in figure 1.4. Note however that we need to be careful when imagining
the atoms as spheres in the superfluid phase like depicted in the figure, as they are
actually described by a wave function, which is spread out over the whole lattice.
The actual interference patterns observed by Greiner et al. are shown in figure 1.5.
The same group further showed experimentally, that it is also possible to restore
the coherence of the wave function, i.e. to go from the superfluid phase to the Mott
phase and back again [92].

When describing thermodynamical quantities at the phase transition, which we
want to do extensively in this thesis, we need to decide which parameters we keep
fixed and which we vary. The parameter space of interest is given by appropriate
values for the quantities J, U, T, µ, which all have dimensions of energy in units
where kB = 1, see section 2.1. We can always use one of these parameters to set the
energy scale, i.e. set that parameter to 1, which simply means that we measure all
energies in units of the energy set to 1. Thus, there are really only three independent
parameters. We will almost always set the energy scale by J or U .
Through inverting the functions n = n(J, U, T, µ) and S = S(J, U, T, µ), we can
interchange two quantities forming a thermodynamic pair, i.e. n with µ or S with
T . In the following we will always consider thermodynamic quantities of interest
in dependence of one of the three parameters, for different values of the other two.
Most of the time we will vary J or U , which ever one we didn’t use to set the scale,
for different values of µ (or n) and T (or S).

8



1.5. OUTLINE

Figure 1.5: Absorption images after a time of flight of 15 ms demonstrating the
superfluid-Mott insulator transition. The lattice depths in the images are a 0ER; b

3ER; c 7ER; d 10ER; e 13ER; f 14ER; g 16ER; h 20ER, where ER =
~2k2L
2m

is the
recoil energy, kL is the wave vector of the lasers generating the optical lattice and
m is the mass of the atoms. Taken from Ref. [7].

1.5 Outline

In the next chapter 2 we will review the theoretical background needed to deal with
the superfluid-Mott insulator transition. We will review the framework of second
quantization, with which we can then give a derivation of the Bose-Hubbard model,
in order to see which approximations go into it. We will then give a more precise
discussion of the superfluid-Mott insulator transition and construct the phase dia-
gram. Finally we will introduce the mean-field approximation, which is often used
to deal with the transition, and the interaction picture of quantum mechanics, which
we will need in order to calculate post mean-field corrections.
In chapter 3 we then relate the grand-canonical partition function of the Bose-
Hubbard model to a propagator in the interaction picture in imaginary time and
then use a Dyson series to find a perturbative expansion around the mean-field
grand-canonical partition function. We will see how to calculate the first two or-
ders using a diagrammatic representation of the terms appearing, simplifying the
calculation. We will then investigate the low-temperature limit and find that our
calculation runs into problems in the case of degeneracies, which we will discuss.
Finally we will calculate corrections to the mean-field spectrum for T = 0 using
ordinary non-degenerate perturbation theory and compare the results with the limit
obtained before, providing our calculations with a consistency check.
In chapter 4 we will investigate the consequences of the calculated corrections on
thermodynamic quantities. After finding corrections to the phase diagrams we will
consider horizontal and vertical lines through the fixed-J and fixed-U phase dia-
grams for different fixed temperatures and analyze the order parameter, the particle
number and the entropy.
In chapter 5 we want to make a step closer to the experiment, where usually the
particle number is fixed and not the chemical potential. Thus, we will numerically
invert n(µ) and then consider lines of fixed particle number in the different phase
diagrams. Again we will consider the order parameter as well as the entropy on
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CHAPTER 1. INTRODUCTION

these lines.
In the final chapter 6 we will also invert S(T ) in order to consider the tempera-
ture for fixed particle number and fixed entropy. With this we can analyze how
the temperature changes when adiabatically changing the system parameters. By
considering a cosine-lattice potential we can explicitly calculate J and U in terms
of the lattice depth, which allows us to analyze the temperature for varying lattice
depth with fixed entropy and particle number. Further we can then give a prediction
of the temperature of an ultracold Bose gas after adiabatically turning on an optical
lattice, as long as the initial entropy and particle number are known.

10



Chapter 2

Theoretical Background

In this chapter we will develop the relevant theoretical background that is needed
to deal with the phase transition of the Bose-Hubbard model.
After concisely introducing some conventions in section 2.1 we introduce the impor-
tant framework of second quantization in section 2.2. With this we can then derive
the Hamiltonian of the Bose-Hubbard model in section 2.3 and investigate the phase
transition it describes in section 2.4. In section 2.5 we will then introduce the mean-
field approximation with which we can numerically treat the model. To calculate
corrections to this approximation we need to introduce the interaction picture of
quantum mechanics which is done in the final section 2.6 of this chapter.

2.1 Conventions

In the following, we will work in natural units where the reduced Planck constant
~ and Boltzmann’s constant kB are set to 1. This means that temperatures are
measured in units of energy and times are measured in units of inverse energy. This
choice of units also makes entropies and actions dimensionless. In our analysis the
energy scale will usually be set by one of the parameters of the Bose-Hubbard model.
If we want to go back to SI units we must simply put in the missing factors of ~ and
kB, which we will do in all figures.
All vectors in Rd, d ∈ N>0 will be bold, e.g. x, and all operators H → H acting on
some Hilbert space H will be denoted by a hat, e.g. Ĥ. Furthermore we will follow
the standard convention (Dirac notation) of denoting vectors in a Hilbert space H
by a “ket”, e.g. |ψ〉, and all elements of the corresponding dual space H∗ by a
“bra”, e.g. 〈ψ|, where we use the same letter for elements connected by the Riesz
isomorphism [94].
Also, we will always canonically extend operators acting on some space to operators
acting on products involving this space. So, for an operator Âi acting on some space
Hi we will let the (extended) operator act on some product space

⊗N
j=1Hj as

Âi = 1⊗ ...⊗ 1⊗ Âi︸︷︷︸
space i

⊗1⊗ ...⊗ 1. (2.1)

We will use the same symbol for both strictly speaking different operators, but this
should never lead to confusion.

11



CHAPTER 2. THEORETICAL BACKGROUND

In the following, we will consider a finite lattice of NS sites. We will assume periodic
boundary conditions, so that we do not need to worry about boundary effects.

2.2 Second Quantization

The framework of second quantization makes it possible to deal with quantum many-
body problems in a convenient way, in particular if the number of particles is not
fixed. It is therefore not surprising that also the Bose-Hubbard model is typically
discussed in terms of second quantization. In the following I will present the key
aspects of second quantization of identical bosons, which will be the relevant case
for this thesis. I will mostly present facts and make them plausible, more details
and proofs can for example be found in Ref. [95].
We first choose an orthonormal basis {|φi〉 | i ∈ N>0} of the one-particle Hilbert
space H1. We then denote a state containing ni identical bosons in state |φi〉 for
i = 1, 2, ... by |n1, n2, ...〉. These states form a basis, the so called occupancy number
basis {|n1, n2, ...〉 | ni ∈ N, i ∈ N>0} of the (bosonic) Fock space [96] F =

⊕∞
N=0HN ,

where the Hilbert space completion is implied, see Ref. [94], and

HN =
∑
σ∈SN

N⊗
i=1

Hσ(i) (2.2)

denotes the N -particle Hilbert space, which is just the symmetrized tensor prod-
uct of the single-particle Hilbert spaces, due to the Pauli principle. Here, SN =
{σ : {1, ..., N} → {1, ..., N} bijective} is the symmetric group of rank N [97]. The
space H0 = span(|0〉) ∼= C is spanned by the normalized vacuum state containing
no particles.
In analogy to the algebraic solution of the harmonic oscillator [98] we can now define
creation and annihilation operators on Fock space by their action on the occupation
number basis states:

â†i |n1, ..., ni, ...〉 =
√
ni + 1|n1, ..., ni + 1, ...〉,

âi|n1, ..., ni, ...〉 =
√
ni|n1, ..., ni − 1, ...〉. (2.3)

In particular, it holds that

âi|0〉 = 0 for all i, (2.4)

|n1, n2, ...〉 =
∞∏
i=1

(
â†i

)ni
√
ni!
|0〉. (2.5)

These operators obey the canonical commutation relations[
âi, âj

]
= 0, (2.6)[

â†i , â
†
j

]
= 0, (2.7)[

âi, â
†
j

]
= δij, (2.8)
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2.2. SECOND QUANTIZATION

where δij is the Kronecker delta. Note that the Pauli principle is now encoded in
the commutation relations: because the creation operators commute it makes no
difference in which order particles are created, i.e. how they are labeled. Thus the
state does not change by interchanging two bosons as it should be. For fermions we
would get analogous canonical anti-commutation relations so that states pick up a
minus sign by interchanging two identical fermions.
In case we choose an uncountable basis {|φα〉 | α ∈ I, I uncountable} forH1, like for
example the position basis, the occupation number kets are not well-defined anymore
and it is more convenient to denote a state by all one-particle states involved. For
example |x1, ...,xN〉 denotes a state withN particles, with the ith particle at position
xi, which we do not require to be different. The action of the annihilation and
creation operators is then given by

â†(α)|ψ1, ..., ψN〉 = |φα, ψ1, ..., ψN〉,

â(α)|ψ1, ..., ψN〉 =
N∑
i=1

〈φα|ψi〉|ψ1, ...ψi−1, ψi+1, ..., ψN〉,
(2.9)

where we used the notation â(α) = âα. Note that the normalization is different from
the one in the case of a countable basis. This will be justified by equation (2.14)
connecting the two cases. We can now generate arbitrary states

|φα1 , ..., φαN 〉 =
N∏
i=1

â†αi |0〉. (2.10)

The commutation relations now change to[
âα, âβ

]
= 0, (2.11)[

â†α, â
†
β

]
= 0, (2.12)[

âα, â
†
β

]
= δ(α− β), (2.13)

where δ(x) is the Dirac delta function. The kets showing all involved states are
related to the occupation number kets by

|n1, n2, ...〉 =
|
n1 times︷ ︸︸ ︷
φ1, ..., φ1,

n2 times︷ ︸︸ ︷
φ2, ..., φ2, ...〉√∏∞
i=1 ni!

. (2.14)

From equations (2.5) and (2.10) is is clear that this choice justifies the different
normalizations used in equations (2.3) and (2.9). Keep in mind though, that only
for a countable basis both sides of this equation are well defined.
If we now change the basis of H1 from {|φi〉 | i ∈ N>0} to {|χi〉 | i ∈ N>0} the cre-
ation and annihilation operators transform as

â†χi =
∑
j∈N>0

〈φj|χi〉â†φj , (2.15)

âχi =
∑
j∈N>0

〈χi|φj〉âφj . (2.16)
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CHAPTER 2. THEORETICAL BACKGROUND

The first equality can be immediately shown by acting on an arbitrary occupation
number basis state, where the occupation numbers refer to the |φi〉 basis, with
the right hand side. The second equality follows from conjugation. In case of a
continuous basis we would have to exchange sums by integrals. For example by
changing from the position to the momentum basis the operators transform as

â(p) =

∫
Rd

ddx
1

(2π)d/2
e−ip·xΨ̂(x), (2.17)

which is just a usual Fourier transform. Note that we use the standard convention
to denote the annihilation and creation operator for position eigenstates (typically
called field operator) differently: Ψ̂(x) ≡ â(x).
So, we have seen that we can express states using creation and annihilation oper-
ators. The convenience of this is that we do not have to deal with symmetrized
wavefunctions, which is rather cumbersome for a large number of particles, but with
operators that obey canonical commutation relations so that the Pauli principle is
automatically satisfied.
We would now like to represent arbitrary one or two particle operators in terms
of creation and annihilation operators, i.e. for an arbitrary operator acting on one-
(two-) particle Hilbert space we would like to find a corresponding operator acting
on Fock space that acts like the one- (two-) particle operator on one- (two-) particle
states in Fock space. First we are looking for a corresponding Fock space operator
for an arbitray one-particle operator Â(1) : H1 → H1. This operator is given by

Â =
∑

i,j∈N>0

〈φi|Â(1)|φj〉â†i âj, (2.18)

where again {|φi〉 | i ∈ N>0} is a basis of H1 as before. It can straight-forwardly be
checked that this choice makes sense:

Â|φk〉 =
∑

i,j∈N>0

〈φi|Â(1)|φj〉â†i âj â†k|0〉 =
∑
i∈N>0

â†i |0〉〈φi|Â(1)|φk〉 = Â(1)|φk〉. (2.19)

In the second step we used the commutation relations and that âj annihilates the
vacuum. In the last step we used the completeness relation in H1.
The operator (2.18) can be interpreted as changing the state of a single particle from
|φj〉 to |φi〉 with amplitude 〈φi|Â(1)|φj〉. This can straight-forwardly be generalized
to a two-particle operator which now changes the states of two particles:

Â =
∑

i,j,k,l∈N>0

(〈φi| ⊗ 〈φj|) Â(2) (|φk〉 ⊗ |φl〉) â†i â†j âkâl. (2.20)

Here, Â(2) : H1 ⊗ H1 → H1 ⊗ H1 is now a two-particle operator. These types of
operators can describe interactions like scattering events.

2.3 Bose-Hubbard Model

We will now derive the Bose-Hubbard model using the formalism of second quanti-
zation that was just introduced. This derivation can for example also be found in
Ref. [15].

14



2.3. BOSE-HUBBARD MODEL

The single particle Hamiltonian of a non-relativistic particle of mass m in an optical
lattice with potential Vlat(x) is given by

Ĥ(1) =
p̂2

2m
+ V̂lat(x̂), (2.21)

where p̂ is the usual momentum operator. Note that we do not include a trap
potential, i.e. we consider a homogeneous system. Further we neglect the finite
waist of the lasers generating the lattice, which would have an effect similar to a
weak trapping potential [99]. Including these effects could be subject of further
work.
If we now add a two particle interaction potential 1

2
V̂ (x̂1 − x̂2) and go over to the

second quantized Hamiltonian using the position basis as the basis of H1 by using
equations (2.18) and (2.20) we get

Ĥ =

∫
Rd

ddx Ψ̂†(x)

[
−∇

2

2m
+ Vlat(x)

]
Ψ̂(x)

+
1

2

∫
Rd
ddx1

∫
Rd
ddx2Ψ̂†(x1)Ψ̂†(x2)V (x1 − x2)Ψ̂(x1)Ψ̂(x2).

(2.22)

We now assume that the interactions between the bosons are given by a contact
potential

V (x1 − x2) = gδ(x1 − x2) (2.23)

with interaction strength g = 4πas⁄m which is determined by the s-wave scattering
length as. This is justified for small temperatures, which we are interested in [100].
This yields the Hamiltonian

Ĥ =

∫
Rd

ddx

{
Ψ̂†(x)

[
−∇

2

2m
+ Vlat(x)

]
Ψ̂(x) +

g

2
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

}
. (2.24)

Due to the periodic lattice potential the energy spectrum will in general show a band
structure. Because we are interested in the low-temperature regime, the thermal
energy is generally smaller than the band gap between the lowest two bands, so
occupation in the higher bands is exponentially suppressed. If we now introduce the
Wannier functions of the lowest band (the band index will be suppressed) as Fourier
transform of the Bloch functions of the lowest band [101]

w(x− xi) =
1√
NS

∑
k∈1.BZ

φk(x)e−ik·xi (2.25)

we can expand the field operators in terms of these:

Ψ̂(x) =
∑
i∈Λ

âiw(x− xi). (2.26)

Here, NS is the number of sites in the optical lattice, 1.BZ is an abbreviation of the
first Brillouin zone, âi is the annihilation operator annihilating a particle on lattice
site i, i.e. in the Wannier state of site i, xi is the position of site i and Λ denotes the
lattice itself. This expansion is essentially a basis change, as discussed in section 2.2,
from the continuous position basis to the discrete basis of lattice sites. This means
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CHAPTER 2. THEORETICAL BACKGROUND

that we are not interested in exact position eigenstates but only in the Wannier
states which are localized on a lattice site.
If we now plug this decomposition into (2.24) we end up with

Ĥ = −
∑
i,j∈Λ

Jij â
†
i âj +

1

2

∑
i,j,k,l∈Λ

Uijklâ
†
i â
†
j âkâl, (2.27)

where we defined

Jij = −
∫

Rd
ddx w∗(x− xi)

[
−∇

2

2m
+ Vlat(x)

]
w(x− xj), (2.28)

Uijkl = g

∫
Rd

ddx w∗(x− xi)w∗(x− xj)w(x− xk)w(x− xl). (2.29)

If we assume that the lattice potential can be written as a sum over potentials that
just depend on one coordinate Vlat(x) =

∑d
i=1 V

(i)
lat (xi), which is definitely realistic,

then the one-particle Hamiltonian also decomposes into a sum Ĥ(1) =
∑d

i=1 Ĥ
(1)
i and

the Bloch functions factorize φk(x) =
∏d

i=1 φ
(i)
ki

(xi) and with this also the Wannier
functions factorize in a similar fashion.
With this we can simplify the expression for Jij. To this end we divide the d-

dimensional integral in each term of the sum over the Ĥ
(1)
i into the one-dimensional

part where the respective Ĥ
(1)
i acts and the rest.

Jij = −
d∑

n=1

∫
Rd

ddx w∗(x− xi)
[
−∇

2
n

2m
+ V

(n)
lat (xn)

]
w(x− xj)

= −
d∑

n=1

d∏
α=1
α 6=n

∫
R

dxα (w(α)(xα − xi,α))∗w(α)(xα − xj,α)

×
∫

R
dxn (w(n)(xn − xi,n))∗

[
−∇

2
n

2m
+ V

(n)
lat (xn)

]
w(n)(xn − xj,n).

We can now use that the Bloch functions are eigenfunctions of the single particle
Hamiltonian.

= − 1

NS

d∑
n=1

∑
k∈1.BZ

∑
q∈1.BZ

∫
Rd

ddx φ∗k(x)φq(x)eik·xie−iq·xjE(n)(qn).

This further simplifies because the Bloch functions are orthonormal.

Jij = − 1

NS

∑
k∈1.BZ

eik·(xi−xj)E(k), (2.30)

with E(k) =
∑d

n=1 E
(n)(kn). This shows that Jδ ≡ Jij only depends on the differ-

ence δ = xi − xj of the two sites. Typically δ is measured in units of the nearest
neighbour distance.
If the difference between two sites is large the exponential will oscillate fastly which
will give a small Jij due to the dispersion being a smooth function of k. Thus, we
are able to only keep the nearest neighbour and the on-site term as a first approxi-
mation. We will assume that this approximation is also valid for more general lattice
potentials, which is definitely physically reasonable.
Further, we assume that the Wannier functions are sharply peaked on their respec-
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2.3. BOSE-HUBBARD MODEL

tive site, which is reasonable for a deep enough lattice. With this assumption, we
can also neglect all Uijkl besides the on-site terms, see equation (2.29). Due to the
homogeneity of the lattice all Jij ≡ J , Jii ≡ ε and Uiiii ≡ U are the same, where i
and j are nearest-neighbour sites.
The first Jij and Uijkl are depicted in figure 2.1. The figures were generated for
the 1D lattice potential Vlat(x) = cos(2kLx) (kL being the wave vector of the laser
generating the optical lattice), for which the dispersion and the Bloch functions can
be straight-forwardly calculated, which is done in appendix A.
Both figures clearly show that the terms we have not neglected are the most dom-
inant. In particular for higher lattice depths the approximations we made are well
justified. Note that when the lattice depth is small, also the band gap between the
lowest and the first excited band is small and it is not justified to neglect excitations
into higher bands. Thus for the lattice depths where the lowest band approximation,
which is crucial for the model, is justified also the other approximations are.
In appendix D we also consider higher order Jij to get a better approximation.
Higher order Uijkl would correspond to non-local interactions involving multiple
sites and they are generally more difficult to include. Similar models involving these
higher order terms are usually called extended Hubbard models and they shall not
be further considered in this thesis, as we have seen that they would make only a
marginal difference.
By deploying the discussed approximations, splitting off the diagonal terms in the
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Figure 2.1: Comparison of the first Jij and Uijkl, generated for the 1D lattice po-
tential Vlat(x) = cos(2kLx), see appendix A. Here, kL denotes the wave vector of the

laser generating the optical lattice and ER =
k2L
2m

denotes the recoil energy.

first sum in equation (2.27) and using â†i â
†
i âiâi = â†i âiâ

†
i âi− â†i âi = n̂i(n̂i− 1), which

directly follows from the canonical commutation relations, we arrive at

Ĥ = −J
∑
〈i,j〉∈Λ2

â†i âj +
U

2

∑
i∈Λ

n̂i(n̂i − 1)− ε
∑
i∈Λ

n̂i. (2.31)

Here 〈i, j〉 denotes a pair of nearest neighbours and n̂i = â†i âi is the occupation
number operator. Finally we now go over to the grand-canonical ensemble, so we
introduce a term −µN̂ = −µ∑i∈Λ n̂i fixing the mean particle number. If we now
absorb the ε into the chemical potential µ we finally arrive at the Bose-Hubbard
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Hamiltonian

ĤBH = −J
∑
〈i,j〉∈Λ2

â†i âj +
U

2

∑
i∈Λ

n̂i(n̂i − 1)− µ
∑
i∈Λ

n̂i. (2.32)

We can interpret the first term as the energy the particles win for J > 0, which is
typically the case, through delocalization by tunneling to a neighbouring site. The
second term describes the energy loss for U > 0, which also is the case typically,
due to the repulsive interaction of two or more bosons occupying the same site.
The third term describes the energy win (loss) for µ > 0 (µ < 0) associated with
an additional particle getting added to the system, which fixes the mean particle
number as stated above. The physics that this model describes is dictated by the
competition of these terms, in particular the first two.
Note also that this Hamiltonian possesses a continuous global U(1) symmetry âi →
eiθâi, â

†
i → e−iθâ†i . This symmetry will be spontaneously broken by a phase transi-

tion, which will be introduced in the next section.

2.4 The Superfluid - Mott Insulator Transition

To better understand the physics described by the Bose-Hubbard model we first
restrict ourselves to the T = 0 case. Our discussion will be based on the one in the
seminal paper of Fischer et al. [33].
First we look at the simple case J = 0. Here, the individual sites decouple and the
one-site Hamiltonians are diagonal in the occupation number basis of the respective
sites with eigenenergies

ε(n) =
U

2
n(n− 1)− µn. (2.33)

So, each site is occupied by the same integer number of bosons n0 that minimizes
this energy. One approach to finding n0 for some parameters µ and U is to realize
that the following has to hold:

ε(n0 + 1)− ε(n0) = Un0 − µ > 0,

ε(n0 − 1)− ε(n0) = U(1− n0) + µ > 0.
(2.34)

These equations simply state that it should not be energetically favorable to add
or remove a boson. From these conditions it follows that for n0 − 1 < µ⁄U < n0,
n0 will minimize the energy if µ > 0, else n0 = 0. We now study the lowest lying
excitations of this state. To this end we fix µ⁄U such that the particle number is n,
e.g. we set µ⁄U = n− 1

2
+ α with α ∈

(
−1

2
, 1

2

)
. The lowest lying excitations should

be the state with one boson added or removed, i.e. a hole added. The excitation
energies for these states are given by

ε(n+ 1)− ε(n) =

(
1

2
− α

)
U,

ε(n− 1)− ε(n) =

(
1

2
+ α

)
U.

(2.35)
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Thus, the smallest excitation energy is given by
(

1
2
− |α|

)
U > 0. This means that

if we now increase J to a sufficiently small but non-zero value, this energy gap can
not be overcome by the energy won through the hopping of the extra particle or
hole. Because we can vary µ (or rather α) as well as J so that the ground state of
the system is still given by every site being occupied by the same number of bosons,
there should be a finite region in the µ–J plane where the mean number of bosons
per site is a constant integer.
The lowest lying excitation at constant particle number is a particle-hole excitation
with energy given by the energy difference between the state after a particle hopped
from one site to a neighbouring one and the state before (both sites containing an
equal number of bosons), i.e. ε(n + 1) + ε(n − 1) − 2ε(n) = U >

(
1
2
− |α|

)
U . So,

in these regions it is also not energetically favorable for the bosons to hop, which
means that the system is insulating.
Furthermore, it follows from the constant particle number in these regions that the
compressibility ∂ρ⁄∂µ of the system vanishes. Here, ρ ∼ n is the particle density di-
rectly related to the number of particles per site. These properties (finite excitation
gap and zero compressibility) are the characteristic properties of a Mott insulator
[33].
If we now take a point in this Mott phase and increase (decrease) the chemical po-
tential at fixed J we expect that at some point the energy won by adding a boson
(hole) to the system together with the energy won through the hopping of this bo-
son (hole) will overcompensate the energy cost through the on-site interaction. This
extra boson (hole) can now freely hop through the lattice, not “seeing” the other
bosons. So, the boson will fully delocalize and produce a superfluid state. Thus, we
expect a phase transition from a Mott insulating state to a superfluid state to take
place here.
Because this happens at T = 0, the transition can not be driven by thermal fluctua-
tion like an ordinary phase transition but rather by quantum fluctuations, which is
why it is called a quantum phase transition [91]. Furthermore it turns out that it is
a second order phase transition, i.e. the first derivatives of the free energy (entropy,
particle number, etc.) are all continuous at the transition and discontinuities only
occur in the second derivatives of the free energy, e.g. the heat capacity.
For higher J a particle (hole) of course gains more energy through hopping, so this
point of transition from Mott to superfluid will occur earlier. This leads to the
conclusion, that the Mott phases have a lobe-like structure in the µ–J plane. In
the discussion above, we excluded the cases α = ±1

2
corresponding to µ⁄U ∈ Z.

Here, there exists no energy gap for adding/removing bosons as is apparent from
(2.35). In these cases the system is in the superfluid phase for all values of J . This
discussion can be summarized into a zero temperature phase diagram 2.2.
There are actually two kinds of phase transitions that occur. One of them occurs

at the tip of the lobe and the other one occurs at any other point of the lobe bound-
ary. During the second kind of transition the mean number of particles per site
changes continously (strictly speaking only for NS →∞, but approximately for NS

sufficiently large) as the system crosses the phase boundary. Thus, this transition
is driven by extra particles (holes) getting added to the system that can then hop
freely through the lattice producing a superfluid state.
The transition at the tip however, happens at constant particle number per site, it
is thus driven differently. Here the particles in the Mott phase simply gain enough
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Figure 2.2: T = 0 phase diagram, generated using mean-field theory to be discussed
in section 2.5, z denotes the number of nearest neighbour sites of one lattice site,
MI is abbreviation of Mott insulator

energy through hopping so that they can overcome the repulsion and condense into
a superfluid despite the integer mean particle number per site. The difference in
the two transitions is also reflected in the fact that they lie in different universality
classes i.e. have different critical exponents, which was also shown in Ref. [33].
If we look at a finite temperature, there is always the exponentially small possibility
of the system crossing the excitation gap mentioned above, making it possible to
add or remove a boson. Because of this the number of particles per site is only
approximately constant and the compressibility is not exactly zero anymore. Thus,
we conclude that at finite temperature there exists no exact Mott phase anymore.
In the following we will refer to the not-superfluid phase as the normal phase to
distinguish it from the exact Mott phase at T = 0.

2.5 Mean-Field Theory

Now that we have a qualitative understanding of the physics described by the Bose-
Hubbard model and of the phase transition it inherits, we want to see how we can
actually calculate the behaviour of thermodynamic quantities at the phase transi-
tion.
Due to the hopping term in equation (2.32) coupling neighbouring sites with each
other the model can not be solved analytically and also a numerical treatment is
demanding for a large number of sites. One common approximation simplifying the
problem is the mean-field approximation. A discussion of the mean-field approxima-
tion in general terms as well as in the concrete context of the Bose-Hubbard model
can for example also be found in Ref. [91].
The idea of this approximation is to get rid of non-local terms by approximating
the involved operators by their expectation values. By this we neglect quantum as
well as thermal fluctuations around these expectation values but we gain a local
Hamiltonian which can be treated numerically. In the case of the Bose Hubbard
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model we can approximate

âi ≈ 〈âi〉1 + δâi, (2.36)

where 1 is the identity operator, which will be omitted from now on. We now neglect
terms that are at least second order in the fluctuations, so we find

0 ≈ δâ†iδâj = â†i âj − 〈â†i〉âj − 〈âj〉â†i + 〈â†i〉〈âj〉
⇒ â†i âj ≈ 〈â†i〉âj + 〈âj〉â†i − 〈â†i〉〈âj〉. (2.37)

Because of the assumed homogeneity of the lattice the quantity ψ = 〈âi〉 is well-
defined, or equivalently ψ∗ = 〈â†i〉.
By deploying this approximation and renaming the summation indices we end up
with the mean-field Hamiltonian

ĤMF =
∑
i∈Λ

{
−zJ

(
ψ∗âi + ψâ†i − |ψ|2

)
+
U

2
n̂i (n̂i − 1)− µn̂i

}
≡
∑
i∈Λ

ĤMF,i, (2.38)

where z denotes the number of nearest neighbours of one site.
This Hamiltonian decouples into a sum of local one-site Hamiltonians which sim-
plifies the problem drastically. Because of the homogeneity of the lattice each
of these one-site Hamiltonians is equivalent. If we refer to one of these we will
call it ĤMF,S instead of using a particular site index to stress the independence of
the lattice site. Similarly, we will denote its grand-canonical partition function by

ZMF,S ≡ Tr
(
e−βĤMF,S

)
, where β = 1⁄T is the inverse temperature.

Due to the decoupling in equation (2.38) it is now possible to numerically calcu-
late the grand-canonical partition function and the grand-canonical potential for
this Hamiltonian, which we will do in chapter 4. The numerical results for the
mean-field case will be used as a reference for the results beyond this approximation
calculated in chapter 3.
The mean-field parameter ψ would now have to be determined self-consistently,
e.g. the correct value of ψ = ψ0 is such that

〈âi〉MF|ψ=ψ0
≡ 1

ZMF

Tr
(
âie
−βĤMF

)∣∣∣∣
ψ=ψ0

= ψ0. (2.39)

So, the mean-field parameter ψ is simply an unphysical parameter in our Hamilto-
nian and the “definition” of this parameter serves as a self consistency condition to
determine its correct value.
In the following we will take a different approach to finding the correct value of
ψ. It is known from thermodynamics that the entropy S must always be maxi-
mized in equilibrium. Statistically this follows from the fact that in equilibrium a
system will always choose a macroscopic state such that the number of available
microstates is maximized [102]. From the maximization of entropy it follows, that
the grand-canonical potential Φ = E − TS − µN has to always be minimized with
respect to its parameters in thermal equilibrium. If we now take ψ to be one of
these thermodynamic parameters it follows that we can determine ψ by minimizing
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the grand-canonical potential.

ψ0 ∈
{
ψ ∈ C

∣∣∣∣ Φ(ψ) = min
ψ∈C

(Φ(ψ))

}
. (2.40)

It might be concerning that the set in equation (2.40) contains more than one ele-
ment or is empty, and thus does not give a unique result for ψ. It turns out however
that this set either only contains 0 or is a circle in the complex plane in which case
all of the possible ψ are physically equivalent and observable quantities only depend
on the absolute value |ψ|. This is a consequence of the already mentioned U(1)
symmetry of the Bose-Hubbard Hamiltonian, we will also see this exemplarily in
chapter 4.
By inspection of equation (2.38) you can see that the parameter ψ explicitly breaks
the U(1) symmetry of the mean-field Hamiltonian, so for non-zero values of the pa-
rameter the Hamiltonian is not invariant under U(1) transformations. This makes
ψ a suitable choice as an order parameter, because if it is zero it corresponds to
a phase symmetric under U(1) transformations, and a non-zero value breaks this
symmetry giving the system an order under the symmetry, which is the superfluid
phase in this case [91]. It further turns out that |ψ|2 is equal to the condensate
density, i.e. the fraction of particles that are condensed into the lowest lying state
and thus delocalized over the full lattice [100].
Furthermore, it is clear that the U(1) symmetry is connected to local particle num-
ber conservation, because the mean-field Hamiltonian commutes with the particle
number operator n̂i of an arbitrary site i ∈ Λ if and only if ψ = 0.
One can also show analytically that the two approaches to determining ψ are equiv-
alent. First note that because the grand-canonical potential only depends on the
magnitude of ψ we can without loss of generality restrict ψ to real values to find the
correct value ψ0, i.e. we can find ψ0 by taking the derivative of Φ in the sense of real
analysis. Secondly note that differentiation with respect to ψ and taking the trace
commutes, because the trace is basis independent and we could use a basis which is
independent of ψ to take the trace. With this we can now show the equivalence:

∂Φ

∂ψ
=

1

ZMF

Tr

(
∂ĤMF

∂ψ
e−βĤMF

)
= − zJ

ZMF

∑
i∈Λ

Tr
[(
â†i − ψ∗)e−βĤMF

)]
= −zJNS

(
〈â†〉MF − ψ∗

)
. (2.41)

Here we omitted the index of â† in the expectation value because it can not depend
on the lattice site due to the homogeneity of the lattice. Equation (2.41) now tells
us that

∂Φ

∂ψ
= 0⇔ ψ∗ = 〈â†〉MF, (2.42)

which shows the equivalence of the two approaches.

2.6 The Interaction Picture

We now want to go beyond the mean-field approximation and find a way to system-
atically expand around it in order to include the effect of quantum fluctuations. To
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find this expansion we first need to introduce one important concept from ordinary
quantum mechanics: the interaction picture. A discussion of the interaction picture
can be found in almost every quantum mechanics textbook, for example in Ref. [98].
If the Hamiltonian Ĥ, in the Schrödinger or Heisenberg picture, is decomposable
into a possibly complicated interacting part V̂ and a solvable, non-interacting part
Ĥ0 then it turns out that the Schrödinger (time evolution in the states) or Heisen-
berg pictures (times evolution in the operators) of quantum mechanics are not the
most beneficial choices. A better choice is to use the interaction picture, where the
time evolution is split up between states and operators. In this picture we define
the states by

|ψI(t)〉 = Û−1
0 (t, t0)|ψS(t)〉. (2.43)

Here, Û0(t, t0) = e−i(t−t0)Ĥ0 is the free time evolution operator satisfying Û−1
0 (t, t0) =

Û †0(t, t0) = Û0(t0, t), t0 is an arbitrary reference time where the states in the in-
teraction and the Schrödinger picture coincide and |ψS(t)〉 denotes a state in the
Schrödinger picture. With this definition we aim to take the free evolution away
from the states by evolving them backwards to the reference time using only the
free Hamiltonian, so that ”they only change when something interesting happens”.
Because expectation values have to be the same in the different pictures we can now
deduce how the operators in the interaction picture have to look like. To this end
we take an arbitrary operator in the Schrödinger picture ÂS and calculate:

〈ψS(t)|ÂS|ψS(t)〉 = 〈ψI(t)|Û †0(t, t0)ÂSÛ0(t, t0)|ψI(t)〉 ≡ 〈ψI(t)|ÂI(t)|ψI(t)〉
⇒ ÂI(t) = Û †0(t, t0)ÂSÛ0(t, t0) = ei(t−t0)Ĥ0ÂSe

−i(t−t0)Ĥ0 . (2.44)

We can find the time evolution of the states by differentiating them:

i
d

dt
|ψI(t)〉 = Û−1

0 (t, t0)(Ĥ − Ĥ0)|ψS(t)〉 = Û−1
0 (t, t0)V̂SÛ0(t, t0)Û−1

0 (t, t0)|ψS(t)〉

= V̂I(t)|ψI(t)〉. (2.45)

Here, we used the Schrödinger equation i d
dt
|ψS(t)〉 = Ĥ|ψS(t)〉 for |ψS(t)〉. Equation

(2.45) is just the Schrödinger equation for |ψI(t)〉 with the interaction potential in
the interaction picture acting as the Hamiltonian, which justifies the definition of
the states from above.
The time evolution of the operators is given by

i
d

dt
ÂI(t) = −Ĥ0ÂI(t) + ÂI(t)Ĥ0 =

[
ÂI(t), Ĥ0

]
. (2.46)

This is just the Heisenberg equation for ÂI(t) with the free Hamiltonian acting as
the full Hamiltonian. Note that the free Hamiltonian is the same in the interaction
picture and the Schrödinger picture.
So, in conclusion we have split up the time evolution so that the operators only
evolve with the free Hamiltonian and the states only evolve with the interacting
Hamiltonian as desired.
Because equation (2.45) looks like the Schrödinger equation with a time-dependent
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Hamiltonian we can immediately write down the solution [98]

|ψI(t)〉 = ÛI(t, t
′)|ψI(t

′)〉, (2.47)

with the propagator in the interaction picture

ÛI(t, t
′) = T exp

{
−i
∫ t

t′
dτ V̂I(τ)

}
. (2.48)

Here, T is the usual time ordering operator.
We can also find another expression for ÛI(t, t

′) by relating it to the propagator in
the Schrödinger picture ÛS(t, t′):

|ψI(t)〉 = Û−1
0 (t, t0)|ψS(t)〉 = Û−1

0 (t, t0)ÛS(t, t′)Û0(t′, t0)|ψI(t
′)〉

⇒ ÛI(t, t
′) = Û−1

0 (t, t0)ÛS(t, t′)Û0(t′, t0) = e−i(t0−t)Ĥ0e−i(t−t
′)Ĥe−i(t

′−t0)Ĥ0 . (2.49)

In the next chapter we will relate the grand-canonical partition function to an expres-
sion of the form of equation (2.49) and then use equation (2.48) to find a systematic
expansion around the mean-field grand-canonical partition function.
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Chapter 3

Calculation of Corrections to the
Mean-Field Approximation

With the theoretical background cleared we now want to calculate post mean field
corrections to the grand-canonical partition function and correspondingly to the
grand-canonical potential. We will first do this for finite temperature in section 3.1
and then investigate the low temperature limit of these results in section 3.2. We
will find out that some regions of parameter space are problematic and that our
results from section 3.1 are not physical there. These problems will be discussed in
section 3.3. Finally in section 3.4 we will calculate corrections in the T = 0 case and
investigate whether they match the T → 0 limit obtained in section 3.2 to check our
calculations for consistency.

3.1 Corrections for Finite Temperature

With the interaction picture from section 2.6 in mind we can now try to calculate the
grand-canonical partition function for the Bose-Hubbard Hamiltonian by relating it
to the one of the mean field Hamiltonian:

Z = Tr
(
e−βĤBH

)
= Tr

{
e−βĤMFe−(0−β)ĤMFe−(β−0)ĤBHe−(0−0)·ĤMF

}
. (3.1)

The last three exponentials together have the form of equation (2.49) after per-
forming a so called Wick rotation, i.e. introducing an imaginary time τ ≡ it, with
τ0 = it0 = 0 = τ ′, Ĥ0 = ĤMF and V̂ = ĤBH − ĤMF where

ĤBH − ĤMF = −J
∑
〈i,j〉∈Λ2

â†i âj + zJ
∑
i∈Λ

(
ψ∗âi + ψâ†i − |ψ|2

)
, (3.2)

giving us

Z = Tr
{
e−βĤMFÛI(β, 0)

}
. (3.3)

But because equation (2.48) holds, we can also use that expression for the propaga-
tor:

Z = Tr

{
e−βĤMFT exp

[
−
∫ β

0

dτ
(
ĤBH,I(τ)− ĤMF,I(τ)

)]}
(3.4)
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Here, T now denotes the imaginary time ordering operator defined analogously to
the real time one. We can now expand the exponential to obtain a systematic
expansion around the mean field grand-canonical partition function. Here, we also
plug in the definition of the operators in the interaction picture, equation (2.44).

Z = Tr

{
e−βĤMF

[
1−

∫ β

0

dτ eτĤMF(ĤBH − ĤMF)e−τĤMF (3.5)

+

∫ β

0

dτ

∫ τ

0

dτ1 e
τĤMF(ĤBH − ĤMF)e−(τ−τ1)ĤMF(ĤBH − ĤMF)e−τ1ĤMF + ...

]}
≡ Z0 + Z1 + Z2 + ...

The zeroth order Z0 is simply the mean field grand-canonical partition function
ZMF and the higher orders are the first corrections to the mean field result that now
include the effect of quantum fluctuations.
The traces have to be taken over the full lattice space L =

⊗
i∈ΛF ≡ F⊗NS , where

NS is the number of lattice sites as in the previous chapter and F is the Fock space
of one site as constructed in section 2.2. Note that we do not have to symmetrize
this product as the sites are distinguishable.
In the following {|χn〉 | n ∈ N} and {εn | n ∈ N} will denote the eigenstates and
eigenvalues of the one-site mean field Hamiltonian ĤMF,S. The eigenstates of the
full mean-field Hamiltonian, which we will use to take the traces, are thus{⊗

i∈Λ

|χni〉
∣∣∣∣∣ ni ∈ N

}
(3.6)

with eigenvalues {∑
i∈Λ

εni

∣∣∣∣∣ ni ∈ N

}
. (3.7)

We will use the abbreviations |χ~n〉 =
⊗

i∈Λ |χni〉 and ε~n =
∑

i∈Λ εni with ~n ∈ NNS .
Note that if we have to take a trace, e.g. for an expectation value, over operators
which act on different sites respectively, we can factorize the trace or expectation
value, because the mean field Hamiltonian decomposes into a sum of local one-site
Hamiltonians. We can exemplarily see this by taking the trace over a hopping term
and decomposing the trace over the product space into a product of traces over the
single site spaces:

ZMF〈â†i âj〉MF = Tr
(
e−βĤMF â†i âj

)
=
∑
~n∈NNS

〈χ~n|e−βĤMF â†i âj|χ~n〉

=
∑
ni∈N

〈χni |e−βĤMF,i â†i |χni〉
∑
nj∈N

〈χnj |e−βĤMF,j âj|χnj〉

×
∏
k∈Λ
k 6=i,j

∑
nk∈N

〈χnk |e−βĤMF,k |χnk〉

= ZMF〈â†i〉MF,i〈âj〉MF,j (3.8)
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Here we used that ZMF =
∏

i∈ΛZMF,i = ZNS
MF,S. Similarly it can be shown that it

doesn’t matter if you take mean-field expectation values of single-site operators over
only the respective site or the whole lattice. Furthermore in single site expectation
values it doesn’t matter which site the operator acts on due to the homogeneity of
the lattice. Therefore, we will from now on drop the subscripts on the operators
in the single-operator expectation values and on the expectation value itself. For
convenience we will define φ = 〈â〉MF and correspondingly φ∗ = 〈â†〉MF. Note that
φ 6= ψ: Because we are now including corrections, also the variational parameter
ψ changes. You might be concerned that the two approaches to handling the self-
consistency of mean-field theory mentioned in section 2.5 might not be equivalent
anymore after including the corrections. However, it was shown analytically in
[103] that the two approaches are still equivalent to first order. Extending these
calculations to the second order would go beyond the scope of this thesis and could
be subject of further work. In the following we will simply assume that the two
approaches are still equivalent in second order, i.e. our calculations are still self-
consistent.
With the preliminary work done we can now evaluate the higher order corrections
to Z starting with Z1:

Z1 = −Tr

{
e−βĤMF

∫ β

0

dτ eτĤMF(ĤBH − ĤMF)e−τĤMF

}
. (3.9)

Because of the cyclic property of the trace we can cancel the τ -dependent exponen-
tials and evaluate the integral. This leaves us with

Z1 = βJ
∑
〈i,j〉∈Λ2

Tr
(
e−βĤMF â†i âj

)
− βzJ

∑
i∈Λ

[
ψ∗Tr

(
e−βĤMF âi

)
+ ψTr

(
e−βĤMF â†i

)
−|ψ|2Tr

(
e−βĤMF

)]
= ZMFβJNSz|φ|2 −ZMFβJNSz

(
ψ∗φ+ ψφ∗ − |ψ|2

)
= ZMFβJNSz|φ− ψ|2. (3.10)

We now want to evaluate the second order of the grand-canonical partition function.
We will see that we can interpret the terms coming up as diagrams and find rules to
assign a mathematical expression to each diagram, which simplifies the calculation.
The second order of the grand-canonical partition function is given by

Z2 = Tr

{
e−βĤMF

∫ β

0

dτ

∫ τ

0

dτ1 e
τĤMF(ĤBH − ĤMF)e−(τ−τ1)ĤMF

×(ĤBH − ĤMF)e−τ1ĤMF

}
. (3.11)

If we multiply out the product under the integral and use the linearity of the trace
we end up with a sum of terms (with appropriate prefactors) of the form:

IX̂,Ŷ =

∫ β

0

dτ

∫ τ

0

dτ1 Tr
{
e−βĤMFe(τ−τ1)ĤMFX̂e−(τ−τ1)ĤMF Ŷ

}
(3.12)

Where X̂, Ŷ ∈
{
â†i âj, âi, â

†
i , 1

∣∣∣ i, j ∈ Λ
}

. Because now two operators are involved

we can not generally cancel the τ dependence like in the first order. In each of these
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terms we now need to distinguish on which sites the respective operators act, e.g. if
all operators act on different sites and the trace factorizes, the integral is trivial
but if there are operators acting on the same site it is not. Each term will thus
in general need a case distinction which we will do by drawing a diagram for each
case, where each operator involved will be represented by a dot and a connection
between two dots will denote that they act on the same site. We will then assign a
mathematical expression to each diagram and simply add up all of these diagrams
with appropriate factors of δ·,· or (1− δ·,·) for the respective cases.
I now want to give a precise recipe how to draw the diagrams and assign an expres-
sion to each of them. The rules for this will first be stated and then proven.

1. Draw a dot for each single â or â† and draw a double dot for each â†â hopping
term in the arguments of the I.

2. In this diagram all dots besides the ones from a double dot (hopping term)
are allowed to be connected. The double dots are not even allowed to be
connected indirectly. Draw all possible diagrams, i.e. one diagram for each
possible combination of connections/disconnections.

3. Assign an expression to each diagram according to the following rules:

(a) If the diagram contains no dots, i.e. X̂ = Ŷ = 1, assign

1

2
β2ZMF. (3.13)

(b) If the diagram contains dots but no connection assign

1

2
β2ZMF × (MF expectation values of all (discon.) operators). (3.14)

(c) If there is one connection assign

ZNS−1
MF,S × Sconnected operators

× (MF expectation values of all disconnected operators),
(3.15)

where S·,· is a function only depending on the operators involved and the
mean field eigenenergies and -states. It is defined by

SX̂,Ŷ =
∑
n,m∈N

e−βεnξ(εn − εm)〈χn|X̂|χm〉〈χm|Ŷ |χn〉 (3.16)

with

ξ : R→ R, x 7→
∫ β

0

dτ

∫ τ

0

dτ1 e
x(τ−τ1) =

{
eβx−βx−1

x2
, for x 6= 0

β2

2
, for x = 0.

(3.17)

Note that S·,· is not symmetric in its arguments, so it is important that
the connected operators have the same order as they have in I·,·. Further-
more it does not depend on the site on which the operators act, which is
the same for the two operators by construction of the rule.
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(d) If there are two connections assign

ZNS−2
MF,S × Scon. operator pair 1; con. operator pair 2 , (3.18)

where the S function is defined by

SX̂1,Ŷ1;X̂2,Ŷ2
=

∑
n1,m1∈N

∑
n2,m2∈N

e−β(εn1+εn2 )ξ(εn1 + εn2 − εm1 − εm2) (3.19)

× 〈χn1 |X̂1|χm1〉〈χm1|Ŷ1|χn1〉〈χn2|X̂2|χm2〉〈χm2|Ŷ2|χn2〉.

The ordering in a pair is important as above but the ordering of the pairs
themselves is not.

4. Sum up all of the terms with a respective factor of δ·,· for each connection
or (1− δ·,·) for each disconnection, with the involved sites as arguments. Re-
dundant Kronecker deltas can of course be omitted as they are identically 1.
For example the disconnection in a hopping term does not have to be made
explicit because in the nearest neighbour sum the sites will never be equal.

You might be concerned that the β2 terms coming from disconnected diagrams are
unphysical because they are divergent in the low temperature limit. We will inves-
tigate this in section 3.2 and find that all terms coming from disconnected diagrams
actually vanish in the T → 0 limit. In fact they get cancelled from the terms in the
sum of the S functions where the argument of ξ vanishes so that the ξ function also
contributes a β2 term.
To illustrate the recipe that was just introduced we will use the rules given to find
an expression for Iâ†i âj ,âk

1. We draw a double dot for the hopping term and a dot for the âk:si sksj
2. We draw all possible diagrams where i and j are not connected:si sksj si sksj hhhh si sksj ((((

Note that the diagram where k is connected with i and j is forbidden as it
also connects i and j indirectly.

3. We assign an expression to each diagram
First diagram: No connection so rule 3(b) applies:

1

2
β2ZMFφ

2φ∗ (3.20)

Second diagram: â†i and âk are connected so rule 3(c) applies:

ZNS−1
MF,S Sâ†,âφ (3.21)
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Third diagram: âj and âk are connected so rules 3(c) applies again:

ZNS−1
MF,S Sâ,âφ

∗ (3.22)

4. We sum up all terms with appropriate factors of Kronecker deltas:

Iâ†i âj ,âk = (1− δik)(1− δjk)
1

2
β2ZMFφ

2φ∗ + δikZNS−1
MF,S Sâ†,âφ

+ δjkZNS−1
MF,S Sâ,âφ

∗.
(3.23)

Note that in the second term for example we did not make the disconnection
between j and k explicit because it is implied by the connection between i and
k and the forced disconnection between i and j.

We now want to prove the rules stated above:
As already mentioned, the diagrams simply represent the different possibilities of
the operators involved acting on the same site or not. Thus it is clear that the
connections between the double dots of a hopping term are not allowed. Also it is
clear that indirect connections are not allowed because acting on the same site is a
transitive property. So, the only thing left to prove are the rules from point 3. Due
to the possibility of a hopping term occurring we will decompose X̂ = X̂iX̂j and

Ŷ = ŶkŶl. Here X̂i, X̂j, Ŷk, Ŷl ∈
{
âs, â

†
s, 1

∣∣ s ∈ Λ
}

. The subscript of the operators
denotes the site on which they act, so in particular i 6= j and k 6= l. If one of the
operators is the identity then we choose the “site it acts on” to be different from
the other involved sites for convenience. This is justified because the identity can
always be factorized out like a disconnected operator. We will now prove the three
rules by simply calculating the I for the different cases:
Case 1: Disconnected diagram, i.e. i, j, k, l all unequal:

IX̂,Ŷ =

∫ β

0

dτ

∫ τ

0

dτ1 Tr
{
e−βĤMFe(τ−τ1)ĤMFX̂iX̂je

−(τ−τ1)ĤMF ŶkŶl

}
= ZNS−4

MF,S

∫ β

0

dτ

∫ τ

0

dτ1 Tr
(
e−βĤMF,iX̂i

)
Tr
(
e−βĤMF,jX̂j

)
Tr
(
e−βĤMF,k Ŷk

)
× Tr

(
e−βĤMF,lŶl

)
=

1

2
β2ZMF,S〈X̂i〉MF〈X̂j〉MF〈Ŷk〉MF〈Ŷl〉MF. (3.24)

Because of 〈1〉MF = 1 this reproduces rule 3(b) as well as rule 3(a).
Case 2: Diagram with one connection (without loss of generality i = k, j 6= l):

IX̂,Ŷ =

∫ β

0

dτ

∫ τ

0

dτ1 Tr
{
e−βĤMFe(τ−τ1)ĤMFX̂iX̂je

−(τ−τ1)ĤMF ŶkŶl

}
= ZNS−1

MF,S 〈X̂j〉MF〈Ŷl〉MF

∫ β

0

dτ

∫ τ

0

dτ1 Tr
{
e−βĤMF,ie(τ−τ1)ĤMF,iX̂ie

−(τ−τ1)ĤMF ,iŶi

}
= ZNS−1

MF,S 〈X̂j〉MF〈Ŷl〉MF

∑
n,m∈N

e−βεn〈χn|X̂i|χm〉〈χm|Ŷi|χn〉

×
∫ β

0

dτ

∫ τ

0

dτ1 e
(τ−τ1)(εn−εm)

= ZNS−1
MF,S SX̂i,Ŷi〈X̂j〉MF〈Ŷl〉MF. (3.25)
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Which is precisely rule 3(c). In the second step we inserted a completeness relation.
Case 3: Diagram with two connections (without loss of generality i = k, j = l):

IX̂,Ŷ =

∫ β

0

dτ

∫ τ

0

dτ1 Tr
{
e−βĤMFe(τ−τ1)ĤMFX̂iX̂je

−(τ−τ1)ĤMF ŶkŶl

}
= ZNS−2

MF,S

∫ β

0

dτ

∫ τ

0

dτ1 Tr
{
e−βĤMF,ie(τ−τ1)ĤMF,iX̂ie

−(τ−τ1)ĤMF ,iŶi

}
× Tr

{
e−βĤMF,je(τ−τ1)ĤMF,jX̂je

−(τ−τ1)ĤMF ,jŶj

}
= ZNS−2

MF,S

∑
n1,m1∈N

∑
n2,m2∈N

e−β(εn1+εn2 )〈χn1 |X̂i|χm1〉〈χm1|Ŷi|χn1〉

× 〈χn2|X̂j|χm2〉〈χm2 |Ŷj|χn2〉
∫ β

0

dτ

∫ τ

0

dτ1 e
(τ−τ1)(εn1+εn2−εm1−εm2 )

= ZNS−2
MF,S SX̂i,Ŷi;X̂j ,Ŷj . (3.26)

Which reproduces rule 3(d). With this we have proven the rules stated above.
The advantage of doing this calculation in terms of diagrams is that we have more
control over the calculation, which leads to less mistakes. Also it provides a frame-
work that can be generalized to higher orders. For example in the third order the I’s
would have 3 slots but the operators in each slot would be the same as before hence
we have the same translation between an I and its corresponding diagram, with
the only difference that there are now three columns in the diagrams. This allows
more possibilities and also provides the need of higher order S’s, which are probably
also straightforward to calculate but will be more involved, and a new ξ function
because of the triple integral. All of this makes the calculation more cumbersome
but not conceptually harder. When the functional dependence of the S’s is found,
it could also be possible to teach a computer the (generalized) rules and automate
great parts of the calculation. This could be subject of further work and shall not
be further investigated in this thesis.
With these rules we can now straight-forwardly calculate the grand-canonical par-
tition function to second order. To accomplish this we just have to plug in the rules
for each I and evaluate the sums over the Kronecker deltas. Note that they are the
only part of the I’s that is site dependent. We then have to sum up all of these
terms and simplify them. To make this less cumbersome we can separately look
at the expressions from disconnected diagrams, diagrams with one and with two
connections, because they all have different types of prefactors so that they can not
interfere. After a quite lengthy calculation (more details are given in appendix B)
we end up with

Z≤2 = ZMF

{
1 + βJNSz|ψ − φ|2 +

1

2
β2J2

{
2NSz|φ|4 −NSz

2 [(2φ− ψ)φ∗ − φψ∗]2

+N2
Sz

2|φ− ψ|4
}

+Z−1
MF,SJ

2
{
NSz

2
[
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2

+Sâ†,â†(φ− ψ)2
]

−NSz
[
Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2
]}

+Z−2
MF,SJ

2NSz(Sâ†,â;â,â† + Sâ†,â†;â,â)
}
. (3.27)
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With this we can now calculate the grand-canonical potential Φ = −T logZ by
taking the natural logarithm. Because we brought the grand-canonical partition
function into the form

Z = ZMF

(
1 +

Z1

ZMF

+
Z2

ZMF

+ ...

)
(3.28)

we can expand the logarithm as log(1 + x) = x− x2

2
+ ... to get an expansion of the

grand-canonical potential.
The expansion of the logarithm is correct, i.e. it converges, as long as Z−ZMF < ZMF

which should be true if the expansion of the partition function was justified in the
first place. We will assume that this expansion always works1. With this we get

Φ = − 1

β
logZMF −

1

β

( Z1

ZMF

+
Z2

ZMF

+ ...

)
+

1

2β

( Z1

ZMF

+
Z2

ZMF

+ ...

)2

= ΦMF −
1

β

Z1

ZMF

+
1

β

[
1

2

( Z1

ZMF

)2

− Z2

ZMF

]
+ ... (3.29)

The result up to second order is

Φ≤2 = ΦMF − JNSz|ψ − φ|2 −
1

2
βJ2

{
2NSz|φ|4 −NSz

2[(2φ− ψ)φ∗ − φψ∗]2
}

− 1

β
Z−1

MF,SJ
2
{
NSz

2
[
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2

+Sâ†,â†(φ− ψ)2
]

−NSz[Sâ,â(φ
∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ

2]
}

− 1

β
Z−2

MF,SJ
2NSz(Sâ†,â;â,â† + Sâ†,â†;â,â). (3.30)

Starting in chapter 4 we will numerically analyze the consequences of these correc-
tions on thermodynamic quantities like the entropy and compare them to the mean
field results.
Note that all terms containing an N2

S cancelled in the grand-canonical potential
leaving it extensive as it should be. Further note that, in contrast to mean-field
theory, where J and z only occurred in a product such that you could simply rescale
J to get rid of z, here now also terms containing Jz2 occur. Hence, even when
rescaling J , there is still a z dependence, and thus a dependence on the geometry
and dimensionality of the problem, remaining.
This is typical for theories going beyond the mean-field approximation, as mean-field
theory is independent of the dimension and geometry, so we expect this dependence
to enter in the corrections.
Further you might be concerned about the terms containing a β, which come exactly
from the disconnected diagrams, because they make it seem like our result might
diverge in the T → 0 limit. We will now further investigate this limit and it will
turn out that the diagonal terms in the sums of the S functions where the argument
of ξ gets zero will also contribute β terms and in the case of no degeneracy these
terms will all cancel in the limit β →∞.

1There are regions of parameter space where this is actually not the case and our calculation
does not work. We will discuss this issue in section 3.3
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3.2 Zero-Temperature Limit

We will now investigate what happens when the temperature gets small and con-
sequently β gets big. We will for now assume that the mean field energies are
non-degenerate. This does not have to be the case and I will comment on what
happens in the case of degeneracy at the end of this section and in section 3.3.
Without loss of generality we will shift the energy scale so that ε0 = 0. First note
that when β gets large we can neglect every term in the partition function except
the ground state:

ZMF,S =
∑
n∈N

e−βεn ≈ 1. (3.31)

This gets exact in the limit β → ∞. Note that already here we needed the non-
degeneracy of the ground state.
Next note that φ = 〈â〉MF goes over into a mean-field ground-state expectation value
for large β:

φ =
1

ZMF,S

∑
n∈N

〈χn|â|χn〉e−βεn ≈ 〈χ0|â|χ0〉 ≡ 〈â〉MF,0. (3.32)

Because the partition function becomes 1 in the limit, terms with different powers
of ZMF,S can now mix. Because of this we will regroup the terms in equation (3.30)
into terms with z and z2 as prefactors because these still can not mix.

Φ≤2 = ΦMF − JNSz|ψ − φ|2 + J2NSz
2

{
1

2
β [(2φ− ψ)φ∗ − φψ∗]2

− 1

β
Z−1

MF,S

[
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2 + Sâ†,â†(φ− ψ)2
]}

+ J2NSz

{
1

β
Z−1

MF,S

[
Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2
]
− β|φ|4

− 1

β
Z−2

MF,S

(
Sâ†,â;â,â† + Sâ†,â†;â,â

)}
. (3.33)

We will now show that the different terms are finite in the β → ∞ limit. It is
justified to look at the different terms individually because if the limits of all terms
exist then also the limit of the sum of these terms exists and is given by the sum of
the limits [104], which is sometimes called the algebraic limit theorem.
The zeroth order actually vanishes for β →∞ due to the fact that we chose ε0 = 0:

ΦMF = − 1

β
log Tr

(
e−βĤMF

)
= −NS

β
log

(∑
n∈N

e−βεn

)
β→∞−−−→ 0. (3.34)

The first order stays finite as the only change happens in the φ as mentioned above.
We will now turn to the z2 terms in the second order. To find their limit we first
investigate what happens to 1

β
SX̂,Ŷ in the limit (SX̂,Ŷ was defined in equation (3.16)).

To this end we divide the sum over m,n ∈ N up into the terms where m = n and
the ones with m 6= n and use the fact that ξ(0) = β2⁄2 (note that the assumed
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non-degeneracy is again crucial here):

1

β
SX̂,Ŷ =

∑
n,m∈N
n 6=m

〈χn|X̂|χm〉〈χm|Ŷ |χn〉
1

(εn − εm)2

[
1

β
e−βεm − 1

β
e−βεn − (εn − εm)e−βεn

]

+
∑
n∈N

〈χn|X̂|χn〉〈χn|Ŷ |χn〉
β

2
e−βεn . (3.35)

The 1⁄β terms become negligible for large β and will vanish in the limit. In the
other two sums we just have to consider the ground state term because also here
the others with εi > 0 will vanish in the limit. For β large enough we get

1

β
SX̂,Ŷ ≈

β

2
〈X̂〉MF,0〈Ŷ 〉MF,0 − S(0)

X̂,Ŷ
, (3.36)

where we defined

S
(0)

X̂,Ŷ
= −

∑
n∈N>0

1

εn
〈χ0|X̂|χn〉〈χn|Ŷ |χ0〉. (3.37)

The minus sign is introduced for further convenience. By plugging this into equation
(3.33) we can now see that the terms that would diverge in the β →∞ limit cancel:

(z2 terms in Φ2) ≈ J2NSz
2
{
S

(0)
â,â(φ

∗ − ψ∗)2 + S
(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2

+S
(0)

â†,â†
(φ− ψ)2

+
β

2

[
[(2φ− ψ)φ∗ − φψ∗]2 −

[
φ2(φ∗ − ψ∗)2 + 2|φ|2|φ− ψ|2

+(φ∗)2(φ− ψ)2
]]}︸ ︷︷ ︸

≡0

= J2NSz
2
{
S

(0)
â,â(φ

∗ − ψ∗)2 + S
(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2

+S
(0)

â†,â†
(φ− ψ)2

}
. (3.38)

In the limit this is exact, so we see that the β terms exactly cancel and the limit
stays finite.
Finally we want to take the limit for the z terms in the second order. To do this
we first need to find out what happens to 1

β
SX̂1,Ŷ1;X̂2,Ŷ2

in the limit (SX̂1,Ŷ1;X̂2,Ŷ2
was

defined in equation (3.20)). To this end we again split off the terms where the ar-
gument of ξ gets zero. These definitely include the terms where n1 = m1, n2 = m2

and those where n1 = m2, n2 = m1, where the case n1 = n2 = m1 = m2 that would
be included in both cases will be split off separately. But even in the case of non-
degenerate mean field eigenenergies there could be terms where n1 + n2 = m1 +m2

with n1, n2,m1,m2 all unequal. These would correspond to degenerate two site mean
field states and they can occur. For now we will assume that this does not happen
however and as mentioned before I will comment more on this at the end of the sec-
tion. If we assume that these two-site degeneracies do not occur then, after splitting
off the terms mentioned above where n1 +n2−m1−m2 = 0 trivially, the remaining
sum will stay finite in the β → ∞ limit. We will denote the remaining sum with a
prime to indicate that there are terms missing. The terms remaining in the sum are
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the ones were n1, n2,m1,m2 are all unequal, the ones were three of them are equal
and the fourth different and the ones where n1 = n2 and m1 = m2, but the pairs
are different.

1

β
SX̂1,Ŷ1;X̂2,Ŷ2

=
∑

n1,m1∈N

∑
n2,m2∈N

e−β(εn1+εn2 )ξ(εn1 + εn2 − εm1 − εm2)

× 〈χn1|X̂1|χm1〉〈χm1 |Ŷ1|χn1〉〈χn2|X̂2|χm2〉〈χm2|Ŷ2|χn2〉

=
∑′

n1,m1,n2,m2∈N

1

(εn1 + εn2 − εm1 − εm2)
2

[
1

β

(
e−β(εm1+εm2 ) − e−β(εn1+εn2 )

)
−(εn1 + εn2 − εm1 − εm2)e

−β(εn1+εn2 )
]

× 〈χn1|X̂1|χm1〉〈χm1|Ŷ1|χn1〉〈χn2 |X̂2|χm2〉〈χm2|Ŷ2|χn2〉
+

∑
n1,n2∈N
n1 6=n2

[
〈χn1|X̂1|χn2〉〈χn2|Ŷ1|χn1〉〈χn2 |X̂2|χn1〉〈χn1|Ŷ2|χn2〉

+〈χn1|X̂1|χn1〉〈χn1 |Ŷ1|χn1〉〈χn2|X̂2|χn2〉〈χn2|Ŷ2|χn2〉
]

× β

2
e−β(εn1+εn2 )

+
∑
n∈N

β

2
e−2βεn〈χn|X̂1|χn〉〈χn|Ŷ1|χn〉〈χn|X̂2|χn〉〈χn|Ŷ2|χn〉. (3.39)

For large β we can now again neglect the terms containing a 1⁄β and in the other
terms we only need to consider the ground state terms. For the sums over n1, n2

this means that both n1 and n2 have to be 0 because else the sum εn1 + εn2 > 0
would be positive and the exponential would suppress the term. In particular this
means that the second sum vanishes in the limit due to the constraint n1 6= n2. For
the primed sum this means that from all the terms listed above only the ones with
n1 = n2 = m1 6= m2 or n1 = n2 = m2 6= m1 and the ones with m1 = m2 6= n1 = n2

survive. These will give the three different sums remaining. For large β we thus get

1

β
SX̂1,Ŷ1;X̂2,Ŷ2

≈
∑
n∈N>0

1

εn
〈χ0|X̂2|χn〉〈χn|Ŷ2|χ0〉〈X̂1〉MF,0〈Ŷ1〉MF,0

+
∑
n∈N>0

1

εn
〈χ0|X̂1|χn〉〈χn|Ŷ1|χ0〉〈X̂2〉MF,0〈Ŷ2〉MF,0

+
∑

n1,n2∈N>0

1

εn1 + εn2

〈χ0|X̂1|χn1〉〈χn1|Ŷ1|χ0〉〈χ0|X̂2|χn2〉〈χn2|Ŷ2|χ0〉

+
β

2
〈X̂1〉MF,0〈Ŷ1〉MF,0〈X̂2〉MF,0〈Ŷ2〉MF,0

≡ −S(0)

X̂2,Ŷ2
〈X̂1〉MF,0〈Ŷ1〉MF,0 − S(0)

X̂1,Ŷ1
〈X̂2〉MF,0〈Ŷ2〉MF,0 − S̃(0)

X̂1,Ŷ1;X̂2,Ŷ2

+
β

2
〈X̂1〉MF,0〈Ŷ1〉MF,0〈X̂2〉MF,0〈Ŷ2〉MF,0, (3.40)
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with S
(0)

X̂,Ŷ
as defined in (3.37). Here we further defined

S̃
(0)

X̂1,Ŷ1;X̂2,Ŷ2
= −

∑
n1,n2∈N>0

1

εn1 + εn2

〈χ0|X̂1|χn1〉〈χn1|Ŷ1|χ0〉

× 〈χ0|X̂2|χn2〉〈χn2|Ŷ2|χ0〉. (3.41)

Also here we introduced a minus sign for further convenience. Note that we used a
tilde to distinguish this function from S

(0)

X̂1,Ŷ1;X̂2,Ŷ2
to be defined in equation (3.52).

Together with the large β approximation for 1
β
SX̂,Ŷ we can now show that also the

z terms remain finite in the limit. For β sufficiently large we can approximate

(z terms in Φ2) ≈ J2NSz
{
−
[
S

(0)
â,â(φ

∗)2 + S
(0)

â,â†
|φ|2 + S

(0)

â†,â
|φ|2 + S

(0)

â†,â†
φ2
]

+ S
(0)
â,â(φ

∗)2 + S
(0)

â,â†
|φ|2 + S

(0)

â†,â
|φ|2 + S

(0)

â†,â†
φ2

+ S̃
(0)

â†,â;â,â†
+ S̃

(0)

â†,â†;â,â
+ 4 · β

2
|φ|4 − β|φ|4 − 2 · β

2
|φ|4︸ ︷︷ ︸

≡0

}
= J2NSz

(
S̃

(0)

â†,â;â,â†
+ S̃

(0)

â†,â†;â,â

)
. (3.42)

As before, this gets exact in the limit which shows that also this term remains
finite. In conclusion this means that the grand-canonical potential remains finite in
the β →∞ (T → 0) limit which is given by

Φ≤2|T=0 = −JNSz|ψ − φ|2 + J2NSz
(
S̃

(0)

â†,â;â,â†
+ S̃

(0)

â†,â†;â,â

)
+ J2NSz

2
{
S

(0)
â,â(φ

∗ − ψ∗)2 + S
(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2

+S
(0)

â†,â†
(φ− ψ)2

}
. (3.43)

It is important to stress that we made strong assumptions in taking this limit. We
needed to assume that the mean field energy levels are non-degenerate and that there
are no two-site degeneracies in the mean field energy spectrum. Each degeneracy
of one of the types mentioned will result in another β term due to the argument of
the ξ function becoming zero. There is a priori no reason why these terms should
cancel in the case of arbitrary degeneracy and in general they will not. In the
parts of parameter space where these degeneracies occur our calculation thus has
no well-defined T → 0 limit and gets unreliable for small temperatures. We will see
consequences of this in our analysis in the following chapters. The low temperature
limit is not the only reason why degeneracies in the one-site or multiple-site spectrum
are problematic. This will be discussed in the following section.

3.3 Problems of the Calculation

In the preceding calculations we have made assumptions where I have already com-
mented that they will not always be justified. For the perturbative expansion around
the mean-field partition function we of course needed to assume that the expansion
converges i.e. the Bose-Hubbard Hamiltonian does not “differ too much” from the
mean field one. Furthermore we needed to assume that the expansion of the loga-
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rithm in the grand-canonical potential converges, which quantitatively means that
Z −ZMF < ZMF which is of course closely related to the first assumption and quan-
tifies it.
Further we found that our calculation does not seem to have a well-defined low
temperature limit if either the single site or the two site mean field spectrum is
degenerate. These assumptions are all related to each other which can be seen as
follows: if our perturbative expansion, or correspondingly the logarithm expansion,
does not converge this means that the mean field approximation was not a good
basis to expand around, i.e. the full Bose-Hubbard Hamiltonian differs substantially
from its mean field approximation so ĤBH− ĤMF is not a small perturbation. If the
mean field energies, in particular the two-site, or multiple-site, energies are degen-
erate this means that there are many-particle states with similar or even the same
energies, meaning that the states are not very different. The correct eigenstates of
the system are then in general some entangled, i.e. not factorizable, combinations of
these closely related states rather than the fully factorized mean field states. This
means that in the regions of parameter space where the (many site) mean field spec-
trum is degenerate we do not expect the mean field approximation to be good and
can not expect the perturbative expansion to converge.
The connection between degeneracies and divergence of the perturbative expansion
gets clearer in the T = 0 case. The second order correction to the ground state
energy in non-degenerate perturbation theory has the form [98]∑

~n∈NNS\{~0}

|〈χ~0|ĤBH − ĤMF|χ~n〉|2
ε~0 − ε~n

(3.44)

with ~0 = (0, ..., 0) ∈ NNS . It is clear that this series does not converge if the mean
field energies are of order |〈χ~n|ĤBH−ĤMF|χ~n〉| or even smaller. This occurs precisely
when either the many-site mean-field energies close to the ground state are (almost)
degenerate and when the Bose-Hubbard Hamiltonian differs substantially from the
mean field one, here quantified through the matrix elements. What we would have
to do in the T = 0 case is to take the degenerate many site subspaces and diagonalize
the Hamiltonian in each of them. In general it will then not be possible to write
these new eigenstates as simple product states, i.e. they are entangled, in contrast
to the mean field product states around which we tried to perturb.
The question now arises where in parameter space these degeneracies (divergences)
occur. We already saw in the preceding section that the problem will get worse with
lower temperature but the question still stands where it happens at all. In section
2.4 we already saw that for J = 0 and µ⁄U integer we get a degeneracy between the
state with n0 − 1 bosons occupying each site and the state with n0 bosons on each
site. If we now increase J we still expect to have almost degenerate states which
is still problematic as we saw above. Further we would expect that the local mean
field approximation will not be good in the deep superfluid phase where all bosons
delocalize i.e. for high J . We will see in the following sections that the problematic
zone in the fixed-temperature phase diagram for fixed U , almost fills the space in
between the lobes and gets bigger for higher J . In the deep superfluid phase the
zone then in fact stretches over all values of µ.
Recently a group used a projector operator formalism to deal with degeneracies
between the lobes for zero temperature [105] and finite temperature [106], but only
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for the mean field case. So, they dealt with degeneracies between the eigenstates
of the particle number operator. Here, we are dealing with degeneracies between
the eigenstates of the mean-field Hamiltonian, so that these two degeneracies only
coincide for ψ = 0, i.e. in the Mott/normal phase. It could be subject of further
work to generalize their framework in order to also deal with degeneracies between
mean-field eigenstates for ψ 6= 0, which would be necessary to solve the problems of
our calculations.

3.4 Corrections for Zero Temperature

Finally we now want to do a consistency check for our results. We want to cal-
culate corrections to the ground state energy E0, which corresponds to the grand-
canonical potential for T = 0, due to the −µN̂ term in the Hamiltonian, using
ordinary quantum mechanical perturbation theory [98] and see if the T → 0 limit
of our finite temperature result coincides with these results. To do this we will use
non-degenerate perturbation theory because we have used the assumption of no de-
generacy in taking the limit so we would not expect that degenerate perturbation
theory would reproduce our limit albeit being the more correct framework to use,
as argued in the preceding section. The corrected ground state energy up to second
order is given by

E0,≤2 = ε~0 + 〈χ~0|ĤBH − ĤMF|χ~0〉+
∑

~n∈NNS\{~0}

|〈χ~n|ĤBH − ĤMF|χ~0〉|2
ε~0 − ε~n

. (3.45)

The zeroth order is simply the mean field ground state energy ε~0 = NSε0. The first
order can also be readily calculated:

E0,1 = −J
∑
〈i,j〉∈Λ

〈χ0|â†i |χ0〉〈χ0|âj|χ0〉〈χ0|χ0〉NS−2

+ zJ
∑
i∈Λ

(
ψ∗〈χ0|âi|χ0〉+ ψ〈χ0|â†i |χ0〉 − |ψ|2〈χ0|χ0〉

)
〈χ0|χ0〉NS−1

= −JNSz|φ|2 + JNSz
(
ψ∗φ+ ψφ∗ − |ψ|2

)
= −JNSz|ψ − φ|2. (3.46)

We can already see that this coincides with the T → 0 limit of our finite temperature
first order results (remember that φ|T=0 = 〈χ0|âi|χ0〉 with i ∈ Λ arbitrary), see
equation 3.43. To evaluate the second order we proceed similarly as in the finite
temperature case. First notice that we now have to deal with terms of the form

TX̂,Ŷ =
∑

~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ~0|X̂|χ~n〉〈χ~n|Ŷ |χ~0〉. (3.47)

As in the finite temperature case we can now calculate each of these terms using a
diagrammatic representation for each of the possible combinations of the involved
operators acting on the same or different lattice sites. The only difference to the
finite temperature rules is in rule 3, i.e. the translation from diagram to mathematical
expression apart from the Kronecker delta factors (rules 4 stays the same). Thus
I will only state and prove the modified rule 3, the rest is completely analogous to
the finite temperature case. The modified rule 3 is:
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(a) If the diagram contains no dots or no connections assign

0. (3.48)

(b) If the diagram contains one connection assign

S
(0)
con. operators

× (MF ground state expectation values of discon. operators), (3.49)

with S
(0)
·,· defined as in equation (3.37). Note that in the definition the energy

scale was shifted so that ε0 = 0. For arbitrary ε0 we would have

S
(0)

X̂,Ŷ
=
∑
n∈N>0

1

ε0 − εn
〈χ0|X̂|χn〉〈χn|Ŷ |χ0〉. (3.50)

(c) If the diagram contains two connections assign

S
(0)
con. operator pair 1; con. operator pair 2 , (3.51)

with

S
(0)

X̂1,Ŷ1;X̂2,Ŷ2
=

∑
(n,m)∈N2\{0}

1

2ε0 − (εn + εm)
〈χ0|X̂1|χn〉〈χn|Ŷ1|χ0〉

× 〈χ0|X̂2|χm〉〈χm|Ŷ2|χ0〉, (3.52)

which is related to the S̃
(0)

X̂1,Ŷ1;X̂2,Ŷ2
defined in equation (3.41) by

S
(0)

X̂1,Ŷ1;X̂2,Ŷ2
= S

(0)

X̂1,Ŷ1
〈X̂2〉MF,0〈Ŷ2〉MF,0 + S

(0)

X̂2,Ŷ2
〈X̂1〉MF,0〈Ŷ1〉MF,0

+ S̃
(0)

X̂1,Ŷ1;X̂2,Ŷ2
. (3.53)

Note that the disconnected diagrams that, in the finite temperature case, did not
have a well defined low temperature limit and only cancelled when going to that
limit vanish identically in the T = 0 case.
We now again prove these rules by calculating the T for the different cases. As in
section 3.1 we decompose X̂ = X̂iX̂j, Ŷ = ŶkŶl with i 6= j, k 6= l.
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Case 1: Disconnected diagram, i.e. i, j, k, l all unequal:

TX̂,Ŷ =
∑

~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ0|X̂i|χni〉〈χ0|X̂j|χnj〉

 ∏
α∈Λ

α/∈{i,j}

δ0,nα



× 〈χnk |Ŷk|χ0〉〈χnl |Ŷl|χ0〉

 ∏
α∈Λ

α/∈{k,l}

δnα,0


=

∑
~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ0|X̂i|χni〉〈χ0|X̂j|χnj〉〈χnk |Ŷk|χ0〉〈χnl |Ŷl|χ0〉

(∏
α∈Λ

δ0,nα

)
︸ ︷︷ ︸

=0

= 0. (3.54)

The last product over Kronecker deltas is zero because it would enforce ~n = ~0 which
is excluded from the sum. This case again includes both the case with no connections
and the case with no dots at all because the latter just corresponds to all operators
being the identity which act on different sites by definition, as already argued in the
proof of the corresponding finite temperature rules. So this shows the new rule 3(a).
Case 2: Diagram with one connection (without loss of generality i = k, j 6= l):

TX̂,Ŷ =
∑

~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ0|X̂i|χni〉〈χ0|X̂j|χnj〉

 ∏
α∈Λ

α/∈{i,j}

δ0,nα



× 〈χni |Ŷi|χ0〉〈χnl |Ŷl|χ0〉

 ∏
α∈Λ
α/∈{i,l}

δnα,0


=

∑
~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ0|X̂i|χni〉〈χ0|X̂j|χnj〉〈χni |Ŷi|χ0〉〈χnl |Ŷl|χ0〉

∏
α∈Λ
α 6=i

δ0,nα


=

∑
ni∈N\{0}

1

ε0 − εni
〈χ0|X̂i|χni〉〈χni |Ŷi|χ0〉〈X̂j〉MF,0〈Ŷl〉MF,0

≡ S
(0)

X̂i,Ŷi
〈X̂j〉MF,0〈Ŷl〉MF,0. (3.55)
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This shows rule 3(b).
Case 3: Diagram with two connections (without loss of generality i = k, j = l):

TX̂,Ŷ =
∑

~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ0|X̂i|χni〉〈χ0|X̂j|χnj〉

 ∏
α∈Λ

α/∈{i,j}

δ0,nα



× 〈χni|Ŷi|χ0〉〈χnj |Ŷj|χ0〉

 ∏
α∈Λ

α/∈{i,j}

δnα,0



=
∑

~n∈NNS\{~0}

1

ε~0 − ε~n
〈χ0|X̂i|χni〉〈χ0|X̂j|χnj〉〈χni |Ŷi|χ0〉〈χnj |Ŷj|χ0〉

 ∏
α∈Λ

α/∈{i,j}

δ0,nα


=

∑
(ni,nj)∈N2\{(0,0)}

1

2ε0 − (εni + εnj)
〈χ0|X̂i|χni〉〈χni |Ŷi|χ0〉〈χ0|X̂j|χnj〉〈χnj |Ŷj|χ0〉

≡ S
(0)

X̂i,Ŷi;X̂j ,Ŷj
. (3.56)

This proves rule 3(c), so the only thing left to show is the relation (3.53). To do
this first note that S·,·;·,· and S̃·,·;·,· only differ from each other in the terms where

one of the summation indices is 0. Thus, we divide the sum over n,m in S
(0)

X̂1,Ŷ1;X̂2,Ŷ2
up into the terms where n = 0, m > 0 the ones with n > 0, m = 0 and the ones
with n > 0, m > 0 in order to relate it to S̃

(0)

X̂1,Ŷ1;X̂2,Ŷ2
.

After renaming indices we get

S
(0)

X̂1,Ŷ1;X̂2,Ŷ2
= −

∑
n∈N>0

1

εn

{
〈χ0|X̂1|χn〉〈χn|Ŷ1|χ0〉〈X̂2〉MF,0〈Ŷ2〉MF,0

+〈χ0|X̂2|χn〉〈χn|Ŷ2|χ0〉〈X̂1〉MF,0〈Ŷ1〉MF,0

}
−

∑
n,m∈N>0

1

2ε0 − (εn + εm)
〈χ0|X̂1|χn〉〈χn|Ŷ1|χ0〉〈χ0|X̂2|χm〉

× 〈χm|Ŷ2|χ0〉
≡ S

(0)

X̂1,Ŷ1
〈X̂2〉MF,0〈Ŷ2〉MF,0 + S

(0)

X̂2,Ŷ2
〈X̂1〉MF,0〈Ŷ1〉MF,0

+ S̃
(0)

X̂1,Ŷ1;X̂2,Ŷ2
. (3.57)

Note again the shift in the energy scale in the definition of S̃
(0)

X̂1,Ŷ1;X̂2,Ŷ2
(equation

(3.41)).
With these modified rules we can now calculate every T like in the finite temperature
case. This is less cumbersome though, because all disconnected diagrams identically
vanish. After plugging in the T s, evaluating the sums over the Kronecker deltas and
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simplifying the expression we end up with (details are given in appendix C)

E0,≤2 = ε~0 − JNSz|ψ − φ|2 + J2NSz
(
S̃

(0)

â†,â;â,â†
+ S̃

(0)

â†,â†;â,â

)
+ J2NSz

2
{
S

(0)
â,â(φ

∗ − ψ∗)2 + S
(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2

+S
(0)

â†,â†
(φ− ψ)2

}
. (3.58)

This matches the result (3.43) found by taking the T → 0 limit of the grand-
canonical potential at finite temperature assuming no degeneracies in the one and
two site spectra. This shows that our calculations are consistent, at least when no
degeneracies are involved. We already saw that we can not assume this anymore if
there are degeneracies as discussed in section 3.3.
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Chapter 4

First Analysis of Thermodynamic
Quantities

With the results found in Chapter 3 we can now calculate thermodynamic quan-
tities including post mean-field corrections. Here and in the following chapters all
extensive quantities will always be measured per site, which will not always be ex-
plicitly stated. For example when we refer to the entropy S we mean the entropy
per site Stotal⁄NS. Further, we will refer to the mean-field Hamiltonian of one site
as ĤMF,S, like in the previous chapter. Also note that we will absorb a factor of z
into J because in the mean-field case these quantities only occur in a product. In
the corrected case there also occur terms containing J2z which are z dependent even
after absorbing z into J , we thus have to pick a specific z. We will always choose
z = 6 in the following, corresponding for example to a simple cubic 3D lattice. So,
for example, in order to translate a critical point on the J⁄U axis in one of the
following figures into the “real” value of J⁄U , without the factor of z, you must
simply divide by z = 6.
This choice of z is justified, because mean-field theory is expected to give a better
approximation in higher dimensions [102]. Thus, by considering a three dimensional
lattice, we can expect our mean-field results to deviate less from the correct values
than if we would have considered a one- or two-dimensional lattice.
Before using the results from the previous chapter we start by numerically calcu-
lating thermodynamic quantities using the mean-field Hamiltonian so we have a
reference for the results including corrections. For all numerical calculations to be
described here and in the following, the program Mathematica was used.
To calculate thermodynamic quantities in mean-field approximation we restrict the
Hilbert space of one site to a finite number of states (dimension dnum) so that we
can generate finite matrices. As basis we used the eigenbasis of the particle number
operator of the respective site n̂. The choice of basis of course does not affect the
results as we only need the eigenenergies and eigenstates, which are independent of
the choice of basis. The eigenbasis of n̂ is simply a convenient choice, as we know
how the creation and annihilation operators act on the eigenstates. As cutoff we
chose dnum = 7 and regularly checked that our figures are robust against increasing
this number. This choice of cutoff means that we use the states {|0〉, ..., |6〉} for
generating the matrices. The cutoff is then justified by the fact that we will restrict
our analysis in the following to regions of parameter space around the n = 1 lobe,
where it is to expect that states with n > 6 do not play a relevant role.
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In this finite-dimensional Hilbert space we can now numerically diagonalize the
matrix corresponding to the one-site mean-field Hamiltonian and determine the cor-
responding grand-canonical partition function

ZMF,S = Tr
(
e−βĤMF,S

)
=
∞∑
i=0

e−βεi ≈
dnum−1∑
i=0

e−βεi (4.1)

and the grand-canonical potential

Φ = − 1

β
logZMF,S. (4.2)

Here, {εi | i ∈ N} are again the eigenvalues of the one-site mean-field Hamiltonian.
We can also calculate the mean particle number per site

n =
1

ZMF,S

Tr
(
n̂e−βĤMF,S

)
. (4.3)

The entropy can be simply obtained by

Φ = E − TS − µn⇒ S =
E − µn− Φ

T
, (4.4)

with

E =
1

ZMF,S

Tr
(
ĤMF,Se

−βĤMF,S

)
. (4.5)

Alternatively we could also compute these quantities as derivatives of the grand-
canonical potential

n = −
(
∂Φ

∂µ

)
T

(4.6)

S = −
(
∂Φ

∂T

)
µ

, (4.7)

where
(
∂ ·
∂ ·

)∣∣
x

means that the quantity x is kept fixed while taking the derivative.
Note that, as already mentioned in the introduction, J and U do not have to be
independent parameters as we can use one of them to set the energy scale, i.e. set it
to one. In our numerical implementation we have set U = 1, so that all quantities
with dimension of energy are measured in units of U . However when we want to
set the scale with J , i.e. analyze thermodynamic quantities for fixed J , which we
will start doing in section 4.2, we need to translate. For example from the grand-
canonical potential for fixed U , i.e. the one calculated as in equation (4.2) with
U = 1 in the Hamiltonian, we can get a corresponding grand-canonical potential
function where J is fixed:

Φ

J

(
U

J
,
µ

J
,
T

J
, ψ

)
=

Φ

U

(
1
/U
J
,
µ

J

/U
J
,
T

J

/U
J
, ψ

)
U

J
, (4.8)

where Φ⁄J and Φ⁄U take all arguments with dimensions of energy in units of J and
U , respectively.
In order to calculate thermodynamic quantities with corrections, we first computed
the corrected grand-canonical potential found in equation (3.30), which simply de-
pends on the mean-field eigenenergies and eigenstates, as well as the standard ther-
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Figure 4.1: Grand-canonical potential in mean-field approximation in the complex
ψ-plane for J = 0.1U, T = 0.01U, µ = 0.4U , corresponding to the normal phase.

modynamic quantities including ψ. We then determined the particle number and
entropy using equations (4.6) and (4.7). To compute the derivatives we made use
of the centered differences formulae. Higher order formulae were found to make no
substantial difference.
At the moment all of these functions depend on the mean-field parameter ψ. To
determine the correct value of this parameter we have to numerically minimize the
grand-canonical potential with respect to it, as explained in section 2.5. If the min-
imum is at ψ = 0 the system is in the disordered, normal phase. By entering the
superfluid phase we obtain |ψ| 6= 0, so ψ ”has to choose” a phase, which breaks the
U(1) symmetry.

Figure 4.1 shows the grand-canonical potential in mean-field approximation in
the complex ψ plane for J = 0.1U , T = 0.01U , µ = 0.4U . We did not show the
corrected results for clarity because they show the same qualitative behaviour. The
minimum is at ψ = 0, so the system is in the normal phase. Also the U(1) symmetry
is apparent from the figure.
If we now increase the value of J to J = 0.4U the grand-canonical potential qual-

itatively changes, see figure 4.2. Now there is no single minimum at the origin,
but a circle in the complex plane where the grand-canonical potential is minimized.
Whatever the value of ψ is, it has to pick a certain phase breaking the symmetry.
It is clear though that it does not matter which phase ψ chooses, which is of course
also a consequence of the symmetry. So without loss of generality we can in the
following always assume that ψ is real.
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Figure 4.2: Grand-canonical potential in mean-field approximation in the complex
ψ-plane for J = 0.4U, T = 0.01U, µ = 0.4U corresponding to the superfluid phase.

Figure 4.3 shows the grand-canonical potential as a function of ψ ∈ R, for the same
two sets of parameters as before. Also the results for the corrected grand-canonical
potential are now shown. The corrections seem quite large but keep in mind that
only the minimum value is physical. At the minima the corrections lower the grand-
canonical potential only slightly. On the other hand the non-zero value of ψ in the
superfluid phase gets appreciably shifted by the corrections.
We now want to calculate the critical parameter values, where exactly the phase
transition introduced in section 2.4 occurs. To achieve this we fix a temperature
T and a chemical potential µ. We then increase J or decrease the U , keeping the
other one fixed, starting from the normal phase, until the minimum of the grand-
canonical potential jumps from ψ = 0 to ψ 6= 0. To precisely find the point of
transition we interpolated the grand-canonical potential by a fourth order polyno-
mial Φ(ψ) = a0 + a2ψ

2 + a4ψ
4, a4 > 0, which is essentially a Taylor expansion,

using that ψ is real, where the odd powers are left out because they violate the U(1)
symmetry, which reduces to a Z2 symmetry ψ → −ψ over R. The coefficient a4 has
to be positive because else the energies would be unbounded from below, which is
unphysical. The truncation after the fourth order is justified because ψ is zero in
the normal phase and small in the vicinity of the phase transition, which is the point
we are interested in. This expansion of the grand-canonical potential is the basic
idea of Landau’s theory of second-order phase transitions [102]. Note however, that
we will use this expansion only to determine the phase boundary. In order to cal-
culate thermodynamic quantities in arbitrary regions of the phase diagram, where
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Figure 4.3: Grand-canonical potential in the two phases. On the left side the pa-
rameters are J = 0.1U, T = 0.01U, µ = 0.4U corresponding to the normal phase.
On the right side the parameters are J = 0.4U, T = 0.01U, µ = 0.4U corresponding
to the superfluid phase
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Figure 4.4: Fixed-temperature phase diagrams for fixed U and three different tem-
peratures.

this expansion would not work, we still numerically minimize the grand-canonical
potential in order to find the correct value of ψ.
The extrema of the polynomial we use to interpolate, lie at ψ = 0,±

√
−a2/2a4.

For a2 > 0 the only extremum over the real numbers is at ψ = 0, being a min-
imum, as ∂2Φ⁄∂ψ2(ψ = 0) = 2a2 > 0, which corresponds to the normal phase.
If a2 < 0 there is a maximum at ψ = 0 and minima at ψ = ±

√
−a2/2a4, as

∂2Φ/∂ψ2
(
ψ = ±

√
−a2/2a4

)
= −4a2 > 0, which corresponds to the superfluid

phase. Clearly a2 = 0 marks the point of the phase transition. So, by checking the
coefficient a2 from the interpolation we can determine to which phase the current
value of J or U corresponds, and find the point of phase transition. We can then
repeat this procedure for many µ to obtain a fixed-temperature phase diagram.
Figure 4.4 shows the fixed-temperature phase diagrams for fixed U for three differ-

ent temperatures. For low temperature you can observe a lobe like structure like in
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Figure 4.5: Fixed-temperature phase diagrams for fixed U and three different tem-
peratures. N is an abbreviation for normal.

the T = 0 case, see figure 2.2. This structure disintegrates for higher temperature.
There are now non-superfluid states even at integer µ⁄U in contrast to the T = 0
case. Thus, there is now the possibility of a phase transition at constant integer
µ⁄U . Because this was not possible for T = 0, this transition is not a quantum
phase transition but rather a classical one.
For higher temperature the critical value of J generally increases, i.e. the phase
boundary is shifted to higher values of J , so for more thermal fluctuations the par-
ticles need to gain more energy through hopping to condense into a superfluid state.
Furthermore it is apparent that the phase boundary is shifted to higher J when
including the corrections, so the quantum fluctuations also prevent the system from
condensing. It is already visible for low temperature but becomes more apparent
for higher temperature, that for higher µ, i.e. for a higher particle number and with
this also a higher density the particles can undergo the phase transition for lower
values of J . So, a higher particle density supports the phase transition, like in the
case of an ideal Bose gas.

Figure 4.5 shows the fixed-temperature phase diagrams for fixed J for three dif-
ferent temperatures. Also here you can observe a “lobe” for small T , although it is
formed differently.
It is consistent with the findings of the fixed-U phase diagrams, that the phase tran-
sition now occurs for lower values of U when including the corrections. Furthermore
it is consistent that for higher values of µ, i.e. a higher particle density a higher U
is needed for the system to enter the normal phase.
One striking difference to the fixed-U phase diagrams is that for T = 0.1J , there
is a region where the system does not enter the normal phase even for high values
of U⁄J . For higher temperature the lobe opens up, leading to the disappearance of
this region. This happens for a smaller temperature, when including the corrections.
This leads to the interesting circumstance, that for T = 0.5J such a region still ex-
ists in mean-field approximation but it has already fully vanished when including
the corrections.
Another difference concerns the regions with µ < 0. In the fixed-U case we see that
the phase boundary there is a straight line. This means that for a more negative
µ, i.e. a larger energy cost to add particles to the system, a higher J is needed to
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overcompensate this cost through the hopping of the particles. In the fixed-J phase
diagrams there is essentially no superfluid phase at all for µ < 0. An exception to
this is of course the low temperature case T = 0.1J , as already mentioned.
The temperatures in the phase diagrams discussed above were partly chosen as in
Ref. [61] in order to provide a qualitative comparison and sanity check of our cal-
culations. It turns out that our results for the phase diagrams qualitatively agree
with those from the reference.

In order to also quantitatively classify our calculations, we compared the criti-
cal J⁄U value at the tip of the n = 1 lobe with the beyond mean field results of
other groups, see table 4.1. We did not include the results from Ref. [61] in the
table as they also made use of a mean-field type approximation. In the table we
compare our corrected and mean-field results with quantum Monte-Carlo (QMC)
data [27, 40], a variational T = 0 approach [47] and one of the two analytical finite-
temperature beyond mean-field approaches mentioned in the introduction [68]. We
did not include results from the other group because they reproduced the mean-field
phase boundary to the order they investigated. Although the QMC group dealt with
the finite-temperature case, they computed the critical J⁄U value only in the zero-
temperature limit, which is why we do not have any exact data to compare our
finite-temperature results with.
Our corrected results are already notably better than the mean-field results, see
also table 4.2, they are however, slightly inferior to those of the Green’s function
approach but still comparable with them. We note that our results effectively co-
incide with those of the variational approach from dos Santos et al. That approach
however, is based on a Landau expansion, it thus only works in the Mott phase and
the vicinity of the phase boundary whereas our approach still works in the superfluid
phase. We did not include further T = 0 results, as this thesis will be concerned
with the finite-temperature case only.
Further note, that table 4.2 also shows that not only the mean-field results but also
our corrected results show more deviation from the QMC value for lower dimension.
Hence this further justifies our choice of z = 6.
We conclude that our calculations already significantly improve the mean-field re-
sults for the critical value of J⁄U at the n = 1 lobe tip. Beyond this, with our
approach we can further also calculate thermodynamic quantities like the entropy,
which we will do in the following.
In the rest of this chapter we will analyze the order parameter, the particle num-
ber and the entropy on different lines in the different phase diagrams. Due to the
qualitative difference between the phase diagrams for fixed J and fixed U we will
examine these cases separately starting with the former.
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Table 4.1: Comparison of the critical J⁄U value, without the factor of z, at the tip
of the n = 1 lobe for different dimensionalities and temperatures. We compare our
exact results from mean-field theory (MFT) and our corrected results with quantum
Monte-Carlo (QMC) data, the results from a Green’s function approach by Ohlinger
and Pelster and from a variational approach by dos Santos et al. The numbers in the
brackets denote an error estimate of the last given digit. For the Green’s function
approach they were estimated by me, as I had to read off the critical value from
the phase diagram. The error estimate of the variational approach was computed
using the one from the QMC data as they did not give explicit values but only the
deviation of their results from the QMC ones.

d T⁄U MFT Our calc. QMC [27, 40] Green [68] Var. [47]
2 0 0.04290(1) 0.05204(1) 0.05974(3) - 0.05197(3)
3 0 0.028600(8) 0.032375(5) 0.03408(2) 0.0330(1) 0.03238(2)
3 0.1 0.2947(2) 0.032417(8) - 0.0335(8) -

Table 4.2: Deviation from the quantum Monte-Carlo results of our mean-field and
corrected results for the critical J⁄U value, without the factor of z, at the tip of the
n = 1 lobe for zero temperature and different dimensionalities.

d T MFT Our calc.
2 0 28% 13%
3 0 17% 5%
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4.1 Fixed On-Site Interaction Strength

We will start our analysis with the fixed-U case. There are two straight-forward
choices of lines through the phase diagram: horizontal and vertical. Additionally to
U we keep J fixed on the horizontal lines and we keep µ fixed on the vertical lines.
We will now investigate both of these cases separately, starting with the horizontal
lines.

4.1.1 Horizontal lines

We will investigate three different horizontal lines in the fixed-temperature phase
diagrams, see figure 4.6. We take one line to be rather low in the lobe at J = 0.06U ,
one line to be rather high in the lobe at J = 0.16U and one in between at J = 0.12U .
Because on horizontal lines both U and J are fixed we will only look at them in this
section as they contain exactly the same information as horizontal lines, i.e. fixed-U
lines, in the fixed-J phase diagrams. We will now look at different thermodynamic
quantities on these lines starting with the order parameter ψ.
Figures 4.7-4.9 show the order parameter on the horizontal lines in the three dif-

ferent fixed-temperature phase diagrams. You can clearly see the two phases as
expected from looking at the phase diagrams, figure 4.6. In the normal phase the
order parameter is identically zero and when µ⁄U gets to a critical value the order
parameter changes in a non-analytic way and gets a non-zero value in the superfluid
phase. The observed jump in the derivative is typical for a phase transition.
The order parameter is generally smaller when including the corrections. This is
clear because quantum fluctuations prevent the particles from condensing into the
ground state and thus the condensate density |ψ|2 and with this also the order pa-
rameter ψ get decreased by quantum fluctuations.
Furthermore, the corrections make the normal phases bigger in general, which is
of course also clear from the phase diagrams. This can also be explained by the
quantum fluctuations preventing the particles from condensing, and thus making
the normal phases larger. The effect of quantum fluctuations on the critical value
of µ, where the phase transition occurs on horizontal lines, increases for higher J ,
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Figure 4.6: Horizontal lines in the fixed-U phase diagrams for different temperatures.
J takes the values 0.06U, 0.12U, 0.16U on these lines, respectively.
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Figure 4.7: Order parameter on horizontal lines in the fixed-U phase diagram at
T = 0.01U .
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Figure 4.8: Order parameter on horizontal lines in the fixed-U phase diagram at
T = 0.05U .
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Figure 4.9: Order parameter on horizontal lines in the fixed-U phase diagram at
T = 0.1U .
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Figure 4.10: Order parameter in the vicinity of the superfluid phase left to the n = 1
lobe on horizontal lines in the fixed-U phase diagram at T = 0.01U .

i.e. higher in the lobe, and for higher T , i.e. when more thermal fluctuations are
involved.
Thermal fluctuations have a similar effect, i.e. they also prevent particles from con-
densing. This has for example a big effect on the superfluid phase for lower µ, which
fully disappears even on the highest horizontal line, for T = 0.1U .
You can notice, that at the values µ⁄U = 0 and µ⁄U = 1 there is a big discrepancy
between the corrected results and the mean-field results. These dips in the corrected
results are clearly not physical and reflect the fact that the calculation of the cor-
rections is not valid in these parameter regions, i.e. our expansion does not converge
due to (many-site) degeneracies in between the lobes, as explained in section 3.3.
This effect is strongest for small T and high J , as we already expected there.
Some of these unphysical dips are connected to plateaus around them. They are
probably also due to degeneracy effects and thus unphysical. This is consistent with
the fact that they are more prominent where the problems due to degeneracies are
also stronger. Another indicator that they are unphysical is the fact that they are
connected to further non-analyticities which are not due to a phase transition.
For J = 0.12U there is another dip at µ ≈ 1.4U , which is physical and reflects the
fact that the line runs close to the tip of the corresponding lobe.
Figure 4.10 again shows the order parameter on the horizontal lines for T = 0.01U
but with the focus on the left superfluid phase. It is apparent that for J = 0.06U
the corrected results fit the mean-field ones extremely well especially on the left side
of the superfluid phase. On the right side there is a small discrepancy, until the line
enters the problematic zone and the order parameter shows the unphysical dip. For
higher J we can see that on the left side of the dip the corrected order parameter is
actually bigger than in mean-field approximation in contrast to it being smaller on
the rest of the lines. This seems unphysical and might also be due to degeneracies
because it happens close to the dip. This explanation is supported by the fact that
the difference increases for larger J .

After investigating the order parameter, we next want to analyze the particle
number on the same horizontal lines. Figures 4.11-4.13 show an overview of our
results. You directly notice that there exist plateaus where the particle number is
approximately constant, as expected in section 2.4. When J increases these plateaus
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Figure 4.11: Particle number on horizontal lines in the fixed-U phase diagram at
T = 0.01U .
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Figure 4.12: Particle number on horizontal lines in the fixed-U phase diagram at
T = 0.05U .
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Figure 4.13: Particle number on horizontal lines in the fixed-U phase diagram at
T = 0.1U .
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Figure 4.14: Low-temperature behaviour of the particle number on the J = 0.06U
horizontal line in the fixed-U phase diagram for T = 0.01U , with phase transitions
indicated by dashed lines. N is an abbreviation of normal and SF abbreviates
superfluid.

get smaller, i.e. it needs less deviation of µ to make it energetically favorable to
add/remove particles and let the resulting extra particles/holes hop through the
lattice. For higher temperature you can very well observe the non-zero slope that
we expected in section 2.4, which is the reason why there is no exact Mott phase
anymore.
Furthermore, in the unproblematic regions, the differences between mean-field and
the corrected results for the particle number are small compared to the differences
in the results for the order parameter. Thus, quantum fluctuations do not really in-
fluence the particle number in total but rather the fraction of particles in the ground
state, which is physically plausible.
In the particle number figures it becomes especially clear where degeneracies occur
and render our corrected results unphysical. Due to this, it might be possible to
map out the problematic zones in the phase diagram using the particle number. Un-
fortunately, by comparison of figure 4.9 and 4.13, it is already clear, that although
the particle number does not show any unphysical behaviour, the order parameter
still shows the unphysical dip mentioned above. So, we can already conclude here,
that this mapping using the particle number alone will still not fully capture the
problematic zone. We will not further investigate this in this thesis.
Figure 4.14 again shows the particle number for J = 0.06U and T = 0.01U . The

dashed lines indicate where the phase transition occurs. They were calculated using
the corrected results because we already saw above that the corrected and the mean-
field phase transitions essentially happen at the same point for these parameters.
In order to find the point of transition we used the same method as for the phase
diagrams, as outlined at the beginning of this chapter.
The figure captures the low temperature behaviour of the particle number well.
There are normal phases, which are close to the exact Mott phase, where the parti-
cle number is approximately constant, i.e. the compressibility is almost zero. Further
there are superfluid regions between the normal phases where the particle number
is non integer and continously changes from the particle number of one lobe to the
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Figure 4.15: High-temperature behaviour of the particle number on the J = 0.16U
horizontal line in the fixed-U phase diagram for T = 0.1U , with phase transitions
indicated by dashed lines.

one of the other. The point of phase transition is exactly where the derivative of
the particle number jumps, i.e. where the particle number is not analytic.

In contrast to this figure 4.15 shows the particle number for J = 0.16U and
T = 0.1U . This time the critical value of µ⁄U is shown both in mean-field ap-
proximation and including the corrections, indicated with blue and red dashed lines
respectively, because here there is a substantial discrepancy between the two. The
particle number still shows a similar behaviour to the low temperature case, hav-
ing regions with bigger and regions with smaller slope, but these are not generally
divided by a phase transition anymore. For example, the particle number changes
from n = 0 to n = 1 without entering the superfluid phase at all.
A big difference between the high and the low temperature behaviour resulting from
this, is that for high temperature, there are parts of the phase diagram where the
mean particle number is non-integer but the system is not in the superfluid phase.
These regions get smaller for lower T and fully vanish for T = 0. We can explain
this observation through thermal fluctuations, that prevent the system from get-
ting a long-range order, which is what characterizes the superfluid phase. This is
analogous to a spin system, where a high temperature also prevents the spins from
aligning and forming an ordered phase, a ferromagnet, only that the notion of order
in the Bose-Hubbard model is less intuitive. Another explanation for this is that
the particles get prevented from condensing into the ground state by excitations
through thermal activation.
From figure 4.15 is is clear that for high temperature, the particle number is gener-
ally a smoother function of J⁄U than in the low temperature case. However, there
is still a point of non-analyticity at the phase transition, which can be seen in the
inset. The inset also shows that there are some discrepancies between the corrected
and the mean-field results in the vicinity of the phase transition but they are on a
much smaller scale than differences in the order parameter for example.

Lastly, we investigate the entropy on the horizontal lines. Figures 4.16 and 4.17
show our results for T = 0.05U and T = 0.1U , respectively. Note that we do not
show the entropy for T = 0.01U . This is because at low temperature the entropy
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Figure 4.16: Entropy on horizontal lines in the fixed-U phase diagram at T = 0.05U .
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Figure 4.17: Entropy on horizontal lines in the fixed-U phase diagram at T = 0.1U .
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is simply too small to see any structures besides those coming from degeneracies
i.e. the entropy is of the order of the machine precision in the regions where our
calculation works.
In all of the figures, the entropy has a lower value in the normal phase and peaks
between the lobes. By comparison with the particle number figures 4.11-4.13, it is
clear that the peaks in the entropy occur, where the particle number is non-integer
and the entropy is small where the particle number is approximately integer.
The small entropy in the regions of integer particle number can be explained as fol-
lows: The ground state of the system for integer particle number is the state where
each lattice site is occupied by the same integer number of particles. This state
can only be realized in one way and it thus has no entropy. Hence, all entropy for
integer particle number comes from excited states, which are however separated by
some excitation gap. For small temperature this can practically not be overcome,
resulting in a very small entropy. When increasing the temperature, the gap can be
overcome more often, increasing the entropy. The quantum fluctuations also allow
the particles to occasionally cross the excitation gap, slightly increasing the entropy,
which can be seen in figure 4.17 or in the inset of figure 4.19.
We can further explain the peak in between the lobes by the following reasoning:
If there are no particles in the system there is of course no entropy. If one parti-
cle is added it will now somewhat delocalize but not fully as thermal fluctuations
prevent the condensation. There are now a lot of degenerate states possible how
this particle can delocalize, giving rise to some finite entropy. If further particles
are added they will also mostly delocalize just partly, which gives rise to even more
possibilities of different states. Thus the entropy keeps increasing by increasing the
chemical potential, i.e. adding more and more particles to the system, until a mean
particle number per site of 1⁄2 is reached, where the entropy is maximized. If now
more particles are added we can view this as holes, that are hopping through the
mostly filled lattice, being removed, again reducing the entropy. For higher J the
particles will delocalize more, which reduces the number of possible states and thus
the entropy .
It might be concerning that the entropy peak on the right side of the lobe is not
symmetric, contradicting the reasoning just given. This is due to the fact that on
the right side of the lobe the particles comprising the non-integer filling state are
additional to an existing integer filling, instead of being the only particles in the
lattice. But because also the particles comprising the integer filling can occasionally
hop out of it and contribute to the entropy the situation gets more complicated.
The general idea is the same however and can still explain why there is an entropy
peak at all.
As the different states of the particles being spread out differently are essentially de-
generate, we would expect that thermal activation does not change the height of the
peaks. We can however observe that the height of the peaks changes with tempera-
ture, especially the height of the peak on the right side of the lobe. By comparison
with the figures showing the order parameter on the horizontal lines, figures 4.8 and
4.9, it is clear that the height of the peak is correlated with the order parameter.
If the system is in the normal phase the peak is the highest, but with increasing
order parameter, when the system is superfluid, the height of the peak decreases.
This is clear as |ψ|2 is the condensate density, or the fraction of particles occupying
the ground state, i.e. the fraction of particles that are delocalized over the whole
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Figure 4.18: Entropy on the J = 0.12U horizontal line in the fixed-U phase diagram
at T = 0.05U , with phase transitions indicated by dashed lines. N is an abbreviation
for normal and SF abbreviates superfluid.

lattice. As we already argued above, particles in the single-particle ground state, do
not contribute to the entropy. For increasing temperature, we have seen that the
phase boundary moves to higher values of J and thus the order parameter should
generally decrease, because the horizontal lines we investigate stay the same. This
can also be observed in the respective figures 4.7-4.9. This explains the observation
that the entropy peaks are generally higher for higher temperature.
As the entropy peaks occur at integer µ⁄U , which is exactly where our calculations
might not work properly due to degeneracies, we need to be careful when interpret-
ing the corrected results here. Especially for low T and high J the entropy shows
highly unphysical behaviour, see for example figure 4.19.
However, there are also non-analyticities in the entropy that are actually physical

and are associated with a phase transition, see figures 4.18 and 4.19. In figure 4.18
you can further notice a small peak at µ ≈ 0.8U , which is probably a numerical
error. It is however robust against using higher order differentiation formulae, using
a larger Hilbert space and slight parameter changes.
The inset in figure 4.19 focuses on the phase transition that is not visible in the full
figure as the entropy is small there. Here, the relative difference between mean-field
and corrected results is rather large. For µ ≈ 0.7U you can spot another non-
analyticity not connected to a phase transition. This might already be a result of
degeneracies, which could be possible as J is rather large.
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Figure 4.19: Entropy on the J = 0.16U horizontal line in the fixed-U phase diagram
at T = 0.05U , with phase transitions indicated by dashed lines. The inset focuses
on one particular transition where the entropy is small.

4.1.2 Vertical lines

After analyzing thermodynamic quantities on horizontal lines we will now turn to
vertical lines, see figure 4.20. We take one line to be on the left side of the lobe
at µ = 0.1U , one on the right side at µ = 0.9U and one that goes approximately
through the tip at µ = 0.4U . As we already argued in section 3.3 our calculation will
not work for high J . Further we expect the critical J where we enter the problematic
zone, to be lower at the sides of the lobe than it is in the middle. In the follow-
ing we thus have to use different J⁄U -axis limits for the different lines, especially
for low temperature. You should keep that in mind in the following as it will not
always be explicitly stated. Note however, that it is in general hard to distinguish
where exactly deviations of the corrected results from the mean-field expectations
are physical and where they become unphysical, so we need to generally be cautious
when interpreting the corrected results for high J .
As before we start our analysis with the order parameter, shown in figures 4.21-4.23.
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Figure 4.20: Vertical lines in the fixed-U phase diagrams for different temperatures,
µ takes the values 0.1U, 0.4U, 0.9U on these lines respectively.
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Figure 4.21: Order parameter on vertical lines in the fixed-U phase diagram at
T = 0.01U .
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Figure 4.22: Order parameter on vertical lines in the fixed-U phase diagram at
T = 0.05U .
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Figure 4.23: Order parameter on vertical lines in the fixed-U phase diagram at
T = 0.1U .
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Figure 4.24: Unphysical behaviour of the order parameter for J close to 0, here for
µ = 0.9U and T = 0.01U .

First note that the starting limit of the J⁄U -axis sometimes varies slightly. This
is due to unphysical behaviour of the order parameter near J = 0, see figure 4.24.
This is a consequence of numerical mistakes. We calculate the order parameter as
the value ψ that minimizes the grand canonical potential Φ(ψ). For J = 0 however
the grand canonical potential does not depend on ψ at all as is clear from the mean-
field Hamiltonian (2.38), i.e. Φ(ψ) is simply constant. For small values of J , Φ(ψ) is
then still approximately constant which results in a noticeable error in numerically
determining the minimum.
In the figures 4.21-4.23 you can see that, as expected, ψ is zero until we reach a crit-
ical J where the particles start macroscopically occupying the ground state. Also
here we can observe the characteristic non-analytic change of the order parameter
at the phase transition. At the center of the lobe, the critical J is generally higher
than at higher or lower µ, as was already discussed in section 2.4.
As on the horizontal lines, the order parameter is generally smaller when including
the corrections. Furthermore we observe that quantum as well as thermal fluctua-
tions delay the transition to higher J , i.e. the fluctuations prevent the particles from
condensing.
It is notable that the order parameter seems to obey the same scaling law in the
vicinity of the critical point, both in the corrected and the mean-field results. This
would mean that our calculations still predict the order parameter critical exponent
β to have the mean field value β = 1⁄2 [102]. This is correct for most transi-
tions as they fall into the mean-field universality class. Those at the tip of the
lobes however fall into the universality class of the four-dimensional XY model for
a three-dimensional lattice, and thus should not have mean-field critical exponents
[33]. However, to properly discuss this, the critical exponents of our corrected re-
sults should be investigated more carefully, which could be subject of further work
and will not be done in this thesis.
Figure 4.25 exemplarily shows what happens for large J . You can observe that the

order parameter goes through a plateau and then decreases in the deep superfluid
phase when including the corrections which is clearly non-physical, as we expected.
Note that the unphysical behaviour already starts at J ≈ 0.135U , which is lower
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Figure 4.25: Unphysical behaviour of the order parameter in the deep superfluid
phase, here for µ = 0.9U and T = 0.01U .

than the critical J of the phase transition for the µ = 0.4U line at the same tem-
perature, which is approximately µ ≈ 0.175U . This justifies the different J⁄U -axis
limits used, as mentioned at the beginning of this section.

Figures 4.26-4.28 show an overview of our results for the particle number on the
different vertical lines. At low temperature the particle number shows a plateau for
small J , while it already has a non-zero slope there at higher temperature. This re-
flects what was already found on the horizontal lines, that the n-plateaus get smaller
for higher temperature.
It is apparent that on the right side of the n-plateau, i.e. on the right side of the lobe,
the particle number increases after the transition and that it decreases on the left
side. This is consistent with the statement from section 2.4, that on the right (left)
side of the lobe, the transition is driven by extra particles (holes) getting added to
the system, producing a superfluid state.
Close to the center of the plateau, the particle number almost doesn’t change. Here,
the other type of transition occurs, which is not driven by extra particles or holes
getting added but by the existing particles overcoming the repulsive interaction to
condense into a superfluid anyway. Of course after the transition the particle num-
ber still changes because we are investigating a vertical line which is not an exact
constant particle number line. We will turn to these in chapter 5.
Figure 4.29 shows the particle number with a focus on the transition at the tip of

the lobe. Here it is clearly visible, that the particle number increases after the tran-
sition on this line. An interesting feature that did not get captured by the overview
is that the particle number in mean-field approximation undergoes a minimum after
the phase transition which the corrected results do not. The same behaviour can
also be seen for µ = 0.1U , T = 0.1U , see figure 4.30.
In general on the vertical lines, the effect of the corrections on the particle number
is more clearly visible than on the horizontal lines. This is probably due to the fact
that the n-axis limits are different in the two cases. The corrections are especially
notable in the vicinity of the phase transition, where fluctuations become more im-
portant.

Lastly, we now analyze the entropy on vertical lines through the fixed-U phase
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Figure 4.26: Particle number on vertical lines in the fixed-U phase diagram at
T = 0.01U .
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Figure 4.27: Particle number on vertical lines in the fixed-U phase diagram at
T = 0.05U .
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Figure 4.28: Particle number on vertical lines in the fixed-U phase diagram at
T = 0.1U .
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Figure 4.29: Particle number on the µ = 0.4U vertical lines in the fixed-U phase
diagrams in the vicinity of the phase transition at the tip of the lobe. The phase
transition is indicated by a dashed line.
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Figure 4.30: Minimum in the particle number in mean-field approximation on the
µ = 0.1U vertical line in the fixed-U phase diagram at T = 0.1U after the phase
transition. The phase transition is indicated by a dashed line.
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Figure 4.31: Entropy on vertical lines in the fixed-U phase diagram at T = 0.01U .
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Figure 4.32: Entropy on vertical lines in the fixed-U phase diagram at T = 0.05U .
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Figure 4.33: Entropy on vertical lines in the fixed-U phase diagram at T = 0.1U .
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Figure 4.34: Entropy on the µ = 0.4U vertical line in the fixed-U phase diagram at
T = 0.05U . The phase transition is indicated by a dashed line.

diagrams. Figures 4.31-4.33 show an overview of our results. Generally, the entropy
is non-zero in the normal phase and then falls to zero after the phase transition
because for increasing J more and more bosons delocalize throughout the whole
lattice and condense into the lowest lying state where they do not contribute to the
entropy. Furthermore you can observe that the non-central values for µ lead to a
larger entropy than µ = 0.4U . This is because in the center of the lobe the system
usually has a non-integer particle number which allows for more states and thus a
higher entropy. This was discussed in more detail in our analysis of the horizontal
lines. Also a higher temperature generally leads to a higher entropy, which is clear
because the thermal fluctuations allow for higher energetic states to be populated
more.
The corrected entropy shows two different behaviours in the normal phase, whereas
the entropy in mean-field approximation is always constant there. In some figures
the entropy has a positive slope in the normal phase with a maximum at the phase
transition. In the other figures the entropy already has a negative slope in the nor-
mal phase, which then jumps at the phase transition.
From the overview it already gets clear that the entropy on the non-central vertical
lines, tends to show the former behaviour for lower temperature, while it mostly
shows the latter for high temperature.

Figures 4.34 and 4.35 show the entropy on the central vertical line on a more
appropriate scale. Note that we do not show the entropy for T = 0.01U , as it is too
small to see any structure. From these two figures it gets clear, that the entropy on
these lines shows a positive slope in the normal phase and a maximum at the phase
transition even for high temperature. However, also on these lines the maximum
gets suppressed by higher temperature.
We will postpone the discussion of these two behaviours and their physical inter-
pretation to section 5.1, where we discuss lines of constant particle number. On
those lines we observe the same two behaviours but it will get more clear when the
entropy shows which of the two.
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Figure 4.35: Entropy on the µ = 0.4U vertical line in the fixed-U phase diagram at
T = 0.1U . The phase transition is indicated by a dashed line.

4.2 Fixed Hopping Amplitude

Now that we have analyzed different lines in the fixed-U phase diagram we will do
the same with the fixed-J one. As already briefly mentioned at the beginning of
section 4.1, we will only look at vertical lines through the fixed-J phase diagrams,
as we can simply relate a horizontal line through the fixed-J phase diagram to
one through the fixed-U phase diagram. We simply have to translate the fixed-J
quantities to fixed-U quantities. For example:

T

U
=
T

J

J

U
=
T

J

1

U/J
. (4.9)

As vertical lines we choose those with µ = 0.4J , µ = 2J and µ = 4J , see figure 4.36.
Due to the degeneracy problems, we have to expect unphysical results for low U⁄J .
In the following we will thus have to use different U⁄J-axis limits for the different
figures, which will not be explicitly stated every time.
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Figure 4.36: Vertical lines in the fixed-J phase diagrams for different temperatures,
µ takes the values 0.4J, 2J, 4J on these lines respectively.
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As before we start our analysis with the order parameter. An overview of our
results is given in figures 4.37-4.39. As expected, we observe an inverse behaviour
compared to the fixed-U case. For small U the system is in the superfluid phase
and enters the normal phase for a critical value of U⁄J , where the strong on-site
repulsion prevents the particles from condensing. This transition now occurs earlier,
i.e. for a smaller value of U , when the corrections are included. Thermal fluctua-
tions have a similar effect, i.e. a higher temperature also makes the transition occur
earlier. As before, the corrected result is generally smaller than the mean-field one.
All of these observations are consistent with the corresponding ones made in the
fixed-U case.
For T = 0.1J , µ = 0.4J the fact that the system never enters the normal phase
is clearly visible. It is notable that the mean-field results have a negative slope,
while the corrected results have a positive slope, i.e. the corrected results predict
that the number of condensed particles increases for increasing U , which is quite
counterintuitive. This might also be a consequence of degeneracies.
The line for T = 0.5J , µ = 0.4J does not enter the normal phase in mean-field
approximation but it does so when including the corrections. Thus, on this line
mean-field theory and the corrected results make qualitatively different predictions
for the behaviour of the system, which was never observed on the fixed-U lines.
As in the fixed-U case we observe unphysical plateaus in the superfluid phase, here

for small U , which are probably due to degeneracies. Figure 4.40 shows further un-
physical behaviour for small U , exemplarily justifying the different axis limits used.
Next we investigate the particle number. An overview is given in figures 4.41-4.43.

The particle number decreases with rising U in all figures, in contrast to the fixed-U
case, where we saw that the particle number can increase or decrease in the super-
fluid phase after the transition, depending on which side of the lobe the transition
occurs. Also we do not observe the phase transition at constant mean particle num-
ber on the lines investigated. The fact that we can only observe one type of phase
transition will get clear in section 5.2, where we consider constant particle number
lines. Essentially the reason is that the lobe of constant particle number is formed
differently. Because of this, the n = 1 line for example, is not approximately vertical
like in the fixed-U case and we can thus not observe the corresponding transition
on a vertical line.
As in the fixed-U case the particle number admits a plateau with n = 1 after enter-
ing the lobe, at least for low temperature. This plateau gets smaller for increasing
temperature. For example the µ = 4J line for T = 1J does not show a plateau
anymore.
Furthermore, the differences between corrected and mean-field results are again most
visible at the phase transition. They are particularly prominent on the line that does
not enter the normal phase at all, i.e. for µ = 0.4J, T = 0.1J .

Figure 4.44 shows another feature that we already saw in the fixed-U case. The
particle number in mean-field approximation goes through a minimum on the super-
fluid side of the phase transition. In these figures also further quantitative differences
between the mean-field and the corrected results are visible. This is also the case
in figure 4.45, which shows the particle number with focus on the phase transition
on two vertical lines for T = 1J . In the two figures, the corrections lead to a lower
particle number in the superfluid phase and to a higher particle number in the nor-
mal phase
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Figure 4.37: Order parameter on vertical lines in the fixed-J phase diagram at
T = 0.1J .

2 4 6 8
0.0

0.4

0.8

1.2

µ = 0.4J

3 4 5 6 7 8

µ = 2J

5 6 7 8

µ = 4J

Mean field

With corrections

0.0 0.2 0.4 0.6 0.8 1.0

U/J

0.00

0.25

0.50

0.75

1.00

ψ

Figure 4.38: Order parameter on vertical lines in the fixed-J phase diagram at
T = 0.5J .
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Figure 4.39: Order parameter on vertical lines in the fixed-J phase diagram at
T = 1J .
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Figure 4.40: Unphysical behaviour of the order parameter for small U , here for
µ = 4J , T = 0.1J and fixed J .

Lastly, we investigate the entropy on the vertical lines in the fixed-J phase dia-
grams. An overview is given in figures 4.46 and 4.47. Note that we again excluded
the low temperature case T = 0.01U as the entropy is too small there, at least for
the two lines that enter the lobe.
For T = 0.5J the entropy shows qualitatively different behaviours on the different
lines. On the µ = 0.4J line it generally has a positive slope, the corrected entropy
then reaches a plateau after the phase transition. The mean-field results do not
show a plateau, which is probably due to the fact that the line does not enter the
normal phase in mean-field approximation.

On the µ = 2J line, which is shown with focus on the phase transition in figure
4.48 the entropy shows a similar behaviour in mean-field approximation and when
including the corrections. The entropy has a positive slope in the superfluid phase,
has a maximum at the phase transition and then shows a plateau in the normal
phase. The corrected results are generally larger in the superfluid phase, and then
align with the mean-field results in the normal phase.
The behaviour of the entropy on the µ = 4J line is only slightly different. Also here
the two results show a plateau in the normal phase where they align. The entropy
on this plateau is however smaller than for µ = 2J . In the superfluid phase the
entropy shows a negative slope in mean-field approximation and a small positive
slope when including the corrections. Again, the corrections increase the entropy in
the superfluid phase.
For T = 1J the behaviour is qualitatively similar for all µ. The entropy increases

in the superfluid phase with a maximum at the phase transition and the decreases
to some plateau in the normal phase. This plateau has a lower entropy for higher µ.
The differences between mean-field and corrected results for T = 1J are more noti-
cable in the superfluid phase, where the quantum fluctuations increase the entropy.
In the normal phase the two results align and the corrections decrease the entropy
only slightly. Figure 4.49 again shows the entropy on the vertical lines at T = 1J ,
with focus on the phase transition. Here also the differences in the normal phase
get visible.
As before we will postpone the physical discussion of the entropy to the next chapter,
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Figure 4.41: Particle number on vertical lines in the fixed-J phase diagram at T =
0.1J .
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Figure 4.42: Particle number on vertical lines in the fixed-J phase diagram at T =
0.5J .
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Figure 4.43: Particle number on vertical lines in the fixed-J phase diagram at T =
1J .
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Figure 4.44: Minimum in the particle number in mean-field approximation on the
superfluid side of the phase transition. Here on the µ = 2J vertical line in the fixed-
J phase diagrams at T = 0.1J and T = 0.5J . The phase transitions are indicated
by dashed lines.
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Figure 4.45: Particle number on the µ = 2J and µ = 4J vertical lines in the fixed-
J phase diagram at T = 1J in the vicinity of the phase transition. The phase
transitions are indicated by dashed lines.
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Figure 4.46: Entropy on vertical lines in the fixed-J phase diagram at T = 0.5J .

4 8 12
0.0

0.4

0.8

1.2
µ = 0.5J

4 8 12

µ = 2J

Mean field

With corrections

6 9 12

µ = 4J

0.0 0.2 0.4 0.6 0.8 1.0

U/J

0.00

0.25

0.50

0.75

1.00

S
/k

B

Figure 4.47: Entropy on vertical lines in the fixed-J phase diagram at T = 1J .
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Figure 4.48: Entropy on the µ = 2J vertical line in the fixed-J phase diagram at
T = 0.5J in the vicinity of the phase transition. The phase transition is indicated
by a dashed line.
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Figure 4.49: Entropy on vertical lines in the fixed-J phase diagram at T = 1J in
the vicinity of the phase transition. The phase transition is indicated by a dashed
lines.

i.e. section 5.2, where we study lines of constant particle number. As already seen,
the lines of constant particle number differ notably from vertical lines in the fixed-J
phase diagram. Thus, the behaviour of the entropy will be somewhat different from
the one observed here, but it will become more clear. If wanted, the entropy figures
in this section can then be understood by combining the arguments from section
5.2 and the particle number figures in this section. We will not further discuss this
in this thesis because the constant particle number case is more interesting, as it is
more realistic in the experiment.

4.3 Summary

I now want to summarize what we have seen in this chapter. After computing the
fixed-temperature phase diagrams, we have investigated the order parameter, the
particle number and the entropy on horizontal and vertical lines for both fixed J
and fixed U . In particular, we have investigated the influence of the corrections we
calculated.
The order parameter generally showed what can be expected from the phase dia-
grams. It is zero in the normal phase and non-analytically obtains a non-zero value
in the superfluid phase, as the particles start condensing into the ground state.
Fluctuations generally prevent the particles from condensing. This leads to the or-
der parameter getting decreased by the corrections and the phase boundary getting
shifted to higher values of J or smaller values of U by the corrections and higher
temperature.
On horizontal lines the particle number shows a very characteristic behaviour. For
small temperature it is approximately constant and integer in the normal phases and
continously changes between the respective integer values in the superfluid phases
in between. For higher temperature the slope in the normal phase increases. Fur-
thermore the regions where the particle number is approximately integer are not
generally divided by a superfluid region anymore, as thermal fluctuations prevent
the system from getting an order or the particles from condensing, despite the non-
integer particle number.

75



On the vertical lines for fixed U the particle number is approximately constant in the
normal phase and then either decreases (increases) in the superfluid phase, when the
phase transition occurs on the left (right) side of the lobe, because these transitions
are driven by extra holes (particles) getting added to the system. At the tip the
transition is driven by the particles simply overcoming the repulsive interactions and
they thus condense into a superfluid at approximately constant particle number.
On the vertical lines fixed J we only observed the particle number increasing on the
superfluid side of the transition. This is due to the different lobe shape in the phase
diagram, and will become more clear in section 5.2, where we will see the constant
particle number lines in the fixed-J phase diagram.
The quantum fluctuations mostly do not have a big influence on the particle num-
ber. They affect the number of condensed particles more than the total number of
particles. The most notable differences between mean-field and corrected results for
the particle number occur at the phase transition, where fluctuations are particu-
larly prominent.
The entropy on the horizontal lines is small in the regions where the particle number
is approximately integer and shows peaks where the particle number is non-integer.
We explained the behaviour in between the peaks with the relatively large energy
gap in case of integer particle number, which can only occasionally be overcome by
thermal excitation. The peaks could be explained by the different number of degen-
erate states that a non-integer amount of particles delocalizing over differently many
lattice sites, can realize for different particle numbers. The quantum fluctuations
generally increase the number of possible states and thus also the entropy.
On the vertical lines for fixed U the entropy in mean-field approximation is generally
constant in the normal phase and then falls to zero in the superfluid phase due to
the particles condensing into the ground state, where they do not contribute to the
entropy. The corrections change this behaviour in two different ways. For some
parameters the entropy shows a positive slope in the normal phase with a maximum
at the phase transition. For other parameters the entropy already has a negative
slope in the normal phase. In both cases however, the entropy then falls to zero in
the superfluid phase also when including the corrections. We have postponed the
physical discussion of these two behaviours to the next chapter.
On the vertical lines for fixed J we also observed different behaviours for different
parameter choices. The entropy generally increases with increasing U in the super-
fluid phase. For some parameters it then shows a maximum at the phase transition,
for other parameters it does not. For all parameter choices however the entropy
admits a plateau for large U . Also here we postponed the physical discussion to the
next chapter because the behaviour of the entropy on lines of fixed particle number
will become more clear. Furthermore, the constant particle number case is more
realistic and thus more interesting.
We, have however not always observed physical behaviour. In some regions of pa-
rameter space we have observed unphysical behaviour due to degeneracies. This can
manifest itself in plateaus of the order parameter, huge peaks in the particle number
or dips in the entropy. The problems occur in between the lobes and for large J⁄U
or small U⁄J . Further, they get worse for small temperature. We have expected
and explained these problems in section 3.3.
In the following chapter we will now investigate lines of constant particle number,
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which will make our results more realistic. Furthermore, as already mentioned, the
behaviour of the entropy will be more clear and will be physically discussed.
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Chapter 5

Lines of Fixed Particle Number

In the preceding chapter we have analyzed the order parameter, the particle number
and the entropy on different vertical and horizontal lines through the fixed-J as well
as the fixed-U phase diagram for different fixed temperatures. Through this, we have
now gained some intuition for the behaviour of these thermodynamic quantities in
different regions of the phase diagrams. We also saw the first consequences of the
corrections calculated. On the lines we either varied the chemical potential µ for
fixed J and fixed U or we fixed µ and varied J or U . In the experiment however the
chemical potential is not directly accessible. There it is more common to load some
number of particles into the optical lattice and then keep this particle number fixed.
To make predictions for those experiments we thus need not consider vertical or
horizontal lines in the phase diagram but rather lines on which the particle number
is constant, which we will do in this chapter. Note that, as in the previous chapter,
we will measure all extensive quantities per site.
In order to consider constant particle number lines we need to invert the function
n = n(J⁄U, T⁄U, µ⁄U), as in equation (4.3) or (4.6), to get a function µ⁄U =
µ⁄U(J⁄U, T⁄U, n) in the case when U is fixed, the fixed-J case is of course analogous.
Because we have seen that n(µ) increases monotonically for U, J and T fixed, where
we do not make the division by U explicit for brevity, we can implement a bisection
type algorithm to achieve this: first we choose a starting interval for µ which contains
the correct value, i.e. the value µ0 such that n(µ0) = n0, where n0 is the fixed particle
number of interest. In our case the interval [−0.1U, 1.1U ] was sufficient for this, i.e. it
always contained µ0. We then check if n(µmid) is greater or less than the wanted
n = n0, where µmid is the middle point of the µ interval. We then change either
the left or the right limit of the interval to be µmid such that the correct µ = µ0 is
still in the interval. We repeat this procedure iteratively until the interval is smaller
than some threshold, which we chose to be ∆µgoal = 0.05U . On this small interval
the function n(µ) is then approximately linear and can easily be interpolated. From
the interpolation we can then deduce the correct value of µ = µ0. To make sure
that our algorithm converges correctly we then always check that n(µ0) = n0. Due
to degeneracy effects this does not always have to be the case. In conclusion, this
algorithm gives us a function µ⁄U = µ⁄U(J⁄U, T⁄U, n), as desired.
As before we next analyze thermodynamic quantities but now on lines of constant
particle number. Note that we could now analyze the chemical potential as one
of these quantities but we will not do so, as it is not a quantity that is really of
interest. We will thus focus only on the order parameter and the entropy. For

79



CHAPTER 5. LINES OF FIXED PARTICLE NUMBER

the fixed particle numbers we chose n = 1, i.e. integer filling as well as n = 1.1
and n = 0.9, i.e. integer filling with some particles/holes added, and n = 1.3 and
n = 0.7. We are not able to deviate much more from integer filling as it will get the
lines closer and eventually into to the problematic regions in the phase diagrams,
i.e. our calculations would become less reliable. As in the previous chapter we will
investigate the cases for fixed U and fixed J separately.

5.1 Fixed On-Site Interaction Strength

As before we start with lines in the fixed-U phase diagram. Figures 5.1-5.3 show
the lines for fixed particle number in the three fixed-temperature phase diagrams.
Note that the n = 1 line for low temperature, i.e. in figure 5.1, stops at the phase
boundary. This is because, as we saw before, for low temperature the slope of the
n(µ) function is small in the lobe and at T = 0.01U the slope is actually too small
to properly invert the function as the slope is of the same order as the numerical
errors that we make. However, because the order parameter is zero in the normal
phase no matter where exactly in the lobe, we can still show it with axis limits not
limited to the phase boundary. Furthermore the entropy for T = 0.01U is of the
order of the machine precision on the n = 1 line, which is why we can not analyze it
at all and will leave it out. The fact that we have no unique n = 1 line in the lobe
for T = 0.01U hence does not really affect our following analysis.
In figure 5.1 you can further see, that for low temperature the non-integer particle

number lines run along the boundary of the lobe, running closer to it for n closer to
the corresponding integer, and only enter the normal phase for a small value of J . In
the case T = 0, they would not enter the Mott phase at all and land on the µ⁄U -axis
at integer values. The fact that there are now phase transitions at constant non-
integer particle number which did not exist for T = 0 shows that these transitions
are ordinary phase transition in contrast to being quantum phase transitions.
For higher temperature, as the phase boundary gets shifted to higher values of J
and the lobes deform, the non-integer particle number lines enter the normal phase
for higher values of J and then become approximately vertical. Thus, in the normal
phase, the vertical lines were a good approximation of constant particle lines. Fur-
ther, the distance between these vertical constant particle number lines gets smaller
for higher temperature. This simply reflects the fact that the plateaus of constant
integer particle number get smaller for higher temperature, which we have already
seen before.
The integer particle number line goes through the tip of the lobe. As already men-
tioned before, the phase transition occurring here is genuinely different from the
transition occurring at any other point of the phase boundary, which is also re-
flected in the respective critical exponents or their universality classes [33]. An
interesting thing to observe, is that the lines abruptly change their direction after
entering their respective normal phases. After this change these lines also become
approximately vertical, especially the mean-field lines. Through this abrupt change
at the respective phase boundaries, there is a discrepancy between the constant in-
teger particle number lines in mean-field approximation and the corrected ones, in
between the two phase boundaries. In the normal phase however, the two lines then
again converge towards each other.
In the superfluid phase, the integer particle number lines in mean-field approxima-
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Figure 5.1: Fixed particle number lines in the fixed-U phase diagram for T = 0.01U .
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Figure 5.2: Fixed particle number lines in the fixed-U phase diagram for T = 0.05U .
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Figure 5.3: Fixed particle number lines in the fixed-U phase diagram for T = 0.1U .
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Figure 5.4: Fixed n = 0.5 and n = 1.5 lines in the fixed-U phase diagram for
T = 0.01U .

tion and the ones with the corrections do not really differ. The non-integer particle
lines on the other hand show some discrepancy in the superfluid phase but are es-
sentially the same in the normal phase. The largest discrepancy can be seen for the
n = 0.7 lines for T = 0.01U and T = 0.05U in the deep superfluid phase, see figures
5.1 and 5.2. This might be due to degeneracies, which is plausible as it occurs for
large J , small T and µ⁄U close to an integer value.
Another observation to make here is that for large J , i.e. in the deep superfluid
phase, the different constant particle number lines look like they would asymptoti-
cally run towards parallel linear lines. These have a negative slope in the µ⁄U–J⁄U
diagram, i.e. for larger J it needs a lower chemical potential µ for the system to
have the same number of particles.
Figure 5.4 shows the lines of constant particle number n = 0.5 and n = 1.5 in the
T = 0.01U phase diagram. As we already expected these lines start exactly between
the lobes on the µ⁄U -axis and stay in the problematic zone of the phase diagram.
The fact that the corrected lines differ substantially from the respective mean-field
lines is also a sign that the degeneracy problems are particularly severe on these
lines. This figure thus justifies that we restrict our following discussion to constant
particle number lines with n closer to an integer value.
We will now study both the order parameter and the entropy on these lines. In
the following we will distinguish between non-integer and integer particle number
lines, i.e. we will investigate the four non-integer particle number lines for all tem-
peratures and then look at the three respective integer particle number lines for the
three different temperatures afterwards. We will do this in this way because the
system is qualitatively different for integer and non-integer filling. As before we will
now start our analysis with the order parameter.

Figures 5.5-5.7 show an overview of our results for the order parameter on the
non-integer particle number lines and figure 5.8 shows them on the integer particle
number ones. As before we see the typical behaviour of an order parameter at a
second-order phase transition. Also, as before, the corrections generally make the
order parameter smaller and delay the transition to larger values of J . Furthermore
we again observe the plateaus and other unphysical behaviours, which are probably
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Figure 5.5: Order parameter on constant non-integer particle number lines in the
fixed-U phase diagram for T = 0.01U .
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Figure 5.6: Order parameter on constant non-integer particle number lines in the
fixed-U phase diagram for T = 0.05U .
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Figure 5.7: Order parameter on constant non-integer particle number lines in the
fixed-U phase diagram for T = 0.1U .
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due to degeneracy effects. We can make all of these observations both in the non-
integer as well as in the integer particle number figures.
Another obvious mistake we can observe are the peaks in the corrected results for
low J in figure 5.5. We already encountered this behaviour in section 4.1 and ar-
gued that this is due to numerical mistakes stemming from the fact that Φ(ψ) is
approximately constant for small J . In the previous figures we simply adjusted the
limits, i.e. started with a larger value of J to circumvent these problems. In figure
5.5 although, as the phase transition occurs for a particularly small value of J , we
also included this unphysical region. In the other figures we again adjusted the lower
limit in order to exclude the regions where this occurs.

As before we next analyze the entropy. Figures 5.9-5.11 show an overview of our
results for non-integer particle number. Figure 5.12 shows our results for integer
particle number. We can see the same two behaviours as in section 4.1 on the ver-
tical lines, although now it is clear that the entropy decreases in the normal phase
for non-integer particle number and increases for integer particle number. We will
now physically discuss the two cases starting with the former.
First, observe that the entropy in the normal phase is of the same order of magni-
tude for the two corresponding constant particle number lines i.e. for n = 0.7 and
n = 1.3 as well as for n = 0.9 and n = 1.1, for all temperatures, where it is larger
on the lines where the particle number deviates more from an integer value. They
are of the same order of magnitude because it does not make a big difference for the
number of possible states whether there are additional holes or particles added to an
integer filling. Further the orders of magnitude of the two pairs of lines differ due to
the fact that for more deviation from integer filling there are more states possible.
For example two particles added to an integer filling can realize more states than
one particle added to an integer filling can. The fact that this order of magnitude
of the entropy changes only slightly with the temperature, reflects the fact that
thermal activation does not really enable any new states. This makes sense because
there is a large degeneracy for the non-integer particle states, as the particles can be
distributed differently over the lattice sites. Due to this the entropy mostly comes
from these degenerate states and the impact of thermal activation is not that large.
In the superfluid phase the entropy is generally larger when including the correc-
tions, which is probably, at least partly, due to the fact that the transition and with
this the strong decrease in entropy, occurs for higher J . For large J the difference
between mean-field and corrected results decreases, although for T = 0.1U , n = 1.3,
i.e. in figure 5.11, you can still observe a notable difference between the two. At the
same temperature for n = 0.7 you can see that the corrected results actually cross
the mean-field ones and tend to zero more rapidly. This is unphysical and probably
again due to degeneracy effects as it occurs for rather big deviation from an integer
particle number and large J .
We now turn to the negative slope in the normal phase. For higher temperature, as
the J-interval where the system is in the normal phase increases, this slope becomes
less negative. Also less deviation from integer filling makes the slope less negative,
as can for example be seen in figure 5.11. We can understand the negative slope as
follows. On the n = 1.1 lines for example, there are some particles in the system
additionally to an integer filling. These will somewhat delocalize throughout the
lattice depending on the fraction J⁄U . For a higher J the amplitude of the particles
passing each other increases and with this also the “delocalization length”. Then
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Figure 5.9: Entropy on constant non-integer particle number lines in the fixed-U
phase diagram for T = 0.01U .
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Figure 5.10: Entropy on constant non-integer particle number lines in the fixed-U
phase diagram for T = 0.05U .
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Figure 5.11: Entropy on constant non-integer particle number lines in the fixed-U
phase diagram for T = 0.1U .
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Figure 5.13: Entropy on the constant n = 0.99 line in the fixed-U phase diagram
at T = 0.1U . The entropy shows the integer particle number behaviour also for
particle numbers close to an integer value.

also the number of possible states gets reduced. For example a particle spread out
over the entire lattice can be described by only one state, while a particle which is
fully localized on a lattice site can have NS states, one for each lattice site. This
thus explains the observed negative slope.
Without quantum fluctuations the particles would not be able to pass each other at
all, as they actually do not have enough energy to do so, until J reaches a critical
value. This explains that the effect can only be observed when including the correc-
tions, i.e. quantum fluctuations.

If the particle number gets closer to integer filling this delocalization effect de-
creases as the system approaches the integer filling state where the particles can
not delocalize at all for low J and T . Thus the slope in the normal phase is less
negative for particle numbers closer to an integer. When the particle number gets
close enough to an integer value we can actually observe the integer value behaviour
of the entropy, see figure 5.13. Thus, the positive slope can not only be observed in
the somewhat artificial limit an exact integer particle number per site, but also for
sufficiently small deviations from integer particle number.
For lower temperature, where the normal phase is shorter, this process of increasing
delocalization has to take place on a shorter J-interval, which gives rise to a more
negative slope.
Now, we will physically interpret the observed positive slope of the entropy in the
normal phase for integer particle number, see figure 5.12. For low temperature the
system is simply in the approximate Mott state. There is one particle on each site
and the particles can only rarely cross the excitation gap and hop out of this state
due to thermal activation. Because the integer filling state is not degenerate, this
results in the entropy being small as the only additional states, and with this the
only entropy, come these few additional states. For higher temperature the parti-
cles can more often hop out of the integer filling state due to thermal activation,
increasing the entropy.
When increasing J , the entropy now increases because, due to the higher energy gain
from hopping, the particles will hop out of the Mott-like state more often producing
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Figure 5.14: Entropy on the constant n = 1 line in the fixed-U phase diagram
for T = 0.25U . The maximum of the corrected entropy gets suppressed for high
temperature.

more entropy. The entropy increases for increasing J until a critical value is reached
where the particles gain enough energy though hopping so that they can simply all
hop out of the integer filling. Many of them will fully delocalize, i.e. condense into
the ground state, producing a superfluid state. Then the entropy will fall off, as only
the remaining excited particles still contribute to the entropy, like we already saw
before. The fact that this positive slope only occurs when including the corrections
indicates that the additional states that get available through increasing J are only
available due to quantum fluctuations.
Further you can see that for T = 0.05U in figure 5.12, there is a peak occurring
both in mean-field approximation and in the corrected results, in addition to the
maximum in the corrected results, which we discussed before. From the figure it
is clear that the phase transition actually occurs before the peak reaches its maxi-
mum. From this peak we can infer that for this temperature right after the phase
transition, i.e. for J slightly larger than needed for the particles to delocalize over
the full lattice, suddenly some additional states get available, before the particles
start condensing into the ground state, which is quite interesting.
Figure 5.14 shows the entropy for integer particle number and a higher temperature

than previously investigated. You can clearly see, that the maximum at the phase
transition gets suppressed by the temperature. This is because at a high tempera-
ture, the particles can often hop out of the Mott-like state and delocalize despite the
integer particle number. Thus the system qualitatively behaves like a non-integer
particle number system explaining the similar behaviour of the entropy.

5.2 Fixed Hopping Amplitude

After analyzing the fixed-U case we will now again turn to the fixed-J one. Figures
5.15-5.17 show the same constant particle number lines as before but in the fixed-J
phase diagram. As in the fixed-U case we can not invert n(µ) in the lobe for low
temperature, i.e. we can not find a unique n = 1 line. Thus, as before, the n = 1
line ends at the phase boundary for T = 0.1J . Further you can see that we do
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Figure 5.15: Fixed particle number lines in the fixed-J phase diagram for T = 0.1J .
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Figure 5.16: Fixed particle number lines in the fixed-J phase diagram for T = 0.5J .
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Figure 5.17: Fixed particle number lines in the fixed-J phase diagram for T = 1J .
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not show the corrected lines for low U which is due to the fact that we could not
invert n(µ) here because the errors due to degeneracies became too large. For the
same reason also the corrected n = 0.7 line in the T = 0.1J phase diagram ends at
U ≈ 11J . You can further spot, that the corrected n = 1 line in the T = 0.5J phase
diagram deviates from a straight line and crosses the mean-field one at U ≈ 13J ,
which is however probably just a numerical mistake.
We see that in contrast to the fixed-U case the non-integer particle number lines
never enter the normal phase for T = 0.1J . For T = 0.5J the n = 0.9 line then
enters the normal phase due to the lobe opening up but the n = 1.1 and n = 1.3
ones still only run along the boundary and never enter the normal phase in the in-
vestigated parameter regions. The n = 0.7 line is particularly interesting here as it
enters the normal phase only when including the corrections due to the qualitative
difference in the phase diagrams which we already noticed before.
Another thing to notice here, is that the lines in mean-field approximation and
when including the corrections do not differ too much but sometimes the respective
lines cross each other between the respective phase boundaries, see for example the
n = 0.9 lines for T = 0.5J . For low U you can see that the mean-field lines converge
towards one point which ends up to be µ ≈ −J for all investigated temperatures for
U = 0.
As before we will now analyze the order parameter and the entropy on these lines
starting with the former.

Figures 5.18-5.20 show an overview of our results for the order parameter on the
constant non-integer particle number lines and figure 5.21 shows them on the integer
particle number line. The main observations are the same as before. The corrected
order parameter is generally smaller than the one in mean-field approximation and
you can see that the quantum fluctuations shift the phase transition to smaller val-
ues of U , i.e. they destroy the long-range order for a lower value of U . Also we can
again observe unphysical plateaus in the superfluid phase.
Furthermore, we can see that the system never enters the normal phase on the lines
already mentioned above. The order parameter generally has a negative slope on
these lines in mean-field approximation, which makes sense as we expect the repul-
sive interaction to prevent particles from condensing. There are however lines where
the order parameter is approximately constant or even has a positive slope when
including the corrections which seems unphysical, see for example the n = 1.3 and
n = 0.7 lines in figure 5.18. As we generally observe this for the larger deviations
from integer filling and low temperature this could also be the effect of degeneracies.
The n = 0.7 and n = 0.9 lines for T = 1J enter the normal phase already for a very
small value of U . As explained above, we can not invert n(µ) for small values of U
due to degeneracies, which is why the phase transition in the corrected results in
figure 5.20 can only barely be seen for the n = 0.9 line and can not be seen at all
for the n = 0.7 line.

Now we again investigate the entropy. Figures 5.22 and 5.23 show the entropy
on the fixed non-integer particle number lines for the higher two temperatures. For
T = 0.1J the entropy was again simply too small, i.e. of order of the machine pre-
cision which is why we do not analyze it here.
For the lower temperature, T = 0.5J , the entropy shows two different behaviours.
First the entropy decreases with increasing U and then, for larger U , starts increas-
ing again. In the n = 1.1 and n = 1.3 figures the entropy then keeps this positive
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Figure 5.18: Order parameter on constant non-integer particle number lines in the
fixed-J phase diagram for T = 0.1J .
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Figure 5.19: Order parameter on constant non-integer particle number lines in the
fixed-J phase diagram for T = 0.5J .
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Figure 5.20: Order parameter on constant non-integer particle number lines in the
fixed-J phase diagram for T = 1J .
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Figure 5.21: Order parameter on the constant n = 1 particle number line in the
fixed-J phase diagram for different temperatures.
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Figure 5.22: Entropy on constant non-integer particle number lines in the fixed-J
phase diagram for T = 0.5J .
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Figure 5.23: Entropy on constant non-integer particle number lines in the fixed-J
phase diagram for T = 1J .
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Figure 5.24: Entropy in the vicinity of the phase transition on the n = 1.1 line in the
fixed-J phase diagram for T = 1J . The phase transitions are indicated by dashed
lines.

slope whereas in the other two figures, the entropy admits a plateau after a critical
value of U , at least when including the corrections. By comparison with the corre-
sponding order parameter figure 5.19 it is clear that the entropy admits a plateau
after undergoing a phase transition. The figures where the entropy generally shows a
positive slope for large U are those where the system never enters the normal phase.
This is also the reason why the entropy in mean-field approximation also does not
show a plateau for n = 0.7, whereas the corrected entropy does.
For the higher temperature, T = 1J , the entropy shows a somewhat different be-
haviour. For small U the entropy also decreases, it then however does not increase
again but it undergoes a phase transition and keeps decreasing after. For large U the
entropy then again reaches a non-zero plateau. One exception to this is the n = 1.3
line, where the corrected results increase slightly prior to the phase transition and
the mean-field results keep increasing also for large U , which is consistent with the
observations from the T = 0.5J figure as the mean-field line never enters the normal
phase.
The effect of the quantum fluctuations is to increase the entropy in the superfluid

phase as they prevent the particles from condensing, and to decrease it in the normal
phase where they allow the particles to delocalize more reducing the entropy. This
can also be seen in figure 5.24, which gives a close-up view of the entropy in the
vicinity of the phase transition for n = 1.1 and T = 1J .
There are two different effects dictating the behaviour of the entropy. First note
that as U is the interaction strength, we would expect the excitation gap to increase
with increasing U . We have also exemplarily seen this for the excitation gap of
the Mott state in section 2.4. An increase in the excitation gap will then lead to a
decrease in the entropy, as there will be less particles able to cross the gap and thus
less states possible.
Increasing U has another effect on the entropy. A large repulsive interaction strength
of the particles, prevents them from condensing. Thus increasing the interaction
strength U reduces the condensate fraction, as we already saw in our analysis of
the order parameter. These additional particles that are not in the ground state
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anymore, can then again contribute to the entropy, which leads to an increase in the
entropy. We will now explain the behaviour of the entropy for non-integer particle
number, starting with T = 0.5J , using these two competing effects.
For small values of U the system is superfluid and many particles are condensed into
the ground state. The entropy comes only from the excited particles. Increasing U
now decreases the number of particles in the excited states as well as the number
of particles in the condensate, as we just argued. It is clear from figure 5.22 that
the former effect dominates for small U leading to a decrease in the entropy. After
some point the entropy then starts increasing due to the latter effect. For n = 1.3
you can see a positive slope in the corrected results already for small U . As this
does not happen in mean-field approximation and can not be explained with the
argument from above we conclude that this is unphysical and due to degeneracy
effects. Further, on the same line, you can spot a small peak at U ≈ 7J , which is
probably a numerical mistake.
The increase of the energy gap does not have any impact anymore at some point.
This is because if effectively no particles can cross it anymore due to thermal acti-
vation it of course does not change anything if the gap increases even more. Thus,
on the lines that do not enter the normal phase, the entropy simply keeps slightly
increasing for higher U , due to the particles slowly being prevented from condens-
ing. It is clear from the order parameter figure 5.19 that the number of condensed
particles decreases only slightly explaining the small positive slope in the entropy.
On the lines that enter the normal phase the ground state is not macroscopically
occupied anymore. Thus also the second effect mentioned does not have an influ-
ence anymore and with the argument from above now both effects do net contribute
and thus the entropy does not change with increasing U anymore, explaining the
plateau. This plateau is non-zero because, as we argued in the previous section,
there are many degenerate many-particle ground states possible for non-integer par-
ticle number in the normal phase.
For T = 1J , i.e. in figure 5.23, the argumentation is similar to before. For small
increasing U the entropy decreases, due to the first effect mentioned. Because the
phase transition already occurs for small values of U we can not observe the second
effect as there is no condensate anymore before the second effect would dominate
the first one. An exception to this is n = 1.3 where you can notice a small increases
in the corrected entropy before the phase transition is reached. In the mean-field
results you can clearly see the second effect as this line never enters the normal phase
in the investigated limits. On the other lines you can again observe a plateau after
the energy gap becomes too large and also has no effect on the entropy anymore.
Figure 5.25 shows the entropy for integer particle number. Also here the entropy

decreases in the superfluid phase, undergoes a phase transition, and then keeps de-
creasing. After the phase transition, the entropy falls to zero for large U . As before
the quantum fluctuations, i.e. the corrections, increase the entropy in the superfluid
phase. In contrast to the non-integer particle number figures however the quantum
fluctuations also increase the entropy in the normal phase, especially for T = 0.5J .
This can simply be explained by the quantum fluctuations allowing the particles to
hop out of the Mott-like state more often, giving rise to more possible states.
The behaviour of the entropy for integer particle number can be explained with the
same two arguments as before. As in the non-integer particle number case, at low
U , the entropy starts at some value determined by the excited states occupied by
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Figure 5.25: Entropy on the constant n = 1 line in the fixed-J phase diagram for
different temperatures.
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Figure 5.26: Entropy on the constant n = 1 line in the fixed-J phase diagram for
different temperatures with phase transitions indicated by dashed lines.

the particles that are not condensed, and the decreases due to an increasing energy
gap. The second effect can again not be observed as the system undergoes a phase
transition before the second effect starts dominating over the first one. After the
phase transition the system is then in the approximate Mott states with the only
entropy coming from thermal excitations allowing particles to cross the energy gap.
As the gap increases the entropy thus falls to zero because the integer filling state
is non-degenerate.
Figure 5.26 again shows the entropy on the integer particle number lines but with

focus on the phase transition. Here you can very well see that the corrections in-
crease the entropy also in the normal phase for T = 0.5J , but for T = 1J it is still
hard to distinguish the mean-field and the corrected results.
One might be concerned that we saw in the previous section that the entropy de-
creases when increasing J⁄U starting from the phase transition and here we now see
that it increases with decreasing U⁄J , i.e. with increasing J⁄U , which seems like a
contradiction. These different observations do not contradict each other however, as
the former figures were generated with T⁄U fixed and the ones in this section with
T⁄J fixed. We exemplarily show how to solve apparent contradictions like this by
investigating the entropy in the deep superfluid phase, i.e. for large J⁄U or small
U⁄J .
In the previous section we saw that the entropy falls to zero for large J as the par-
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ticles mostly condense into the ground state. In this section however the entropy
has a large value for small U and then falls off. Also here the entropy only comes
from the excited particles, there are however a lot more than in the fixed U case.
To understand this we need to translate the temperature. Because the number of
excited particles through thermal activation is determined by the relation of the
temperature and the excitation gap it is more natural to view T⁄U as the “real”
temperature and translate T⁄J . We get

T

U
=
T

J

1

U/J
. (5.1)

Thus for small U⁄J and fixed T⁄J , T⁄U is large. There are thus many different
excited states possible, leading to a large entropy despite many particles being con-
densed into the ground state. All other seemingly contradictory observations you
might occur can be explained in a similar way.

5.3 Summary

In this chapter we investigated lines of constant particle number in the fixed-
temperature phase diagrams both for fixed J and fixed U . Besides the order pa-
rameter, which showed no new behaviour, we analyzed the entropy and physically
interpreted it as promised in the previous chapter.
For fixed U we saw two qualitatively different behaviours. For non-integer particle
number the entropy started decreasing from some initial value in the normal phase,
due to an increasing “delocalization length”. For some critical value of J the par-
ticles could then simply overcome the repulsion and delocalize completely resulting
in the entropy decreasing to zero quickly.
On the integer particle number lines however we observed positive slope in the nor-
mal phase and a maximum at the phase transition when including the corrections.
This was due to the fact that for increasing J the particles can more often hop out
of the Mott-like state, increasing the entropy, until a critical value of J is reached
and may particles condense into the ground state which decreases the entropy as
already stated above.
On the same line for T = 0.05U we observed an additional peak which also occurred
in mean-field approximation. This peak only formed after the phase transition in
the superfluid phase. We can infer from this peak that right after the phase tran-
sition, suddenly some new states get available before the particles all condense into
the ground state.
In the fixed-J case we found two different effects dictating the behaviour of the en-
tropy. The first one is concerned with the energy gap. We argued that for increasing
U , the energy gap increases, allowing for less excited states leading to a decrease
in entropy. On the other hand, increasing U reduces the number of particles con-
densed into the ground state, which can then contribute to the entropy, leading to
an increase in the entropy.
For small values of U the first effect dominated, decreasing the entropy. Then at
some point when the energy gap is too big in order for the particles to cross it at
all, a further increase does not change anything anymore so that this effect does
not contribute anymore. After the phase transition, in the normal phase, also the
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second effect does not contribute as there is no condensate anymore.
This leads to different behaviours for lines that enter the normal phase for different
values of U . On those that enter is very quickly we never observe the second effect
and on those that never enter it we observe only the second effect for large U .
In the normal phase for U large enough so that both effect do not contribute any-
more the entropy becomes constant. The constant is non-zero for non-integer par-
ticle number as there are many degenerate ground states available. If the particle
number is integer this constant is zero as there is only one non-degenerate ground
state, the Mott state.
I want to stress that we used quite different arguments in the fixed-U and the fixed-
J case to explain seemingly contrary behaviours. We argued that these different
behaviours actually do not contradict each other as we have to keep in mind to
transform the temperature from one case to the other. Physically speaking it makes
a qualitative difference if the interaction of the particles is fixed and the tunneling
strength changes, controlling the delocalization of the particles or if the tunneling
strength is fixed and the interaction strength changes, changing the excitation gap.
In the following chapter we will now use our won understanding of the entropy on
constant particle number lines to discuss the temperature for constant entropy and
constant particle number.





Chapter 6

Temperature for Fixed Particle
Number and Entropy

In the previous chapter we took a step closer to the experiment by considering lines
of fixed particle number instead of fixed chemical potential. Now that we have gained
some understanding of the thermodynamics on these constant particle number lines
we want to address a question mentioned in the introduction. We want to be able
to predict the temperature of a Bose gas after adiabatically turning on an optical
lattice. In section 6.1 we will, as in the previous sections, fix either J or U and
vary the other for fixed particle number and entropy, which already allows us to
gain a qualitative understanding of the temperature for varying lattice depth. In
the second section 6.2 we will make the discussion more quantitative, by considering
a three-dimensional simple cubic lattice structure, which allows us to directly study
the temperature as a function of the lattice depth. With this we are then able
to predict the temperature of a Bose gas after an adiabatic ramp up of an optical
lattice.

6.1 Fixed Hopping Amplitude or On-Site Inter-

action Strength

In order to consider adiabatic processes we need to be able to fix the entropy. For
now, we will keep U fixed. Then, we need to invert the function S = S(J⁄U, T⁄U, n)
to get a function T⁄U = T⁄U(J⁄U, S, n). Beforehand let us first take a look at the
function we want to invert, i.e. S(T⁄U) for all other arguments fixed. On the one
hand we need to check that S(T⁄U) is monotonically increasing so that we can make
use of the same algorithm we used in the previous chapter. On the other hand, there
is quantum Monte Carlo data available for this function so that we can compare our
calculation with exact results [27].
Figures 6.1 and 6.2 show the entropy as a function of temperature for J fixed for

integer filling n = 1 and U = 6.667Jz or U = 4.329Jz, respectively. Because in the
paper from which the figures we are comparing with, are taken, there is no factor of
z absorbed into J , we have also made it explicit in our results.
Indeed the entropy increases monotonically with the temperature. For small temper-
ature the entropy is zero because the system is in the ground state, i.e. all particles
are condensed in the superfluid phase, or the system is in the Mott state in the nor-
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Figure 6.1: Entropy for varying temperature with n = 1, U = 6.667Jz, d = 3,
corresponding to the superfluid phase. Left side: Our calculation. Right side: QMC
calculation, image taken from Ref. [27], with the notation t = J . In both figures
the factor of z is made explicit, i.e. not absorbed into J .
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Figure 6.2: Entropy for varying temperature with n = 1, U = 4.329Jz, d = 3 corre-
sponding to the normal phase in the QMC simulations. Left side: Our calculation.
Right side: QMC calculation, image taken from Ref. [27], with the notation t = J .
In both figures the factor of z is made explicit, i.e. not absorbed into J .
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mal phase. After the temperature gets larger than some critical value the entropy
starts increasing, i.e. the particles get out of the condensate or the Mott state due
to thermal activation.
In figure 6.1 the corrected and the mean-field results are essentially the same. Fur-
ther they agree well with the QMC results. In figure 6.2 however, there is some
discrepancy between corrected and mean-field results and also a qualitative differ-
ence to the QMC data. Our calculations, both the mean-field and the corrected ones
predict a phase transition. The QMC data however predict the particles to stay in
the normal phase. This discrepancy is consistent with the observation we made in
chapter 4. There we saw that the correct (QMC) phase boundary is at a larger value
of J⁄U than our calculations predict. As the value of U⁄J for which the entropy is
shown in the figure is close to the correct phase boundary, which is also stated in
the paper from which the figure is taken, it is already in the superfluid phase for
some higher temperature in our calculation. Besides this qualitative difference and
the non-analyticity connected to the phase transition, our results again agree pretty
well with the QMC ones.
We have exemplarily seen that the entropy is indeed monotonically increasing with
temperature, which is also to be expected from physical reasoning. We can thus
use the same bisection type algorithm as described at the beginning of chapter 5
to invert S(T ). For the starting interval of the temperature, we most oftenly chose
[0.001U, 0.3011U ] but also sometimes varied the interval, in particular for high en-
tropies, where we have to expect high temperatures. For the goal threshold we
mostly used ∆Tgoal = 0.002U but also here we sometimes varied the value.
Note however that our algorithm did not always converge. This is partly due to
degeneracy problems but partly also simply due to numerical mistakes. In the fol-
lowing, we will use the same axis limits for all figures, so that it gets clear where
the algorithm does not converge as there are then no data points. Interesting points
like phase a transition are always shown however.
Note that because we are fixing n and S, which are both dimensionless, lines with
fixed U and lines with fixed J carry the same information, i.e. we can relate the the
temperature for fixed U to a corresponding temperature function with fixed J :

T

J

(
U

J

)
=
T

U

(
1

/
U

J

)
U

J
. (6.1)

This is in contrast to before, where we for example kept T and n fixed. Because the
temperature has dimensions of energy, it will change when translating from one case
to the other, and so the two cases contain different information. Because this is not
the case here, we will mostly restrict our discussion to to the fixed J case. However,
although both lines contain the same information, the temperature will still show
different behaviour, so sometimes we will also show figures for fixed J in order to
show how different aspects of the fixed-U figures translate over. The fixed-J figures
are simply generated from the fixed-U data using the translation given in equation
(6.1).
In the following we will look at four different entropies S ∈ {0.01, 0.1, 0.3, 0.6} at
the same particle numbers as in the previous chapter: n ∈ {0.7, 0.9, 1.0, 1.1, 1.3}.
Note that the two entropies S = 0.3 and S = 0.6 are approximately equal but
slightly smaller than the values of entropy on the plateaus it shows in mean-field ap-
proximation in the normal phase for n = 0.9, 1.1 and n = 0.7, 1.3, respectively, see
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figures 5.9-5.11. Additionally we chose one entropy value which is slightly smaller
and one which is an order of magnitude smaller.
In the previous chapter we have investigated the entropy depending on J⁄U for
different fixed particle numbers and temperatures. From our observations there, we
can already argue how the temperature should qualitatively behave as a function of
J⁄U for fixed particle number and entropy. To this end let us quickly recapitulate
the key observations concerning the entropy in the fixed-U case.
For non-integer particle number the corrected entropy shows a negative slope for
increasing J in the normal phase, until a critical value of J is reached where the
system undergoes a phase transition to a superfluid. In the superfluid phase the
entropy then falls even quicker to zero. The key difference in the mean-field results
is that there the entropy is constant in the normal phase and only obtains a negative
slope in the superfluid phase.
On the integer particle number lines, the corrected entropy shows a positive slope in
the normal phase with a maximum at the phase transition. After that the entropy
again falls off in the superfluid phase. The entropy in mean-field approximation does
not show this positive slope, however for a specific temperature it shows a peak at
the phase transition. This also occurs in the corrected results in addition to the
maximum due to the positive slope.
With these observations in mind we can now try to qualitatively predict the be-
haviour of the temperature for fixed entropy. Let us first investigate the case of
non-integer particle number. As the entropy starts at some rather large value for
J = 0, we would expect that we need a small temperature to compensate that for
small fixed entropies. For increasing J we then recalled, that the corrected entropy
falls off for fixed temperature. We would thus expect the temperature to increase in
order to keep the entropy constant. The entropy in mean-field approximation how-
ever is approximately constant throughout the normal phase. We could thus expect
that the temperature also stays constant. This is not that clear however because
the constant value of the entropy in the normal phase does not really change much
with changing the temperature. Thus it is not that easy to estimate the behaviour
of the mean-field entropy.
After going through the phase transition it is then clear however that the temper-
ature both in mean-field approximation and when including the corrections, has to
increase in order to keep the entropy constant, as it falls quickly to zero in the su-
perfluid phase.
On the integer particle number lines we would expect a somewhat different behaviour
than for non-integer particle number. In this case the entropy is generally smaller,
thus the temperature for small J does need to be as small as for the non-integer
particle number case. Further the entropy then starts increasing in the corrected
results so that we expect a decrease in temperature. In the mean-field results we
however have the same problem as before, that the entropy does not change much
with changing J or T .
After the phase transition we then, as before, expect the temperature to increase
again, as the entropy decreases quickly. Because of this we can expect the temper-
ature to show a minimum at the phase transition when including the corrections.
In the mean-field results it is not that clear if we can expect a minimum. Recall
that we also observed a peak in the mean-field entropy for a particular temperature.
However, as this peak is clearly temperature sensitive, we can not a priori expect a
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Figure 6.3: Temperature for varying hopping amplitude for S = 0.01kB and different
non-integer particle numbers with U fixed.

dip in the temperature due to it.
We have now estimated the behaviour of the entropy in the two phases. You have
to keep in mind however, that the phase boundary moves to higher values of J for
increasing temperature. Thus it is not that clear in which phase the system starts
for low J because although J is small we also argued the temperature to be small,
at least for small entropy, and we have previously seen that the non-integer particle
number lines cross the phase boundary for small values of J at low temperature,
see figures 5.1-5.3. Besides the fact that we can not directly say in which phase the
system starts, we can further not say if a phase transition will occur when increasing
J , because, although J is increasing, we argued that also the temperature increases,
leading to the phase boundary also moving to higher J . Because we can not say
which of the two effects is stronger we can not generally expect a phase transition
to occur.
We now take a look at the numerical results for the temperature and compare them
to our expectations. Note that, because we expect the temperature to increase for
increasing J we might be able to investigate higher values of J . This is because we
have observed in the previous chapter, that although the problems of our calculation
due to degeneracies get worse for larger J , they also get better for higher T . Thus,
we will take our axis limits such that higher values of J will be investigated. We
need to be careful with our results however as we can not be sure, which of the two
effects mentioned is stronger.
As before we will first investigate the non-integer particle number case. Figure 6.3

shows the temperature for non-integer particle number and a low entropy S = 0.01.
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Figure 6.4: Temperature for varying hopping amplitude for S = 0.1kB and different
non-integer particle numbers with U fixed.

Indeed, as expected, the temperature starts at a small value for small J and then
increases. By also computing the order parameter it turns out that the system is
in the superfluid phase for all investigated J , i.e. the increase in temperature is not
sufficient to overcome the condensation through the increase in J .
The corrections generally lower the entropy, which is consistent with our observa-
tion, that the corrections increase the entropy in the superfluid phase. You can
however observe two exceptions to this. For n = 0.9, the slope of the corrected
temperature starts increasing for J ≈ 0.3U , which leads to the corrected tempera-
ture being larger than the one in mean-field approximation. This might very well
be due to degeneracy effects as it occurs for high J and is qualitatively different
from the other figures. The second exception can be observed for n = 0.7. Here
the temperature jumps non-analytically for J ≈ 0.2U . Because the system is gen-
erally in the superfluid phase and there is thus no phase transition occurring, the
jump in the temperature is probably due to the degeneracies. This is plausible as
the temperature where this occurs is rather low and further, we have previously
seen that the degeneracy problems on the non-integer particle number lines occur
already for smaller J , in particular for larger deviation for n = 1. Generally we can
see that the differences between the corrected temperature and the temperature in
mean-field approximation increase for higher J . This might also indicate that for
this low entropy the temperature increase is too small to make it possible to go to
higher values of J .
Figure 6.4 shows the temperature for the same non-integer particle numbers for a

higher entropy, S = 0.1. The general behaviour looks similar to the previously in-
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Figure 6.5: Temperature for varying on-site interaction strength for S = 0.1kB and
n = 1.1 with J fixed.

vestigated entropy, S = 0.01. Here however, the temperatures are generally slightly
larger, which had to be expected for higher entropy. As in the previous figure the
system is generally superfluid, so the temperature increase again not enough to over-
compensate the increase in J and prevent the particles from condensing.
The differences between the corrected and the mean-field results are smaller than
for the previously investigated entropy. Furthermore, they do not really increase for
higher J on the n = 0.9 and n = 1.1 lines. This might be an indicator that here even
the results for high J are actually physical because the temperature increase allows
our calculation to work even here, as we hoped at the beginning of the chapter.
On the n = 0.7 line however, the corrections again start deviating more from the
mean-field results for large J , which might be due to degeneracies. This is consistent
because it only happens for larger deviation from n = 1.
Figure 6.5 shows how this typical increase in temperature translates to the fixed-J

case. Here, the temperature first increases with increasing U , then shows a maxi-
mum and then also decreases like in the fixed-J case. This is as could be expected
from the fixed-J entropy figures that never enter the normal phase, see for example
the n = 1.1 plot in figure 5.22. There the entropy first decreases with increasing U ,
so we expect a temperature increase. For larger U the entropy then increases with
increasing U so we expect a decrease in temperature. These two behaviours then of
course lead to a maximum in between, which is exactly what we observe.
Figure 6.6 shows an even higher entropy, S = 0.3. Note that this is slightly smaller

than the entropy of the plateaus on the n = 0.9 and n = 1.1 lines, we observed in
section 5.1. Also here the temperature increases with increasing J , as expected. A
key difference to before can be seen in the n = 0.9 and the n = 1.1 figures. Here,
there is a non-analyticity in the corrected temperature for J ≈ 0.2U and J ≈ 0.15U
respectively. Computing the order parameter yields that there is a phase transi-
tion from the normal to the superfluid phase occurring there for increasing J . The
mean-field results on all lines and the corrected results on the n = 0.7 and n = 1.3
lines however again predict the system to always be in the superfluid phase.
You might be concerned, that the temperature on the n = 0.9 and n = 1.1 lines
tends to zero for small J although we have chosen the entropy approximately equal
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Figure 6.6: Temperature for varying hopping amplitude for S = 0.3kB and different
non-integer particle numbers with U fixed. Phase transitions are indicated by dashed
lines.
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Figure 6.7: Temperature for varying on-site interaction strength for S = 0.3kB and
n = 1.1 with J fixed. Phase transitions are indicated by dashed lines.

to the value on the plateaus. However the entropy on the plateaus was slightly
bigger and because this value does not change much with the temperature, still a
small temperature is needed to compensate this slight entropy difference. In the
next figure however, where we investigate S = 0.6, we can then expect that the
n = 0.9 and n = 1.1 lines have a larger temperature for small J because the entropy
is then notably larger than the entropy value on the observed plateaus.

Figure 6.7 shows the implication of phase transition for the temperature in the
fixed-J case. It is clear that the non-analyticity in the corrected temperature for
fixed U leads to a non analytic minimum of the temperature for fixed J . After
the phase transition, we have observed in section 5.2, that the entropy decreases
further and eventually reaches a constant value. This is consistent with the temper-
ature further increasing after the phase transition and then showing an approximate
plateau. However, you can spot a slight negative slope, which could be connected to
the entropy also not being perfectly constant. Because the mean-field results do not
predict a phase transition they show the same behaviour as in the previous fixed-J
figure.
Figure 6.8 shows the temperature for S = 0.6, which is approximately the entropy

of the plateaus on the n = 0.7 and n = 1.3 lines, that we observed in section 5.1.
Indeed, as expected, the temperature on the n = 0.9 and n = 1.1 lines is now
rather large already for small values of J . Furthermore it then shows a different
behaviour to before. The mean-field results are approximately constant, and the
corrected results only show a small positive slope. After some critical value of J⁄U
the temperature then non-analytically starts increasing with a larger slope, like in
the previous figures. A computation of the order parameter yields that this point,
where the derivative of the temperature jumps, is again connected to a phase tran-
sition from normal to superfluid, both in the corrected and the mean-field results.
On the n = 0.7 and n = 1.3 lines the behaviour is similar to the behaviour for
the lower entropies. In particular the temperature is again small for small J , due
to the entropy being slightly smaller than the entropy on the plateaus for n = 0.7
and n = 1.3, as argued for S = 0.3. The differences between the mean-field and
corrected results for small J are however larger than before. These differences are
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Figure 6.8: Temperature for varying hopping amplitude for S = 0.6kB and different
non-integer particle numbers with U fixed. Phase transitions are indicated by dashed
lines.
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Figure 6.9: Temperature for n = 1 and different entropies with U fixed. Phase
transitions are indicated by dashed lines.

connected to the corrected results having a negative curvature and the mean-field
results having a positive curvature. For some critical value of J the corrected results
then change in a non-analytic way after which they are approximately parallel to
the mean-field results, but smaller. Again there is a phase transition from normal
to superfluid occurring here. In contrast to the n = 0.9 and n = 1.1 lines, this
transition however only occurs in the corrected results here.

Figure 6.9 shows the temperature for integer particle number and for the same
entropies as before. The entropy in mean field-approximation is approximately con-
stant for small J and then obtains a positive slope after some critical point where it
changes non-analytically. The corrected results show a negative slope for J smaller
than the critical point, which gives rise to a minimum at the phase transition. We
have expected this behaviour at the beginning of this chapter. Further, it is clearly
visible that the temperature generally increases with increasing entropy.
In the normal phase the quantitative difference between the mean-field and cor-
rected results is rather small, due to the slope of the corrected results being only
slightly non-zero. In the superfluid phase the two results show the same qualitative
behaviour as temperature has approximately the same slope in mean-field approxi-
mation and when including the corrections. The corrected temperature is however
smaller, as also seen in the previous figures.
Figure 6.10 again shows the temperature for integer particle number but only for

the three lower entropies, where the temperature shows a minimum, and with focus
on the phase transition. In these figures the minimum can be seen more clearly.
Further it is clear that the minimum disappears for larger entropy and thus larger
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Figure 6.10: Temperature for n = 1 and different entropies with focus on the mini-
mum at the phase transition and U fixed.
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Figure 6.11: Temperature for S = 0.1kB and n = 1.0 for fixed J .

temperature, which is consistent with the entropy peak, which gives rise to the tem-
perature minimum, disappearing for larger temperature, as we saw in section 5.1.
For S = 0.01 you can see a dip at the phase transition, which is visible both in
mean-field approximation and the corrected results. Because this happens at a low
temperature, this is probably connected to the peak in the entropy which we ob-
served for T = 0.05U in figure 5.12. This peak was also visible both in mean-field
approximation and the corrected results additionally to the positive slope of the cor-
rected entropy which gives rise to the negative slope of the corrected temperature
here.

Figure 6.11 shows the integer particle number behaviour of the temperature for
fixed J , here for S = 0.1. Again this can be explained by the corresponding entropy
figure 5.25. There, we saw that the entropy decreases in the superfluid phase and
then, changes its slope but keeps decreasing in the normal phase. This implies for
the temperature to generally increase, but change the slope at the phase transition,
which is what we observe here.
Now that we have investigated the temperature for varying J or U , we can get a
qualitative understanding of the temperature for varying lattice depth. When the

112



6.2. VARYING THE LATTICE DEPTH

lattice depth increases we would expect, that J decreases because the Wannier func-
tions should decay more rapidly. This will then result in more on-site overlap so that
U should increase with increasing lattice depth. We have also exemplarily seen this
in section 2.3, see figure 2.1. Thus when increasing the lattice depth the temperature
should decrease. For integer particle number we further expect the temperature to
increase again after undergoing a phase transition from the superfluid to the normal
phase. In the following section we will investigate this more thoroughly.

6.2 Varying the Lattice Depth

Up to now we have analyzed T⁄U for varying J⁄U , or T⁄J for varying U⁄J while
keeping S and n fixed. This can be understood as also keeping U or J fixed while
varying the other one and measuring all energies in units of the fixed parameter. This
does not yet fit the experiment however, because changing the lattice depth changes
both J and U so the idea of one of them being fixed is not realistic. Alternatively
you could argue, that when both J and U change both T⁄U and T⁄J are not a good
measure for the “real” temperature because the scale we are using, is changing.
So, in order to investigate the temperature depending on the lattice depth V0 we
need to find the dependence of J⁄U on V0 and then use some other energy to set
the scale. We will use the recoil energy ER = k2

L⁄2m for this, where kL = 2π⁄λL is
the wave vector of the lasers generating the optical lattice, λL is the corresponding
wavelength and m is the mass of the particles.
The first step is to find the dependence of J and U on the lattice depth. To calculate
these parameters we need to solve the eigenvalue problem of the single-particle
Hamiltonian, so we need to choose a concrete lattice potential. For simplicity and
because it is very well a realistic choice we will choose a simple cosine potential:

V (x) =
V0

2

d∑
i=1

cos(2kLxi), (6.2)

where d is the dimensionality of the lattice. For the sake of generality the following
discussion will be for arbitrary dimension but for the concrete computations and the
generated figures we will restrict to d = 3.
In appendix A it is shown how to calculate the eigenenergies and eigenfunctions of
the Hamiltonian for this specific lattice potential. There, the computation is done in
terms of dimensionless variables, i.e. we have calculated the dimensionless dispersion
E(k)⁄ER and the dimensionless wavefunction φν(z) with the dimensionless lattice
momentum ν = k⁄kL and the dimensionless coordinate z = kLx.
With the dimensionless dispersion we can now calculate the hopping amplitude in
units of the recoil energy using equation (2.30):

J

ER

= − 1

NS

∑
k∈1.BZ

eik·δ
E(k)

ER

. (6.3)

Here, NS is the number of lattice sites and δ is the position-difference vector between
arbitrary nearest-neighbour sites. J does not depend on the choice of these sites
due to the homogeneity and isotropy of the lattice.
We can reduce the numerical effort needed for evaluating J , by noticing that J
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does not depend on the dimensionality of the lattice and we can thus evaluate it
in one dimension. This can be shown as follows: First note that for the given
lattice potential, equation (6.2), corresponding to a simple cubic lattice structure
we can always choose the coordinate system such that δ = aên for an n ∈ {1, ..., d},
where a = λL⁄2 is the lattice constant and ên is the unit vector in the direction
of the nth coordinate. If we then use that the energy decomposes into a sum
E(k) =

∑d
i=1 Ei(ki), we can divide up both the sum and the product over the

different dimensions into the term of the direction in which δ is pointing, i.e. i = n,
and the rest:

JdD = − 1

NS

∑
k∈1.BZ

E(k)eiak·ên = − 1

NS

d∑
i=1


d∏
j=1
j 6=n

∑
kj∈1.BZ(1D)

∑
kn∈1.BZ(1D)

Ei(ki)e
iakn


= − 1

NS

d∑
i=1
i 6=n


d∏
j=1
j 6=n

∑
kj∈1.BZ(1D)

Ei(ki)
∑

kn∈1.BZ(1D)

eiakn

︸ ︷︷ ︸
=0


− 1

NS

d∏
j=1
j 6=n

∑
kj∈1.BZ(1D)︸ ︷︷ ︸
=Nd−1

S,1D

∑
kn∈1.BZ(1D)

Ei(kn)eiakn

= − 1

NS,1D

∑
kn∈1.BZ(1D)

En(kn)eiakn = J1D. (6.4)

Here, we used the relation ∑
k∈1.BZ

eika = 0, (6.5)

which follows straight-forwardly from the geometric sum formula, where a 6= 0.
Further, 1.BZ denotes the Brillouin zone of the full lattice given by [−π⁄a, π⁄a)d,
1.BZ(1D) denotes the Brillouin zone of an arbitrary one-dimensional chain taken
out of the lattice along one of the coordinate axes, given by [−π⁄a, π⁄a) and NS,1D

denotes the number of sites the direction of an arbitrary coordinate axis, satisfying
NS = Nd

S,1D. Further we used that there are NS,1D k-values in the one-dimensional
Brillouin zone.
We can further calculate U using the definition (2.29) after computing the Wan-
nier functions using their definition (2.25). Here we need to keep in mind that we
computed the dimensionless Bloch and correspondingly the dimensionless Wannier
functions. Because a wave function always has to have its dimension such that the
normalization is dimensionless we need to introduce a length scale in order to re-
late the wavefunction in the dimensionless to the one in the dimensional coordinate.
The most natural and convenient choice is to use the same length scale as used for
defining the dimensionless coordinate:

w(z) =

(
1

kL

) d
2

w(x). (6.6)
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With this we can also relate the integral in U to a dimensionless one:

U = g

∫
ddx |w(x)|4 = gk2d

L

∫
ddx |w(z(x))|4 = gkdL

∫
ddz |w(z)|4. (6.7)

Because the Wannier functions factorize w(z) =
∏d

i=1 wi(zi) due to the special choice
of lattice potential we can also relate the d-dimensional integral to a one-dimensional
one:

U = gkdL

∫
ddz |w(z)|4 = gkdL

d∏
i=1

∫
dzi |wi(zi)|4 = gkdL

(∫
dzi |wi(zi)|4

)d
, (6.8)

where the choice of i is unimportant due to the isotropy.
So, we can numerically calculate J⁄ER and U⁄gkdL. In order to relate the fraction
of these two to the real fraction J⁄U we can use the definitions of ER = k2

L⁄2m and
g = 4πas⁄m with the scattering length as as well as the relation kL = π⁄a. We get,
now with restriction to three dimensions:

J

ER

gk3
L

U
=
J

U
8πaskL = 8π2 J

U

as

a
. (6.9)

Thus we need to know the ratio of the scattering length and the lattice constant. To
determine realistic values we take the setup from the original experiment of Greiner
et al. [7]. They used a laser of wave length λL = 852 nm and 87Rb as bosons. As
scattering length we use as = 95.44a0, where a0 is the Bohr radius [107]. This results
in as⁄a ≈ 1.186 · 10−2. Now we only need to translate the temperature axis from
T⁄U to T⁄ER. To this end we calculate:

T

U

U

gk3
L

ER

ER

=
1

8π2

a

as

T

ER

. (6.10)

Thus, we can translate the temperature by multiplying with the numerically calcu-
lated value U⁄gk3

L and the numerical factor 8π2as⁄a. In conclusion, this allows us
to plot T against V0 using ER as energy scale, as desired.

Before turning to the temperature, we will take a look at the just calculated de-
pendence of J⁄U on the lattice depth. This is shown in figure 6.12, where, as in the
previous chapters, we absorbed a factor of z = 6 into J . As expected, the fraction
decreases for increasing lattice depth. This decrease seems to be exponential.
By inspection of the J⁄U axis it is clear that for small lattice depths, the fraction
is way bigger than the J⁄U values previously investigated. In particular we can not
expect our calculation to work for these extraordinary large values of J⁄U . Fur-
thermore, for small lattice depths also the band gap in between the energy bands of
the single particle spectrum are rather small. Recall, that the Bose-Hubbard model
needs as one of the assumptions, that we can only consider one band, i.e. neglect
excitations into higher bands. Thus, besides our calculation not working there, we
can not even expect the Bose-Hubbard model to be valid in the regime of small
lattice depths. We will thus in the following restrict to lattice depths in a more
appropriate interval where J⁄U is of order 1, as we have analyzed before.
Figure 6.13 shows again shows the fraction J⁄U for varying lattice depth but now

restricted to a more appropriate interval of lattice depths where J⁄U is of the same
order of magnitude as investigated in the previous chapters.
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Figure 6.12: Fraction J⁄U with a factor of z absorbed into J for different lattice
depths V0 in units of the recoil energy ER.
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Figure 6.13: Fraction J/U with a factor of z absorbed into J for different lattice
depths V0 in units of the recoil energy ER with focus on lattice depths corresponding
to J/U values that allow our calculation to be physical.
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Figure 6.14: Temperature for varying lattice depth for S = 0.1kB and n = 1.1.
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Figure 6.15: Temperature for varying lattice depth for S = 0.3kB and n = 1.1.

We now analyze the temperature as a function of the lattice depth. We will re-
strict to only some representative parameter choice, because we have seen that the
temperature often shows similar behaviour, so the qualitative behaviour will be the
same in the figures not shown. Further we will exclude the lowest entropy value
S = 0.01, because we argued that we have to expect unphysical behaviour already
for relatively small values of J⁄U corresponding to large values of V0.

Figure 6.14 shows the temperature for S = 0.1 and n = 1.1. The behaviour is
exactly as expected: The system simply cools off for increasing lattice depth. For
large lattice depth we can already observe a saturating behaviour, which of course
has to happen at some point because the temperature can not get negative. The
quantum fluctuations lower the temperature, as before.

A similar behaviour can also be seen in figure 6.15, where S = 0.3 and n = 1.1.
In the corresponding fixed-U figure 6.6 we have observed a phase transition in the
corrected results, connected to a non-analytic change in temperature. This also
translates to this figure, where the corrected temperature also jumps at the transi-
tion. The temperature in mean-field approximation shows the same behaviour as in
the previous figure, due to not undergoing a phase transition. Again the corrections
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Figure 6.16: Temperature for varying lattice depth for S = 0.6kB and n = 1.3.
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Figure 6.17: Temperature for varying lattice depth for S = 0.6kB and n = 1.1.

lower the temperature in the superfluid phase. In the normal phase however, after
the phase transition, the corrected results then increase the temperature.
For S = 0.6 and n = 1.3, see figure 6.16, the behaviour is similar to the previous

figure. Again we observe the decrease of the temperature and the non-analyticity
of the corrected results due to the phase transition. The jump in the derivative is
however larger than previously. This also leads to a notable difference between the
corrected and the mean-field results, which do not enter the normal phase for the
investigated parameters, as in the corresponding fixed-U figure 6.8.
Figure 6.17 shows the temperature for S = 0.6 and n = 1.1. Here, we observe a dif-

ferent behaviour in the normal phase. The temperature increases after undergoing
a minimum, both in mean-field approximation and in the corrected results. Here
we observe, that the corrections do not really change the temperature in the normal
phase, as also the mean-field results enter it. Because the corresponding fixed-U
figure 6.8 already showed the integer particle number behaviour, we can also here
expect that the temperature for varying lattice depth and integer particle number
shows a behaviour similar to figure 6.17.
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Figure 6.18: Temperature for varying lattice depth for n = 1 for different entropies.

Figure 6.18 shows the temperature for integer particle number for all entropies
investigated. Indeed the behaviour is similar to the previous figure. The temper-
ature falls off in the superfluid phase, shows a minimum at the phase transition
and then increases again in the normal phase. The steepness of the decrease in the
superfluid phase and the increase in the normal phase gets larger as the entropy and
correspondingly the general temperature increases, which leads to a more distinctive
minimum. As before, the corrections lower the temperature in the superfluid phase.
In the normal phase the corrections do not really change the temperature anymore.
For low temperature, i.e. low entropy we need to be cautious with the corrected
results for low lattice depths which correspond to large values of J⁄U . For example
we can spot a non-analyticity for V0 ≈ 11.5ER, which is not connected to a phase
transition. Further the general behaviour of the temperature for low V0 is gener-
ally different from the other entropy values. This supports the conclusion that the
behaviour here is unphysical and due to degeneracy effects. This also exemplarily
justifies, why we have excluded other S = 0.01 figures from the discussion in this
chapter.
In conclusion we have observed the behaviour we have expected from our analysis
in the previous section. For non-integer particle number, the system simply cools
off for increasing lattice depth. For integer particle number the system also cools off
for increasing lattice depth until a phase transition occurs. After that the system
heats up again, giving rise to a distinctive minimum at the phase transition.
In principle we can now predict the temperature of a Bose gas in an optical lat-
tice when the initial entropy, that can for example be extracted from the theory of
weakly interacting Bose gases, and the filling factor, i.e. the particle number, are
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known. We have to keep in mind however that our higher order calculations will
only make physical predictions when the lattice depth is large enough.
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Chapter 7

Conclusion and Outlook

The goal of this thesis was to pursue a novel approach to the physics of the Bose-
Hubbard model, in particular to the thermodynamics of the superfluid-Mott insu-
lator transition. Up to now the approaches to the finite-temperature Bose-Hubbard
model were mostly of purely numerical nature [27, 40, 44, 45] or purely analytical
[55–61, 67, 68]. The analytical approaches further often restricted to mean-field
theory. Analytical calculations that go beyond mean-field theory and investigate
the finite-temperature case are still rather rare [67, 68].
In this thesis we pursued a novel “hybrid” approach to the problem. We utilized
the decoupling of the mean-field Hamiltonian to numerically diagonalize it exactly
and then analytically carried out a perturbative expansion around the mean-field
Hamiltonian using the numerically known eigenenergies and eigenfunctions.
By comparing the critical J⁄U value at the tip of the n = 1 lobe in the fixed-U
phase diagram for different dimensionalities and temperatures we could quantita-
tively show, that our second-order calculation already provides a significant im-
provement over the mean-field results and can be compared to other purely analytic
beyond mean field calculations. While the mean-field prediction deviates by 17%
from the correct value, the result from second-order corrections only deviates by 5%.
On top of that our calculation now also provides the possibility to calculate thermo-
dynamic quantities in great parts of the phase diagram, which then constituted the
main part of this thesis. We started in chapter 4 by analyzing the order parameter,
the particle number and the entropy on horizontal as well as vertical lines through
both the fixed-U and fixed-J phase diagrams at different fixed temperatures. This
gave us some intuition for the thermodynamics of the Bose-Hubbard model in gen-
eral and the superfluid-Mott insulator transition in particular. Further we were able
to investigate the consequences of the beyond mean-field corrections.
In chapter 5 we then took a step closer to the experiment and considered lines of
constant particle number again in both the fixed-U and fixed-J phase diagrams for
different fixed temperatures. On these lines we then analyzed the order parameter
and the entropy. In particular we provided a physical discussion of the behaviour of
the entropy for different values of the other parameters.
In the last chapter 6 we then first investigated the temperature for constant entropy
and particle number mostly in the fixed-U case but also sometimes referred to the
fixed-J one. By this we gained some insights into how the temperature of a Bose
gas behaves when adiabatically turning on an optical lattice. Further were able
to compare S(T ) for two different sets of parameters with quantum Monte Carlo
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CHAPTER 7. CONCLUSION AND OUTLOOK

data. Our results generally were in good agreement with the exact data, however for
one set of parameters our results, both mean field and corrected, predicted a phase
transition, that was not predicted by the exact data. This is connected to the small
discrepancy in the phase boundary already mentioned above.
By considering a concrete lattice potential, we were then further able to actually
investigate the temperature for varying lattice depth, bringing our calculations an-
other step towards the situation of an experiment. These final results now show
that we are able to predict the temperature of a Bose gas after turning on an optical
lattice when the particle number and the entropy are known. This is valuable, since
measuring the temperature of a strongly correlated system, like bosons in a deep
optical lattice, is experimentally very challenging.
This analysis can be made more realistic by taking into account infinite range hop-
ping. In appendix D it is shown how this can be done, there was however not enough
time in the scope of this thesis to pursue this. Thus, this could be subject of further
work, as the theoretical ground work has already been done in this thesis and it
would make the results more realistic, in particular for low lattice depths.
In section 3.3 we have argued that our hybrid approach also comes with problems.
Because we expand around the mean-field Hamiltonian, i.e. use the mean-field prod-
uct states as basis for our perturbative treatment our expansion does not converge
when the correct eigenstates are too different from the mean-field ones. This hap-
pens when the correct eigenstates are highly entangled, which happens in the case
of (almost) degenerate one- or many-site spectra and in the deep superfluid phase
in general. These problems render our corrected calculations unphysical.
Recently a group dealt with a similar problem [105, 106]. They investigated de-
generacies in the spectrum of the part of the Hamiltonian that is diagonal in the
occupation number representation. They solved the problem by employing a pro-
jector operator formalism with which they diagonalized the degenerate subspaces
and hence got rid of the problems. However they used a Landau expansion, so
that their results are still only valid in the vicinity of the phase boundary or in the
Mott/normal phases. It might be subject of further work to apply a similar for-
malism to our case where the degeneracies occur in the mean-field spectrum. This
would then allow us to calculate thermodynamic quantities in great parts of the
phase diagram, as our hybrid approach does not rely on a Landau expansion.
Furthermore, throughout this thesis, we have always assumed a homogeneous lat-
tice. In the experiment however the lattice potential is typically superimposed by
some trapping potential. This additional potential can be taken into account by
considering a site dependent effective chemical potential, which is called local den-
sity approximation. It could be subject of further work to include this into our
calculations, which would make the predictions more realistic.
In chapter 4, we have argued that the corrections do not seem to change the critical
exponent β, in particular they predict the transition at the tip to be in the mean-
field universality class. It could be subject of further work to analyze this more
carefully and also try to extract other critical exponents in order to investigate the
consequences of the corrections on them. In Ref. [108] the critical exponents were
calculated perturbatively using the part of the Hamiltonian that is diagonal in the
occupation number representation as a basis. It would be interesting to see how the
results for critical exponents extracted from our calculations compare to those from
Ref. [108].

122



A further improvement that could be achieved in the future is of course go to higher
order. In this thesis we have developed a diagrammatic formalism for calculating
terms coming up in the perturbative expansion. This formalism could be generalized
to higher orders and it should be possible to teach a computer the generalized rules
to evaluate the higher order terms.
An interesting application of thermodynamic analysis conducted in this thesis, in
particular the data for the temperature as a function of the lattice depth would be,
to develop a cooling protocol for bosons in optical lattices, which would be of great
interest for experiments.
In conclusion, in this thesis we have developed a beyond mean-field theory of the
thermodynamics of the superfluid-Mott insulator transition of bosons in optical
lattices. Although our calculations notably improve the mean-field result for the
critical J⁄U value at the tip of the n = 1 lobe, and also show a great agreement
with quantum Monte-Carlo data when comparing S(T ), our calculations still do not
work everywhere in the phase diagram, due to degeneracies. Thus, there is still work
to be done. In the future it would be interesting to either lift restrictions we have
used for simplicity, or to investigate further questions, for which there was no time
to pursue in the scope of this thesis.





Appendix A

Calculation of the Band Structure
for a Cosine Lattice

In this appendix we will show that is is possible to analytically solve the eigenvalue
problem of the one-particle Hamiltonian

Ĥ(1) =
p̂2

2m
+ V̂lat(x̂) (A.1)

for a simple cosine-lattice potential in terms of known special functions, the so
called Mathieu functions. With the calculated eigenenergies and eigenfunctions we
can then for example calculate the parameters of the Bose-Hubbard model, J and
U , in terms of the lattice depth, which is experimentally accessible.
The lattice potential is given by

Vlat(x) =
V0

2

d∑
i=1

cos(2kLxi), (A.2)

where kL = 2π⁄λL is the wave vector of the lasers generating the optical lattice, λL

is the corresponding wavelength, V0 is the lattice depth and d is the dimensionality
of the lattice. The lattice constant is given by λL⁄2 = π⁄kL. Note that due to
the trigonometric identity cos 2x = 1− 2 sin2 x this potential is equivalent to a sine
squared lattice, which is also commonly seen as the standard form of a simple cubic
optical lattice potential [70].
With the potential (A.2) the time independent Schrödinger equation in real space
becomes, with ~ = 1:(

−∇
2

2m
+
V0

2

d∑
i=1

cos(2kLxi)

)
φ(x) = Eφ(x). (A.3)

A separation ansatz φ(x) =
∏d

i=1 φi(xi) yields(
− 1

2m

d2

dx2
i

+
V0

2
cos(2kLxi)

)
φi(xi) = Eiφi(xi) (A.4)

for each i ∈ {1, ..., d}. The Ei are the separation constants satisfying
∑d

i=1Ei = E.
It is clear that it suffices to look at only one of these equations. We will therefore
drop the subscript i in the following. We now go over to dimensionless quantities.
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APPENDIX A. CALCULATION OF THE BAND STRUCTURE FOR A
COSINE LATTICE

To this end we introduce a natural energy scale, the recoil energy ER = k2
L⁄2m.

We further define the dimensionless coordinate z = kLx, the dimensionless energy
ε = E⁄ER and the dimensionless and scaled potential depth v = V0⁄4ER. With this
the Schrödinger equation goes over into the Mathieu equation [109]

d2

dz2
φ(z) + (ε− 2v cos(2z))φ(z) = 0. (A.5)

One linear independent set of solutions are the Mathieu functions of the first kind C
and S, also called Mathieu cosine and Mathieu sine [109]. They are complex valued
functions depending both on the parameters ε and v as well as the variable z. C is
an even function and S is an odd function of z. We can write a general solution as
a linear combination of these two functions:

φ(z) = αC(ε, v, z) + βS(ε, v, z) (A.6)

with α, β ∈ C. Due to Bloch’s theorem we also know that φ has to fulfill

φ(z) = eiνzuν(z) (A.7)

for some ν with ν = k⁄kL and uν(z + π) = uν(z), as the periodicity of the lattice is
π in dimensionless coordinates. In the following we will label each such φ(z) with
its corresponding ν. In the context of the Mathieu equation ν is also referred to as
the characteristic exponent. From equation (A.7) it follows

φν(z ± π) = e±iνπφν(z). (A.8)

If we now plug (A.6) into this and set z = 0 we get two equations:

αC(ε, v, π) + β = αeiνπ, (A.9)

αC(ε, v, π)− β = αe−iνπ. (A.10)

Here we used the symmetries of the Mathieu functions, in particular S(ε, v, 0) = 0
for all ε, v, and rescaled the functions such that C(ε, v, 0) = S(ε, v, π) = 1. If one of
these two is zero so that we can not rescale in this way it is still possible to make
a similar argument. If S(ε, v, π) is zero for example we could simply shift by 2π
instead of π in equation (A.8). We will thus without loss of generality assume that
this rescaling works.
If we now add and subtract the equations (A.9) and (A.10) we get the two conditions

C(ε, v, π) = cos(νπ), (A.11)

β = iα sin(νπ). (A.12)

In particular we found the eigenfunctions

φν(z) = Nν [C(ε, v, z) + i sin(νπ)S(ε, v, z)] , (A.13)

where Nν is some normalization constant that in general will depend on ν. Equation
(A.11) has to be understood as an equation for ε with v and ν given. Thus, this
equation determines the energy levels of the system. The solutions to this equation
are functions ε(ν) for fixed v which give the energy bands, because ν is the dimen-
sionless lattice momentum and ε is the dimensionless energy.
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In principle we could now solve equation (A.11) numerically to find ε(ν) for a given
v, i.e. find ε such that φ(z) = eiνzuν(z), with uν(z) π-periodic, is a solution of the
Schrödinger equation (Mathieu equation) (A.5). However, the values of ε for given
v and ν such that this is true are actually known numerically, they are for example
predefined in Mathematica, and are called characteristic values aν(v) of the Math-
ieu equation. For positive integer ν there are two characteristic values aν(v) and
bν(v). Some authors only refer to these as characteristic values and not to those
with non-integer ν. We have seen that the characteristic values understood as a
function of ν give the dispersion, i.e. the band structure. We can thus physically
understand why there are two characteristic values at integer ν: integer ν = k⁄kL

corresponds to k being on the boundary of a Brillouin zone, ν = 1 for example
corresponds to the boundary of the first. For v 6= 0 this is where the band gaps
open up, so the two characteristic values refer to the upper edge of the lower and the
lower edge of the upper of the two bands. For example a1(v) (b1(v)) is the energy
at the boundary of the first Brillouin zone in the second band (first band). Figure
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Figure A.1: The lowest bands of the one-dimensional cosine lattice for different
lattice depths in the reduced zone scheme.

A.1 shows the two lowest bands for different potential depths v = V0⁄4ER. The
second band is simply given by aν(v) as a function of ν in the second Brillouin zone,
i.e. for ν ∈ (−2,−1] ∪ [1, 2), and by b±2(v) at the boundary of the second Brillouin
zone, where |ν| = 2. In order to get the reduced zone scheme we simply shifted these
functions into the first Brillouin zone using the periodicity of the lattice momentum,
i.e. identifying ν with ν +m, m ∈ Z. You can see that for V0 = 0 the dispersion is
simply the free dispersion. For increasing V0 or v we then observe that band gaps
open up and we get a band structure.
In summary, we have seen that we can find analytic expressions for the Bloch states
and the band structure of the simple cosine lattice. In the lowest band the Bloch
states in real space, i.e. the solutions of the dimensionless Schrödinger equation
(A.4), are given by:

φν(z) = Nν
d∏
i=1

[C (cνi(v), v, zi) + i sin (νiπ)S (cνi (v) , v, zi)] (A.14)
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Figure A.2: Wannier function (red solid line) and the shifted lattice potential (blue
dashed) in terms of the dimensionless coordinate z = kLx in units of π.

for given v and ν ∈ [−1, 1]d. Here, we defined

cν(q) =

{
aν(v) for ν ∈ (−1, 1)
bν(v) for |ν| = 1

. (A.15)

The corresponding energies are given by

E(ν) =
d∑
i=1

cνi(v), (A.16)

for given v. With the Bloch functions we found we can now numerically calculate the
Wannier functions (2.25). Figure A.2 shows the probability density of a particle in
a Wannier state of the lowest band being at some dimensionless position z, together
with the shifted one-dimensional lattice potential.
In section 6.2 we will use the results found in this appendix to calculate J⁄U in
terms of the lattice depth V0, in order to investigate the temperature as a function
of V0 for fixed entropy and particle number.
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Appendix B

Calculation of the Second Order
Post Mean-Field Correction for
Finite Temperature

In this appendix we want to calculate the second order correction to the grand-
canonical partition function and correspondingly to the grand-canonical potential
for finite temperature as outlined in section 3.1. Our starting point for this is
equation (3.11):

Z2 = Tr

{
e−βĤMF

∫ β

0

dτ

∫ τ

0

dτ1 e
τĤMF(ĤBH − ĤMF)e−(τ−τ1)ĤMF

×(ĤBH − ĤMF)e−τ1ĤMF

}
, (B.1)

with

ĤBH − ĤMF = −J
∑
〈i,j〉∈Λ2

â†i âj + zJ
∑
i∈Λ

(
ψ∗âi + ψâ†i − |ψ|2

)
. (B.2)

When multiplying this out we get

Z2 = J2
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

Iâ†i âj ,â†kâl − zJ
2ψ∗

∑
〈i,j〉∈Λ2

∑
k∈Λ

Iâ†i âj ,âk − zJ
2ψ

∑
〈i,j〉∈Λ2

∑
k∈Λ

Iâ†i âj ,â†k

− zJ2ψ∗
∑
i∈Λ

∑
〈k,l〉∈Λ2

Iâi,â†kâl − zJ
2ψ
∑
i∈Λ

∑
〈k,l〉∈Λ2

Iâ†i ,â†kâl + z2J2(ψ∗)2
∑
i∈Λ

∑
k∈Λ

Iâi,âk

+ z2J2|ψ|2
∑
i∈Λ

∑
k∈Λ

Iâi,â†k + z2J2|ψ|2
∑
i∈Λ

∑
k∈Λ

Iâ†i ,âk + z2J2ψ2
∑
i∈Λ

∑
k∈Λ

Iâ†i ,â†k

+ zJ2|ψ|2
∑
〈i,j〉∈Λ2

∑
k∈Λ

Iâ†i âj ,1 − z
2J2|ψ|2ψ∗

∑
i∈Λ

∑
k∈Λ

Iâi,1 − z2J2|ψ|2ψ
∑
i∈Λ

∑
k∈Λ

Iâ†i ,1

+ zJ2|ψ|2
∑
i∈Λ

∑
〈k,l〉∈Λ2

I1,â†kâl
− z2J2|ψ|2ψ∗

∑
i∈Λ

∑
k∈Λ

I1,âk − z2J2|ψ|2ψ
∑
i∈Λ

∑
k∈Λ

I1,â†k

+ z2J2|ψ|4
∑
i∈Λ

∑
k∈Λ

I1,1, (B.3)

with I·,· as defined in equation (3.12). In section 3.1 we gave a recipe for calculating
each of the Is using a diagrammatic representation of the different cases for the
involved operators acting on the same site or not. We will now use this recipe
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to calculate each of these terms. To make this more clear we will sort the terms
depending on the number of diagrams needed.
1 diagram: The simplest term is I1,1 with only the diagram containing no dots. The
recipe thus gives

I1,1 =
1

2
β2ZMF. (B.4)

For Iâi,1 we only have the diagram containing one dot:si
The recipe gives us

Iâi,1 =
1

2
β2ZMFφ. (B.5)

Similarly:

Iâ†i ,1 =
1

2
β2ZMFφ

∗, (B.6)

I1,âk =
1

2
β2ZMFφ, (B.7)

I1,â†k
=

1

2
β2ZMFφ

∗. (B.8)

For Iâ†i âj ,1 we only have the diagram with a double dot:si sj
The recipe gives

Iâ†i âj ,1 =
1

2
β2ZMF|φ|2. (B.9)

Similarly:

I1,â†kâl
=

1

2
β2ZMF|φ|2. (B.10)

2 diagrams: Terms that gives rise to two diagrams have the form Iâi,âk . These terms
give rise to two dots that can either be connected or not:si sk si sk
The recipe gives

Iâi,âk = (1− δik)
1

2
β2ZMFφ

2 + δikZNS−1
MF,S Sâ,â. (B.11)

Similarly

Iâi,â†k = (1− δik)
1

2
β2ZMF|φ|2 + δikZNS−1

MF,S Sâ,â† , (B.12)

Iâ†i ,âk = (1− δik)
1

2
β2ZMF|φ|2 + δikZNS−1

MF,S Sâ†,â, (B.13)

Iâ†i ,â†k = (1− δik)
1

2
β2ZMF(φ∗)2 + δikZNS−1

MF,S Sâ†,â† . (B.14)

3 diagrams: The type of term giving rise to three diagrams has the form Iâ†i âj ,âk .
We already calculated this term in detail in section 3.1. With that calculation and

130



similar ones we get

Iâ†i âj ,âk = (1− δik)(1− δjk)
1

2
β2ZMFφ

2φ∗ + δikZNS−1
MF,S Sâ†,âφ

+ δjkZNS−1
MF,S Sâ,âφ

∗, (B.15)

Iâ†i âj ,â†k = (1− δik)(1− δjk)
1

2
β2ZMFφ(φ∗)2 + δikZNS−1

MF,S Sâ†,â†φ

+ δjkZNS−1
MF,S Sâ,â†φ

∗, (B.16)

Iâi,â†kâl = (1− δik)(1− δil)
1

2
β2ZMFφ

2φ∗ + δikZNS−1
MF,S Sâ,â†φ

+ δilZNS−1
MF,S Sâ,âφ

∗, (B.17)

Iâ†i ,â†kâl = (1− δik)(1− δil)
1

2
β2ZMFφ(φ∗)2 + δikZNS−1

MF,S Sâ†,â†φ

+ δilZNS−1
MF,S Sâ†,âφ

∗. (B.18)

7 diagrams: There is only one term missing: Iâ†i âj ,â†kâl . The diagrams it gives rise

to consist of two double dots. In total there are seven diagrams emerging from this
term: si sj sks l si sj sks l si sj sks l si sj sks lPPPP

si sj sks l��
��

si sj sks l si sj sks lPPPP��
��

By applying the recipe we get

Iâ†i âj ,â†kâl = (1− δik)(1− δil)(1− δjk)(1− δjl)
1

2
β2ZMF|φ|4

+ δik(1− δjl)ZNS−1
MF,S Sâ†,â†φ

2 + δjl(1− δik)ZNS−1
MF,S Sâ,â(φ

∗)2

+ δil(1− δjk)ZNS−1
MF,S Sâ†,â|φ|2 + δjk(1− δil)ZNS−1

MF,S Sâ,â†|φ|2

+ δikδjlZNS−2
MF,S Sâ†,â†;â,â + δilδjkZNS−2

MF,S Sâ†,â;â,â† . (B.19)

We now have to plug in all of the found Is and evaluate the sums in (B.3). Notice
that the only site dependency of the Is comes from the Kronecker deltas. Further
we can realize that a lot of the sums appearing are actually the same because we
can simply relabel the summation indices:

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δik(1− δjl) =
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δjl(1− δik) =
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δil(1− δjk)

=
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δjk(1− δil), (B.20)

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δikδjl =
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δilδjk, (B.21)

∑
〈i,j〉∈Λ2

∑
k∈Λ

(1− δik)(1− δjk) =
∑
i∈Λ

∑
〈k,l〉∈Λ2

(1− δik)(1− δil), (B.22)
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∑
〈i,j〉∈Λ2

∑
k∈Λ

δik =
∑
〈i,j〉∈Λ2

∑
k∈Λ

δjk =
∑
i∈Λ

∑
〈k,l〉∈Λ2

δik =
∑
i∈Λ

∑
〈k,l〉∈Λ2

δil, (B.23)

∑
〈i,j〉∈Λ2

∑
k∈Λ

1 =
∑
i∈Λ

∑
〈k,l〉∈Λ2

1. (B.24)

If we now factor out the sums that are the same we get, after dividing by J2 for
convenience:

Z2

J2
=

1

2
β2ZMF|φ|4

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

(1− δik)(1− δil)(1− δjk)(1− δjl)

+ ZNS−1
MF,S

(
Sâ†,â†φ

2 + Sâ,â(φ
∗)2 + Sâ†,â|φ|2 + Sâ,â†|φ|2

)
×

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δik(1− δjl)

+ ZNS−2
MF,S

(
Sâ†,â†;â,â + Sâ†,â;â,â†

) ∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δikδjl

− 1

2
β2ZMFz

(
ψ∗φ2φ∗ + ψφ(φ∗)2 + ψ∗φ2φ∗ + ψφ(φ∗)2

)
×

∑
〈i,j〉∈Λ2

∑
k∈Λ

(1− δik)(1− δjk)

−ZNS−1
MF,S z

(
ψ∗φSâ†,â + ψ∗φ∗Sâ,â + ψφSâ†,â† + ψφ∗Sâ,â† + ψ∗φSâ,â†

+ψ∗φ∗Sâ,â + ψφSâ†,â† + ψφ∗Sâ†,â
) ∑
〈i,j〉∈Λ2

∑
k∈Λ

δik

+
1

2
β2ZMFz

2
(
(ψ∗)2φ2 + |ψ|2|φ|2 + |ψ|2|φ|2 + ψ2(φ∗)2

)∑
i∈Λ

∑
k∈Λ

(1− δik)

+ ZNS−1
MF,S z

2
(
(ψ∗)2Sâ,â + |ψ|2Sâ,â† + |ψ|2Sâ†,â + ψ2Sâ†,â†

)∑
i∈Λ

∑
k∈Λ

δik

+
1

2
β2ZMFz

(
|ψ|2|φ|2 + |ψ|2|φ|2

) ∑
〈i,j〉∈Λ2

∑
k∈Λ

1

− 1

2
β2ZMFz

2
(
|ψ|2ψ∗φ+ |ψ|2ψφ∗ + |ψ|2ψ∗φ+ |ψ|2ψφ∗

)∑
i∈Λ

∑
k∈Λ

1

+
1

2
β2ZMFz

2|ψ|4
∑
i∈Λ

∑
k∈Λ

1. (B.25)

Next, we evaluate the sums. To do this we will make use of the definition of the
nearest neighbour sum ∑

〈i,j〉∈Λ2

≡
∑
i∈Λ

∑
j∈nn(i)

, (B.26)

where nn(i) ⊂ Λ is the set of nearest neighbour sites of a site i ∈ Λ. The evaluation
of the sums gives: ∑

i∈Λ

∑
k∈Λ

1 = N2
S , (B.27)∑

〈i,j〉∈Λ2

∑
k∈Λ

1 =
∑
i∈Λ

∑
j∈nn(i)

∑
k∈Λ

1 = N2
Sz, (B.28)
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∑
i∈Λ

∑
k∈Λ

δik = NS, (B.29)∑
i∈Λ

∑
k∈Λ

(1− δik) =
∑
i∈Λ

(NS − 1) = NS(NS − 1), (B.30)∑
〈i,j〉∈Λ2

∑
k∈Λ

δik =
∑
〈i,j〉

1 = NSz, (B.31)

∑
〈i,j〉∈Λ2

∑
k∈Λ

(1− δik)(1− δjk) =
∑
〈i,j〉∈Λ2

(NS − 2) = NS(NS − 2)z, (B.32)

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δikδjl =
∑
〈i,j〉∈Λ2

1 = NSz, (B.33)

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δik(1− δjl) =
∑
i∈Λ

∑
j∈nn(i)

∑
l∈nn(i)

(1− δjl) =
∑
i∈Λ

∑
j∈nn(i)

(z − 1)

= NSz(z − 1). (B.34)

To calculate the missing sum we multiply out the brackets and again notice that we
can simplify by relabeling indices:∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

(1− δik)(1− δjl)(1− δjk)(1− δil)

=
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

(1− δik − δil + δikδil︸︷︷︸
=0

)(1− δjk − δjl + δjkδjl︸ ︷︷ ︸
=0

)

=
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

[
1− (δjk + δjl + δik + δil) + δikδjk︸ ︷︷ ︸

=0

+δikδjl + δilδjk + δilδjl︸︷︷︸
=0

]
=

∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

(1− 4δik + 2δikδjl)

= N2
Sz

2 − 4NSz
2 + 2NSz. (B.35)

Now we need to plug in the results for the sums and simplify the expression we
get. We can distinguish the terms into three categories: the ones with a factor
of 1

2
β2ZMF, coming from the disconnected terms, the ones with a factor of ZNS−1

MF,S ,

coming from the diagrams with one connection, and the ones with a factor of ZNS−2
MF,S ,

coming from the diagrams with two connections. As terms from different categories
will never mix we can evaluate them independently.
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(terms in Z2/J
2 coming from disconnected diagrams)

=
1

2
β2ZMF

{
|φ|4

(
N2

Sz
2 − 4NSz

2 + 2NSz
)
− 2

(
|φ|2φψ∗ + |φ|2φ∗ψ

)
NS(NS − 2)z2

+
(
(ψ∗)2φ2 + 2|ψ|2|φ|2 + ψ2(φ∗)2

)
NS(NS − 1)z2 + 2|ψ|2|φ|2N2

Sz
2

−2(|ψ|2ψ∗φ+ |ψ|2ψφ∗)N2
Sz

2 + |ψ|4N2
Sz

2
}

=
1

2
β2ZMF

{
N2

Sz
2
(
|φ|4 − 2|φ|2φψ∗ − 2|φ|2φ∗ψ + (ψ∗)2φ2 + 4|ψ|2|φ|2 + ψ2(φ∗)2

−2|ψ|2ψ∗φ− 2|ψ|2ψφ∗ + |ψ|4
)

+NSz
2
(
−4|φ|4 + 4

(
|φ|2φψ∗ + |φ|2φ∗ψ

)
−
(
(ψ∗)2φ2 + 2|ψ|2|φ|2 + ψ2(φ∗)2

))
+2NSz|φ|4

}
=

1

2
β2ZMF

{
N2

Sz
2|φ− ψ|4 −NSz

2 [(2φ− ψ)φ∗ − φψ∗]2 + 2NSz|φ|4
}
, (B.36)

(terms in Z2/J
2 coming from diagrams with one connection)

= ZNS−1
MF,S

{(
Sâ†,â†φ

2 + Sâ,â(φ
∗)2 + Sâ†,â|φ|2 + Sâ,â†|φ|2

)
NSz(z − 1)

−
(
Sâ†,âψ

∗φ+ Sâ,â†ψφ
∗ + Sâ,â†ψ

∗φ+ Sâ†,âψφ
∗ + 2Sâ,âψ

∗φ∗ + 2Sâ†,â†ψφ
)
NSz

2

+
(
(ψ∗)2Sâ,â + |ψ|2Sâ,â† + |ψ|2Sâ†,â + ψ2Sâ†,â†

)
NSz

2
}

= ZNS−1
MF,S

{
NSz

2
[
Sâ,â

(
(φ∗)2 − 2ψ∗φ∗ + (ψ∗)2

)
+ Sâ,â†

(
|φ|2 − ψφ∗ − ψ∗φ+ |ψ|2

)
+Sâ†,â

(
|φ|2 − ψ∗φ− ψφ∗ + |ψ|2

)
+ Sâ†,â†

(
φ2 + 2ψφ+ ψ2

)]
−NSz

(
Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2
)}

= ZNS−1
MF,S

{
NSz

2
(
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2 + Sâ†,â†(φ− ψ)2
)

−NSz
(
Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2
)}
, (B.37)

(terms in Z2/J
2 coming from diagrams with two connections)

= ZNS−2
MF,S NSz

(
Sâ†,â†;â,â + Sâ†,â;â,â†

)
. (B.38)

After multiplying with J2, because we computed Z2⁄J2, and adding the zeroth and
first order which we found in section 3.1 we end up with the result for the grand-
canonical potential given in equation (3.27):

Z≤2 = ZMF

{
1 + βJNSz|ψ − φ|2 +

1

2
β2J2

{
2NSz|φ|4 −NSz

2 [(2φ− ψ)φ∗ − φψ∗]2

+N2
Sz

2|φ− ψ|4
}

+Z−1
MF,SJ

2
{
NSz

2
[
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2

+Sâ†,â†(φ− ψ)2
]

−NSz
[
Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2
]}

+Z−2
MF,SJ

2NSz(Sâ†,â;â,â† + Sâ†,â†;â,â)
}
. (B.39)
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Appendix C

Calculation of the Second Order
Post Mean-Field Correction for
Zero Temperature

In this appendix we want to calculate the second-order post mean-field correction
to the ground-state energy, after including the −µN̂ term in the Hamiltonian, for
zero temperature using non-degenerate perturbation theory as outlined in section
3.4. To this end we will proceed completely analogous to the finite-temperature
calculation in appendix B.
The second order correction to the ground state energy in non-degenerate pertur-
bation theory is given by

E0,2 =
∑

~n∈NNS\{~0}

|〈χ~n|ĤBH − ĤMF|χ~0〉|2
ε~0 − ε~n

, (C.1)

with

ĤBH − ĤMF = −J
∑
〈i,j〉∈Λ2

â†i âj + zJ
∑
i∈Λ

(
ψ∗âi + ψâ†i − |ψ|2

)
. (C.2)

If we now multiply this out we get an expression completely analogous to the finite-
temperature case:

E0,2 = J2
∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

Tâ†i âj ,â†kâl − zJ
2ψ∗

∑
〈i,j〉∈Λ2

∑
k∈Λ

Tâ†i âj ,âk − zJ
2ψ

∑
〈i,j〉∈Λ2

∑
k∈Λ

Tâ†i âj ,â†k

− zJ2ψ∗
∑
i∈Λ

∑
〈k,l〉∈Λ2

Tâi,â†kâl − zJ
2ψ
∑
i∈Λ

∑
〈k,l〉∈Λ2

Tâ†i ,â†kâl + z2J2(ψ∗)2
∑
i∈Λ

∑
k∈Λ

Tâi,âk

+ z2J2|ψ|2
∑
i∈Λ

∑
k∈Λ

Tâi,â†k + z2J2|ψ|2
∑
i∈Λ

∑
k∈Λ

Tâ†i ,âk + z2J2ψ2
∑
i∈Λ

∑
k∈Λ

Tâ†i ,â†k

+ zJ2|ψ|2
∑
〈i,j〉∈Λ2

∑
k∈Λ

Tâ†i âj ,1 − z
2J2|ψ|2ψ∗

∑
i∈Λ

∑
k∈Λ

Tâi,1 − z2J2|ψ|2ψ
∑
i∈Λ

∑
k∈Λ

Tâ†i ,1

+ zJ2|ψ|2
∑
i∈Λ

∑
〈k,l〉∈Λ2

T1,â†kâl
− z2J2|ψ|2ψ∗

∑
i∈Λ

∑
k∈Λ

T1,âk − z2J2|ψ|2ψ
∑
i∈Λ

∑
k∈Λ

T1,â†k

+ z2J2|ψ|4
∑
i∈Λ

∑
k∈Λ

T1,1, (C.3)
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with T·,· as defined in equation (3.47). We can now again calculate each of these
terms using the recipe from section 3.4. Because the diagrams are the same as in the
finite-temperature case and only the translation from a diagram to the corresponding
expression is different, we will not give the diagrams again as they were already
shown in appendix B. Here we will simply give the result of the recipe for all T .
Note that the expressions will be simpler than in the finite-temperature case as the
disconnected diagrams do not contribute. In particular, all T s with the identity
operator in at least one of their arguments are identically zero. The remaining T s
are given by:

Tâi,âk = δikS
(0)
â,â, (C.4)

Tâi,â†k = δikS
(0)

â,â†
, (C.5)

Tâ†i ,âk = δikS
(0)

â†,â
, (C.6)

Tâ†i ,â†k = δikS
(0)

â†,â†
, (C.7)

Tâ†i âj ,âk = δikS
(0)

â†,â
φ+ δjkS

(0)
â,âφ

∗, (C.8)

Tâ†i âj ,â†k = δikS
(0)

â†,â†
φ+ δjkS

(0)

â,â†
φ∗, (C.9)

Tâi,â†kâl = δikS
(0)

â,â†
φ+ δilS

(0)
â,âφ

∗, (C.10)

Tâ†i ,â†kâl = δikS
(0)

â†,â†
φ+ δilS

(0)

â†,â
φ∗, (C.11)

Tâ†i âj ,â†kâl = δik(1− δjl)S(0)

â†,â†
φ2 + δjl(1− δik)S(0)

â,â(φ
∗)2

+ δil(1− δjk)S(0)

â†,â
|φ|2 + δjk(1− δil)S(0)

â,â†
|φ|2

+ δikδjlS
(0)

â†,â†;â,â
+ δilδjkS

(0)

â†,â;â†,â
. (C.12)

As in the finite-temperature calculation we now have to evaluate the sums. Again
many of these sums are the same after relabeling indices so we can factor them out:

E0,2

J2
=
(
S

(0)

â†,â†
φ2 + S

(0)
â,â(φ

∗)2 + S
(0)

â†,â
|φ|2 + S

(0)

â,â†
|φ|2
) ∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δik(1− δjl)

+
(
S

(0)

â†,â†;â,â
+ S

(0)

â†,â;â,â†

) ∑
〈i,j〉∈Λ2

∑
〈k,l〉∈Λ2

δikδjl

− z
(
S

(0)

â†,â
ψ∗φ+ S

(0)
â,âψ

∗φ∗ + S
(0)

â†,â†
ψφ+ S

(0)

â,â†
ψφ∗ + S

(0)

â,â†
ψ∗φ+ S

(0)
â,âψ

∗φ∗

+S
(0)

â†,â†
ψφ+ S

(0)

â†,â
ψφ∗

) ∑
〈i,j〉∈Λ2

∑
k∈Λ

δik

+ z2
(
S

(0)
â,â(ψ

∗)2 + S
(0)

â,â†
|ψ|2 + S

(0)

â†,â
|ψ|2 + S

(0)

â†,â†
ψ2
)∑
i∈Λ

∑
k∈Λ

δik. (C.13)
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We can now plug in the results for the sums found in appendix B, i.e. equations
(B.29), (B.31), (B.33), (B.34), and simplify.

E0,2

J2
= NSz

2
[
S

(0)

â†,â†
φ2 + S

(0)
â,â(φ

∗)2 + S
(0)

â†,â
|φ|2 + S

(0)

â,â†
|φ|2

−
(
S

(0)

â†,â
ψ∗φ+ 2S

(0)
â,âψ

∗φ∗ + 2S
(0)

â†,â†
ψφ+ S

(0)

â,â†
ψφ∗ + S

(0)

â,â†
ψ∗φ+ S

(0)

â†,â
ψφ∗

)
+S

(0)
â,â(ψ

∗)2 + S
(0)

â,â†
|ψ|2 + S

(0)

â†,â
|ψ|2 + S

(0)

â†,â†
ψ2
]

+NSz
[
S

(0)

â†,â†;â,â
+ S

(0)

â†,â;â,â†
−
(
S

(0)

â†,â†
φ2 + S

(0)
â,â(φ

∗)2 + S
(0)

â†,â
|φ|2 + S

(0)

â,â†
|φ|2
)]

= NSz
2
[
S

(0)
â,â

(
(φ∗)2 − 2ψ∗φ∗ + (ψ∗)2

)
+ S

(0)

â,â†

(
|φ|2 − ψφ∗ − ψ∗φ+ |ψ|2

)
+S

(0)

â†,â

(
|φ|2 − ψ∗φ− ψφ∗ + |ψ|2

)
+ S

(0)

â†,â†

(
φ2 − ψφ− ψφ+ ψ2

)]
+NSz

(
S̃

(0)

â†,â†;â,â
+ S̃

(0)

â†,â;â,â†

)
= NSz

2
[
S

(0)
â,â (φ∗ − ψ∗)2 + S

(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2 + S

(0)

â†,â†
(φ− ψ)2

]
+NSz

(
S̃

(0)

â†,â†;â,â
+ S̃

(0)

â†,â;â,â†

)
. (C.14)

After multiplying by J2 and adding the zeroth and first orders found in section 3.4
we find the result (3.58) also given in that section:

E0,≤2 = ε~0 − JNSz|ψ − φ|2 + J2NSz
(
S̃

(0)

â†,â;â,â†
+ S̃

(0)

â†,â†;â,â

)
+ J2NSz

2
{
S

(0)
â,â(φ

∗ − ψ∗)2 + S
(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2

+S
(0)

â†,â†
(φ− ψ)2

}
. (C.15)





Appendix D

Including Infinite-Range Hopping

In the derivation of the Bose-Hubbard model in section 2.3, we restricted to nearest-
neighbour hopping, i.e. we only considered the possibility of a particle hopping from
one site to a nearest-neighbour one. In reality however the wave functions of the
particles might be delocalized over multiple lattice sites, such that there is a non-
negligible possibility of the particles also hopping to lattice sites, which are further
away. In this appendix we want to investigate how we can take into account infinite-
range hopping, i.e. we want to consider the possibility of particles hopping from one
site to an arbitrary other one. To this end we lift the restriction of summing only
over nearest-neighbour pairs in the hopping term:∑

〈i,j〉∈Λ2

Jâ†i âj −→
∑

(i,j)∈Λ2\∆(Λ)

Jij â
†
i âj, (D.1)

where ∆(Λ) = {(i, i) | i ∈ Λ} ⊂ Λ2 is the diagonal of the lattice. We still exclude
the diagonal terms, i.e. the ones with i = j, because we absorbed them into the
chemical potential. In the following we will restrict to lattice potentials of the form
Vlat(x) =

∑d
i=1 V

(i)
lat (xi) like the cosine lattice we investigated in appendix A. We

already saw in section 2.3 that in this case Jij only depends on the distance xi−xj:

Jij = − 1

NS

∑
k∈1.BZ

E(k)eik·(xi−xj). (D.2)

Note that the symmetry of Jij, which is needed for the Hamiltonian to be Hermitian,
implies that the dispersion E(k) is an even function of k.
We will now show that including infinite-range hopping actually does not have any
effect on the mean-field results apart from changing the dependency of J on the
dispersion. To see this we take a look at the approximation we made to get from
the Bose-Hubbard Hamiltonian to the mean-field one. There we used for small
fluctuations:

â†i âj ≈ 〈â†i〉âj + 〈âj〉â†i − 〈â†i〉〈âj〉. (D.3)

If we now use this in the case of infinite-range hopping we get, after relabeling indices
and using that Jij is symmetric in i, j,

∑
(i,j)∈Λ2\∆(Λ)

Jij â
†
i âj ≈

∑
i∈Λ

 ∑
j∈Λ\{i}

Jij

(ψ∗âi + ψâ†i − |ψ|2
)
. (D.4)
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With the definition J1 =
∑

j∈Λ\{i} Jij we thus recover the ordinary mean-field Hamil-
tonian by the substitution J1 → zJ . Note that J1 does not depend on i as Jij only
depends on xi − xj. So we can without loss of generality take i such that xi = 0,
which always exists as we can simply shift the coordinate system. Using this we can
find a simple expression for J1 depending only on the dispersion:

J1 =
∑

j∈Λ\{i}

Jij = − 1

NS

∑
j∈Λ\{i}

∑
k∈1.BZ

E(k)e−ik·xj (D.5)

= − 1

NS

∑
j∈Λ

∑
k∈1.BZ

E(k)e−ik·xj +
1

NS

∑
k∈1.BZ

E(k) (D.6)

= Ē − E(0), (D.7)

where we used the well-known relation∑
j∈Λ

e−ik·xj = NSδk,0 (D.8)

and defined the arithmetic mean

Ē =
1

NS

∑
k∈1.BZ

E(k). (D.9)

We will now investigate which influence infinite-range hopping has on the corrected
results. Here we can not simply replace all zJs with J1 because we also had to
evaluate additional sums over hopping terms in calculating the corrections and we
first need to investigate what happens to them. However it is clear that the only
thing that changes in the steps we did in appendix B is the evaluation of the sums.
More precisely only the sums including at least one nearest-neighbour sum, coming
from a hopping term. We will now reevaluate these sums including infinite-range
hopping. In the other terms we can simply substitute zJ → J1 as these terms come
from the mean-field part of ĤBH − ĤMF, see equation (B.2). The reevaluated sums
give:

∑
(i,j)∈Λ2\∆(Λ)

∑
k∈Λ

Jij =
∑
i∈Λ

∑
k∈Λ

 ∑
j∈Λ\{i}

Jij

 ≡ N2
SJ1 (D.10)

∑
(i,j)∈Λ2\∆(Λ)

∑
k∈Λ

δikJij =
∑
i∈Λ

 ∑
j∈Λ\{i}

Jij

 ≡ NSJ1 (D.11)

∑
(i,j)∈Λ2\∆(Λ)

∑
k∈Λ

(1− δik)(1− δjk)Jij = (NS − 2)
∑
i∈Λ

 ∑
j∈Λ\{i}

Jij


≡ NS(NS − 2)J1. (D.12)

Note that because we left out prefactors here, each normal sum over lattice sites,
i.e. not the ones over the pairs, comes with an additional factor of J1 as it stems
from the mean-field Hamiltonian. In order to include infinite-range hopping in those
terms that have two nearest-neighbour sums and thus also two factors of Jij, as there
is no mean-field part involved, we need another definition, which gets clear from the
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following sum:

∑
(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

δikδjlJijJkl =
∑
i∈Λ

 ∑
j∈Λ\{i}

J2
ij

 ≡ NSJ
2
2 , (D.13)

where we defined J2
2 =

∑
j∈Λ\{i} J

2
ij, which again does not depend on i so that we

can choose i with xi = 0 as above. Again we can find a simple expression for J2
2 in

terms of the dispersion:

J2
2 =

∑
j∈Λ\{i}

J2
ij =

1

N2
S

∑
j∈Λ\{i}

∑
k∈1.BZ

∑
q∈1.BZ

E(k)E(q)e−i(k+q)·xj

=
1

NS

∑
k∈1.BZ

E(k)E(−k)− 1

N2
S

∑
k∈1.BZ

E(k)
∑
q∈1.BZ

E(q)

= Ē2 − Ē2 ≡ (∆E)2, (D.14)

where we again used equation (D.8) and that the dispersion is even. Further we
defined the variance (∆E)2 = Ē2 − Ē2.
We now extend the remaining double nearest-neighbour sums to infinite-range hop-
ping starting with the first one:∑

(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

δik(1− δjl)JijJkl

=
∑
i∈Λ

 ∑
j∈Λ\{i}

Jij

 ∑
j∈Λ\{k}

Jik

− ∑
(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

δikδjlJijJkl

= NS(J2
1 − J2

2 ) (D.15)

To extend the last sum to infinite-range hopping we again multiply out the Kronecker
deltas, where we already leave out the terms that are identically zero, see equation
(B.35). We then again simplify by relabeling the indices:∑

(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

(1− δik)(1− δjl)(1− δjk)(1− δil)JijJkl

=
∑

(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

[1− (δik + δjl + δjk + δil) + δikδjl + δilδjk] JijJkl

=
∑

(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

(1− 4δik + 2δikδjl) JijJkl

=
∑
i,k∈Λ

 ∑
j∈Λ\{i}

Jij

 ∑
l∈Λ\{k}

Jkl

− 4
∑
i∈Λ

 ∑
j∈Λ\{i}

Jij

 ∑
l∈Λ\{i}

Jil


+ 2

∑
(i,j)∈Λ2\∆(Λ)

∑
(k,l)∈Λ2\∆(Λ)

δikδjlJijJkl

= N2
SJ

2
1 − 4NSJ

2
1 + 2NSJ

2
2 . (D.16)

In the last step we used equation (D.13). If we now compare the found sums to
the sums calculated for nearest-neighbour hopping in appendix B, we can see that
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APPENDIX D. INCLUDING INFINITE-RANGE HOPPING

we can get the former from the latter through the substitutions z2J2 → J2
1 and

zJ2 → J2
2 . Note that when calculating the nearest-neighbour sums we left out the

prefactors, thus we must attach a factor of z to each simple sum over the lattice,
i.e. no nearest-neighbour sum, as it stems from the mean-field Hamiltonian. Further
we must attach a factor of J2 to each sum. With the two substitutions we just
found, we can now immediately write down the grand-canonical partition function
to second order including the effect of infinite-range hopping:

Z≤2 = ZMF

{
1 + βJ1NS|ψ − φ|2 +

1

2
β2
{

2NSJ
2
2 |φ|4 −NSJ

2
1 [(2φ− ψ)φ∗ − φψ∗]2

+N2
SJ

2
1 |φ− ψ|4

}
+Z−1

MF,S

{
NSJ

2
1

[
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2

+Sâ†,â†(φ− ψ)2
]

−NSJ
2
2

[
Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2
]}

+Z−2
MF,SJ

2
2NS(Sâ†,â;â,â† + Sâ†,â†;â,â)

}
. (D.17)

As the only term that gets cancelled when going from the grand-canonical partition
function to the grand-canonical potential is the non-extensive term which has a
factor of J2

1 just like the first order term squared, these terms still cancel and thus
we can also extend the grand-canonical potential to infinite-range hopping by the
simple substitutions found above:

Φ≤2 = ΦMF − J1NS|ψ − φ|2 −
1

2
β
{

2NSJ
2
2 |φ|4 −NSJ

2
1 [(2φ− ψ)φ∗ − φψ∗]2

}
− 1

β
Z−1

MF,S

{
NSJ

2
1

[
Sâ,â(φ

∗ − ψ∗)2 + Sâ,â†|φ− ψ|2 + Sâ†,â|φ− ψ|2

+Sâ†,â†(φ− ψ)2
]

−NSJ
2
2 [Sâ,â(φ

∗)2 + Sâ,â†|φ|2 + Sâ†,â|φ|2 + Sâ†,â†φ
2]
}

− 1

β
Z−2

MF,SJ
2
2NS(Sâ†,â;â,â† + Sâ†,â†;â,â). (D.18)

The arguments from above still hold in the zero temperature case so we can also
easily extend that result to infinite-range hopping:

E0,≤2 = ε~0 − J1NS|ψ − φ|2 + J2
2NS

(
S̃

(0)

â†,â;â,â†
+ S̃

(0)

â†,â†;â,â

)
+ J2

1NS

{
S

(0)
â,â(φ

∗ − ψ∗)2 + S
(0)

â,â†
|φ− ψ|2 + S

(0)

â†,â
|φ− ψ|2

+S
(0)

â†,â†
(φ− ψ)2

}
. (D.19)

In conclusion, we saw that in order to account for infinite-range hopping in the cor-
rected results we need to distinguish between two different Js. They are of course
not independent as they both depend on the dispersion. For a given dispersion how-
ever we could now calculate J1 and J2, and of course also U , in terms of experimental
parameters like the lattice depth, see appendix A for example, and thus easily take
into account infinite-range hopping, which makes the theory more realistic.
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phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms. Nature 415, 39 (2002).

[8] Lewenstein, M., Sanpera, A. & Ahufinger, V. Ultracold Atoms in Optical
Lattices: Simulating Quantum Many-Body Systems 1st ed. (Oxford University
Press, 2012).

[9] Bell, J. & Aspect, A. Speakable and Unspeakable in Quantum Mechanics:
Collected Papers on Quantum Philosophy 2nd ed. (Cambridge University
Press, 2004).

[10] Jotzu, G. et al. Experimental realization of the topological Haldane model
with ultracold fermions. Nature 515, 237 (2014).

[11] Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms. Nature Phys. 11, 162 (2015).

[12] Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A
Thouless quantum pump with ultracold bosonic atoms in an optical super-
lattice. Nature Phys. 12, 350 (2016).

[13] Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Na-
ture Phys. 12, 296 (2016).

[14] Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking
condensed matter physics and beyond. Adv. Phys. 56, 243 (2007).

[15] Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. (New
York) 315, 52 (2005).

143



REFERENCES

[16] Feynman, R. Simulating Physics with Computers. Int. J. Theor. Phys. 21,
467 (1982).

[17] Ladd, T. et al. Quantum computers. Nature 464, 45 (2010).

[18] Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold
quantum gases. Nature Phys. 8, 267 (2012).
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[42] Rapsch, S., Schollwöck, U. & Zwerger, W. Density matrix renormalization
group for disordered bosonsin one dimension. Europhys. Lett. 46, 559 (1999).
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