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1. Introduction 1

1 Introduction

As temperature approaches absolute zero, macroscopic quantum phenomena emerge. One of
them is Bose-Einstein condensation, a phase transition, which occurs in ultracold atomic or
molecular Bose gases, if the thermal de Broglie wavelength becomes as large as the average
distance between atoms [1]. In this state, the ground state of the system is macroscopically
occupied and all particles can be described by means of one single wave function. However,
the condensation depends not only on the temperature, but is also dramatically influenced
by the type and strength of the particle interaction. Even at T = 0 K particles will remain
out of the condensate, unless there is no particle interaction [2].
Considering contact interaction, it is the rate of collisions between the particles, that plays a

key role in the description of condensate dynamics. The collisional relaxation time τ describes
the period needed to reach local equilibrium. Compared to the frequency of a collective mode
ω, two distinct cases can be distinguished. On the one hand, there is the collision-less regime,
in which the period of the collective mode is much smaller than the relaxation time ωτ � 1
and the system is not in local equilibrium. On the other hand there is the collision dominated
or hydrodynamic regime, in which the period of the collective mode is much longer than the
relaxation time ωτ � 1 and collisions drive the system into a state of local equilibrium [3].
This is necessary in order to apply any kind of hydrodynamic equations. For this region there
exist a generic set of equations, the Landau-Khalatnikov equations.
These equations were developed by Landau in 1941 [4] in order to describe the phenomenon

of superfluidity in liquid helium II. At T = 2.17 K, referred to as the λ-point [5], liquid helium
undergoes a second-order phase transition [6]. In this new, superfluid state several unique
properties come into picture. In contrast to liquid helium I, superfluid helium II shows no
viscosity, when it flows through a thin capillary. However, rotating the ground of a vessel
filled with liquid helium, leads to a rotation within the fluid, that would not be possible, if
there was no viscosity. This contradictory behaviour caused Landau to formulate the two-fluid
model, which says that the quantum liquid can exhibit two different motions – one viscous
and the other ideal – at the same time [7]. Experiments have also shown that in helium-II
under certain circumstances, part of the liquid flows from a cooler point to a warmer point
in the vessel without any external mechanical forces. This would violate the second law of
thermodynamics, unless it is said, that this flow does not carry any heat. Therefore, it was
concluded that the superfluid flow is free of entropy. Another important property of the
superfluid component is that its flow – according to Landau – is always irrotational. This
was a conclusion derived from a microscopic model, which Landau also developed [6].
Although, the Landau-Khalatnikov (LK) two-fluid equations were developed in order to

understand superfluid 4He, a wider range of applications exist. This is due to the fact, that
the LK equations are formulated on the basis of fundamental conservation laws. In addition,
like ordinary hydrodynamic equations, the LK equations have to be completed by equations
of state. Thus, the specific thermodynamic properties of any hydrodynamic system, which
are obtained through microscopic and quantum mechanical considerations, enter and specify
the LK equations for the considered matter. As a consequence, the two-fluid model is not
restricted to Bose fluids like 4He and can also be applied to Fermi liquids e.g. superfluid 3He.
It is also promising to use the two-fluid model in order to describe the BCS-BEC crossover
[8] in a two-component Fermi gas [9].
In this thesis, we will derive the Landau-Khalatnikov two-fluid equations by following and

comparing two different approaches. In Section 2, we will use the principle of least action, first
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used by Zilsel in 1950 [10] to derive the LK equations. Section 3 will be devoted to the classic
derivation of the LK equations mainly based on conservation laws, the Galilean relativity
principle, and symmetry considerations performed by Khalatnikov [11]. In Section 4, we
will summarize and compare the two treatments. As the various types of sound propagation
constitute one of the most famous features of superfluidity, several different wave propagations
and their respective velocities will be derived and discussed in Section 5.

2 Variational Principle
In this section the Landau-Khalatnikov hydrodynamic equations of motion for a two-fluid
system will be derived by using Hamilton’s variational principle. This approach goes back to
Zilsel in 1950 [10] and was improved further by Jackson [12], Geurst [13], and others going
back to an idea by Lin [14] originally applied in normal hydrodynamics. The description given
in subsections 2.1 and 2.3 mostly refers to Taylor et al. [15].
To avoid confusion, all thermodynamic variables given per unit volume V , e.g. the entropy

density s = S/V , will be denoted by small letters. All variables given per unit mass m will
be characterized by a bar, e.g. the chemical potential per unit mass will be labelled with
µ̄ = µ/m.

2.1 Formulation of Action
We will restrict ourselves to a closed system of ideal fluids without viscosity. Therefore not
only the total mass, but also the total entropy will be conserved.
The conservation of mass can be formulated in terms of the continuity equation

∂ρ

∂t
+ div j = 0 , (2.1)

where ρ = mn is the mass density of the total liquid and j describes the current density,
which decomposes according to

j = ρnvn + ρsvs , (2.2)

where ρn and ρs are the mass densities of the normal and the superfluid component with the
corresponding velocities vn and vs. The total mass density is the sum of the two component
densities

ρ = ρn + ρs . (2.3)

We assume that the entropy is carried only by the normal fluid component, i.e.

ss = 0 , sn = s . (2.4)

If we denote the entropy density, i.e. entropy per unit volume, with s, the entropy conservation
is described by

∂s

∂t
+ div(svn) = 0 . (2.5)

We now consider the Lagrangian density per unit volume l of the two fluids to be of the form

l = 1
2(ρ− ρn)v2

s + 1
2ρnv2

n − u(ρ, ρn, s) , (2.6)

where the internal energy density u is assumed to be a function of ρn, ρ, and s.



2.2 Thermodynamic Identities 3

In the formulation of the action A both conservation laws (2.1) and (2.5) will be taken
into account by using Lagrange multipliers λ(r, t) and κ(r, t), which are yet undetermined
auxiliary fields:

A =
∫

d3r

∫
dt

{
1
2(ρ− ρn)v2

s + 1
2ρnv2

n − u(ρ, ρn, s)

+ λ

[
∂ρ

∂t
+ div((ρ− ρn)vs + ρnvn)

]
+ κ

[
∂s

∂t
+ div(svn)

]}
. (2.7)

In the following we will calculate the variation of the action A with respect to ρ, ρn, s, vs and
vn, which represent its independent variables. To this end we have to consider some useful
thermodynamic relations for the internal energy density u.

2.2 Thermodynamic Identities

We start from the fundamental thermodynamic relation of a classic ideal fluid. Usually the
internal energy is given for a fluid at rest. In a two-fluid system it is in general not possible to
choose a reference frame, in which both the superfluid and the normal component are at rest.
Therefore, the internal energy relation has to be extended. This additional energy depends
on the relative velocity and the mass, which is still moving even in a reference frame, where
one component is at rest. We will choose here the mass that is transported by the normal
component, but the superfluid component would work as well. A more detailed discussion of
this issue is given in Section 3.3. For now, we only state that the total mass of the normal
component Mn will serve as an extensive variable. Therefore the internal energy U satisfies
the thermodynamic identity for reversible processes

dU = TdS − pdV + µdN + ∂U

∂Mn
dMn , (2.8)

where µ denotes the chemical potential (neither per unit mass nor per unit volume) and N
denotes the total particle number. The total internal energy U(r, t) in any given unity volume
V , which is constant by definition, can be written as

U = u V . (2.9)

Also all other quantities can be written in terms of a corresponding density times volume

S = sV , (2.10)

N = ρ

m
V , (2.11)

Mn = ρnV . (2.12)

We compare (2.8) in this case of a constant volume with the total differential of (2.9)

dU = TdS + µdN + ∂u

∂ρn
V dρn = V du . (2.13)
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Dividing (2.13) by the unity volume V and expressing the chemical potential µ as the chemical
potential per unit mass µ̄ = µ/m we obtain

du = Tds+ µ̄dρ+ ∂u

∂ρn
dρn . (2.14)

Thus, equation (2.14) justifies a posteriori the assumption in equation (2.6) that the internal
energy density is a function of ρ, ρn, and s. Furthermore, we read off from equation (2.14)
that the partial derivatives of u with respect to ρ and s yield the chemical potential per unit
mass

∂u

∂ρ
= µ̄ , (2.15)

and the temperature
∂u

∂s
= T , (2.16)

respectively. In the next section we will see that the yet unknown partial derivative ∂u
∂ρn

is to
be derived from the variation of the action with respect to ρn.

2.3 Variation of Action

We now calculate the variation of the action with respect to all degrees of freedom and set it
to zero. From the variation with respect to the Lagrange multipliers κ and λ we reobtain the
conservation laws (2.1) and (2.5). Therefore, those variations are not written down explicitly.
From the variation of the action with respect to ρ, ρn, s, vs and vn, which represent the
independent variables, we obtain five separate equations each following from the variation of
the action with respect to one specific variable:

δA
δρ

: 1
2v2

s − µ̄−
∂λ

∂t
− vs · ∇λ = 0 , (2.17)

δA
δρn

: 1
2v2

n − 1
2v2

s −
∂u

∂ρn
+ (vs − vn) · ∇λ = 0 , (2.18)

δA
δs

: − T − ∂κ

∂t
− vn · ∇κ = 0 , (2.19)

δA
δvs

: (ρ− ρn)(vs −∇λ) = 0 , (2.20)

δA
δvn

: ρn(vn −∇λ)− s∇κ = 0 . (2.21)

To get these results we have used integration by parts according to the following two
examples in order to eliminate spatial or time derivatives of the variables, which are varied∫

dt λ∂ δρ
∂t

= [λδρ]t2t1︸ ︷︷ ︸
=0

−
∫

dt ∂λ

∂t
δρ , (2.22)

∫
d3r λ div(δρ vs) =

∫
∂V
λ δρ vs · df︸ ︷︷ ︸

=0

−
∫

d3r ∇λ · vsδρ . (2.23)
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Note that in both cases the boundary terms do not contribute as the variations are supposed
to vanish there.
In the case of a non-vanishing superfluid component ρ − ρn = ρs 6= 0 we obtain from the

variation with respect to vs in (2.20)

vs = ∇λ . (2.24)

This is a remarkable result as it states that the superfluid flow is irrotational

rot vs = 0 . (2.25)

Inserting (2.24) into (2.18) we can determine the yet missing thermodynamic relation

∂u

∂ρn
= 1

2(vn − vs)2 . (2.26)

Taking the gradient of (2.17) and using (2.24) we obtain

∂vs
∂t

+∇(µ̄+ 1
2v2

s) = 0 , (2.27)

which represents the Euler equation for the superfluid. If we use the vector identity

(v · ∇)v = 1
2∇v2 − v× rotv (2.28)

and bear in mind that the superfluid flow is irrotational according to (2.25), we can write
(2.27) in the well-known form

∂vs
∂t

+ (vs · ∇)vs = −∇µ̄ . (2.29)

Equation (2.21), which stems from the variation with respect to vn, reduces to

vn = ∇λ+ s

ρn
∇κ . (2.30)

Thus, we conclude that vn turns out to be irrotational if s/ρn would be a constant. However,
this result is not to be interpreted in a physical manner, but represents a flaw of the theory,
which also occurs in the description of normal fluids. There is no reason, why the normal
component flow should be irrotational in case s/ρn is a constant. To correct this mistake, a
new constraint, mostly referred to as Lin’s constraint [14], has to be included. In classical
hydrodynamics this constraint represents the conservation of the identity of particles and is
closely connected to the conservation of vorticity. However, to apply this constraint correctly
in the superfluid two-fluid model is not without difficulties and has been discussed intensively
by Jackson [12], Geurst [13], [16] and others [17], [18]. To replicate this discussion here, would
go beyond the scope of this thesis. Eventually, a modified version of Lin’s constraint, which
allows for vorticity also in the special case ρn/s = const, is given by

∂sη

∂t
+ div(sηvn) = 0 , (2.31)

in which the arbitrary function η is a real valued function of r and t. The inclusion of
this constraint leads to minor changes in the equations given above, but will not change
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the resulting equations of motions. Therefore, the calculations will not be redone including
equation (2.31) and we refer for further discussions to the references [15] and [19].
Equation (2.30) can be rewritten using (2.24) yielding the following expression

∇κ = ρn
s

(vn − vs) , (2.32)

which implies the useful identity

rot
[
ρn
s

(vn − vs)
]

= 0 . (2.33)

We replace ∇κ in (2.19) using (2.32). Then we take the gradient and solve for ∇∂κ
∂t .

Taking the time derivative of (2.32) we obtain the following equation by applying the Schwarz
theorem, which says that for functions with continuous 2nd partial derivatives, the partial
derivatives with respect to two different variables do commute:

∂

∂t

[
ρn
s

(vn − vs)
]

+∇
[
ρn
s

vn · (vn − vs) + T

]
= 0 . (2.34)

By some laborious algebra this can be transformed into Euler’s equation for the normal fluid
using the continuity equation (2.1), the conservation of entropy (2.5) and (2.33)

∂vn
∂t

+ (vn · ∇)vn = − s

ρn
∇T −∇µ̄−∇1

2(vn − vs)2 − Γ
ρn

(vn − vs) , (2.35)

where the source term Γ is defined by

Γ = ∂ρn
∂t

+ div(ρnvn) . (2.36)

Using the continuity equation (2.1) it can be shown that

−Γ = ∂ρs
∂t

+ div(ρsvs) . (2.37)

The possibility that Γ is not equal to zero implies that neither ρs nor ρn alone fulfil the
continuity equation. Therefore, it can’t be excluded within the two-fluid model that particles
of the superfluid component loose their superfluid characteristics and thus become a part of
the normal fluid component and vice versa.
The continuity equations for mass (2.1) and entropy (2.5) together with the two Euler equa-

tions for the superfluid component (2.29) and the normal component (2.35) form a complete
set of hydrodynamic equations. However, it is more common to use an equation for the total
momentum flux j. This can be obtained by combining equation (2.2), (2.29), and (2.35),
yielding

∂j
∂t

+ vs div(ρsvs) + (ρsvs · ∇)vs + vn div(ρnvn) + (ρnvn · ∇)vn

+ ρn
2 ∇(vn − vs)2 + ρ∇µ̄+ s∇T = 0 . (2.38)

Equation (2.38) can be rewritten in component form by using the Einstein convention, that
a summation over double indices is implicitly assumed:

∂ji
∂t

+ ∂Πik

∂xk
= 0 . (2.39)
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If we use the convenient form of a momentum density tensor Π, we can identify its diagonal
entries with the pressure

Πik = ρsvsivsk + ρnvnivnk + pδik , (2.40)

where the gradient of the pressure is given by

∇p = ρ∇µ̄+ s∇T + ρn
2 ∇(vn − vs)2 . (2.41)

Using the thermodynamic relation (2.14) and (2.26) we can formulate an explicit expression
for the pressure, which is compatible with (2.41):

p = Ts+ µ̄ρ+ 1
2(vn − vs)2ρn − u . (2.42)

If the continuity equation (2.1) and the conservation of entropy (2.5) are given, the two
Euler equations (2.29), (2.35) and the momentum conservation (2.38) form a set of three
equations, of which one is redundant. Usually Euler’s equation for the superfluid (2.29) and
the momentum conservation (2.38) are used to describe the system.

3 Derivation of Two-Fluid Equations according to Landau –
Khalatnikov

In this section we will describe another derivation of the Landau-Khalatnikov hydrodynamic
equations, which was first performed by Khalatnikov [11]. This approach is built upon con-
servation laws and the Galilean relativity principle. First the conservation laws will be given
including some undetermined quantities. Those will then be calculated in another reference
frame using Galilean transformations. In this new reference frame it will be possible to de-
termine exact expressions for these quantities, thus completing the system of hydrodynamic
equations.

3.1 Conservation Laws

The conservation of mass yields the continuity equation

∂ρ

∂t
+ div j = 0 . (3.1)

The mass density ρ equals the sum of the two component mass densities according to (2.3).
In contrast to the previous derivation the explicit expression for the current j is not proposed
apriori, instead it is only assumed that it transforms under a Galilean boost according to the
usual relations given in the next paragraph. Similarly, the conservation of entropy is proposed
by using a not yet known entropy flux vector f :

∂s

∂t
+ div f = 0 . (3.2)

Note that in this approach, it is not proposed a priori that the superfluid component does
not carry any entropy. Instead it will turn out that this will be an outcome of the further
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derivations. The conservation of momentum is proposed by using the energy momentum
tensor Πik

∂ji
∂t

+ ∂Πik

∂xk
= 0 . (3.3)

In contrast to the derivation based on the variational principle, it is postulated that the flow
of the superfluid is irrotational

rot vs = 0 . (3.4)

Therefore, it must be possible to express its motion by the gradient of some yet undetermined
scalar function ϕ. Thus, Euler’s equation takes the following form

∂vs
∂t

+ (vs · ∇)vs = −∇ϕ . (3.5)

Using the vector identity (2.28), which is simplified by condition (3.4), we can rewrite (3.5)
into the following form, which will be more useful later on

∂vs
∂t

+∇(1
2v2

s + ϕ) = 0 . (3.6)

In addition, energy conservation yields

∂e

∂t
+ div q = 0 , (3.7)

where e is the total energy density, i.e. the sum of kinetic and internal energy density and q
denotes the energy flux vector.

3.2 Galilean-Transformation
In order to determine j, Πik, f , q, and ϕ, a new reference frame K0, which moves along with
the superfluid component, will be introduced. For any given element of the fluid, the new
reference frame K0 moves at the velocity vs with respect to the original rest frame K. The
variables in the new reference frame are denoted by an index 0 and are related to the old
variables via:

vn = vs + vn0 , (3.8)
j = ρvs + j0 , (3.9)

Πik = Π0ik
+ ρvsivsk

+ vsij0k
+ j0ivsk

, (3.10)
e = 1

2ρv2
s + vs · j0 + e0 , (3.11)

q =
(

1
2ρv2

s + vs · j0 + e0
)

vs + 1
2v2

sj0 + Π0vs + q0 , (3.12)

f = svs + f0 . (3.13)

3.3 Thermodynamics
The Galilean-Transformation will not only allow us to determine j, Πik, f and ϕ, but it is
also very helpful in order to determine the fundamental thermodynamic identity for reversible
processes in a superfluid.
Before we go on with the further derivation of the Landau-Khalatnikov two-fluid equations,

we formulate the thermodynamic identity for the total energy density e0. In the new reference
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frameK0, the superfluid is at rest, while the normal fluid is moving with a velocity vn0 defined
by equation (3.8). If we consider this velocity to be an intensive variable of the system, the
canonical conjugate extensive variable has to have the dimension of a momentum density j0,
i.e. the momentum per unit volume. As only the normal fluid component is moving, the
momentum density vector should have the following form

j0 = ρnvn0 . (3.14)

In order to determine the total differential de0 we remember that the total differential of the
internal energy for reversible processes can be expressed as a sum of products formed by an
intensive variable times the total differential of its canonical conjugate extensive variable. In
the formulation of energy densities instead of total energy, the variables vary slightly from
the standard form (see Section 2.2). We choose the following sets of intensive and extensive
variables: (T, s), (µ̄, ρ), and (vn0 , j0) and obtain

de0 = Tds+ µ̄dρ+ vn0dj0 . (3.15)

Using equations (3.8) and (3.14), equation (3.15) can be rewritten:

de0 = Tds+ µ̄dρ+ (vn − vs) · d [ρn(vn − vs)] . (3.16)

By comparing the total differential of the energy e in the old rest frame K, which can be
written as a composition of internal u and kinetic energy ekin according to

e = ekin + u , (3.17)

with the total differential of the energy de0, it is possible to find the thermodynamic equation
for reversible processes in a superfluid. To this end we formulate de in terms of kinetic and
internal energy densities

de = dekin + du = d(1
2ρsv

2
s) + d(1

2ρnv2
n) + du (3.18)

and calculate the total differential of (3.11)

de = d(1
2ρv2

s) + d(j0 · vs) + de0 . (3.19)

By inserting (3.16) we can rewrite (3.19) yielding

de = Tds+ µ̄dρ+ 1
2(vn − vs)2dρn + 1

2v2
sdρs + 1

2v2
ndρn + ρsvsdvs + ρnvndvn . (3.20)

Comparing (3.18) and (3.20) we obtain the total differential of the internal energy

du = Tds+ µ̄dρ+ 1
2(vn − vs)2dρn . (3.21)

As it was postulated in the previous Section 2.2, ρn emerges to be the third extensive quantity
of the two-fluid system.
The calculation of the total differential du0 of the internal energy density in the reference

frame K0, which can be done by subtracting the total differential of the kinetic energy density
in the reference frame K0 from equation (3.16), yields

du0 = Tds+ µ̄dρ+ (vn − vs)d [ρn(vn − vs)]− d
[

1
2ρn(vn − vs)2

]
, (3.22)
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du0 = Tds+ µ̄dρ+ 1
2(vn − vs)2dρn . (3.23)

By this direct calculation and comparison with equation (3.21) we obtain that the internal
energy in the reference frame K0 is identical to the internal energy in the reference frame K

du0 = du . (3.24)

This is a consequence of the fact, that the internal energy depends only on the relative velocity
vn − vs and thereby has to be invariant under a Galilean transformation.

3.4 Derivation of LK Equations
The first quantity determined by the Galilean-Transformation is j. By inserting (3.8) and
(3.14) into (3.9) we find

j = ρsvs + ρnvn . (3.25)
To determine the corresponding remaining expressions for q0, Π0, and f0 more effort is needed.
The goal is to express div q0 as a function of the thermodynamic variables and the velocities
including spatial and time derivatives of the latter. However, noticing that in the absence of
energy dissipation q0 does only depend on the thermodynamic variables and the velocities,
but does not depend on their space or time derivatives, it will then be necessary to eliminate
those dependencies. Thereby unique expressions for ϕ, f , q0, and Π0 will be revealed.
To find the expression for div q0 we will first differentiate e with respect to time using

equation (3.11) and insert ∂e0
∂t defined by (3.16). We use (3.9) to substitute j0 with j and

obtain
∂e

∂t
= (1

2v2
s + µ̄− vn · vs)

∂ρ

∂t
+ (j− ρvn) · ∂vs

∂t
+ vn ·

∂j
∂t

+ T
∂s

∂t
. (3.26)

We rewrite (3.26) by replacing all time derivatives of the thermodynamic variables or the
velocities according to the conservation laws (3.1) to (3.5). The entropy flux f is replaced by
f0 using (3.13)

∂e

∂t
= −(1

2v2
s + µ̄− vn · vs) div j− (j− ρvn)∇(1

2v2
s + ϕ)− vn∇Π− T div(f0 + vss) . (3.27)

We then calculate div q using (3.12)

div q = div
[(

1
2ρv2

s + vs · j0 + e0
)

vs
]

+ div
(

1
2v2

sj0
)

+ div (Π0vs) + div q0 . (3.28)

By using (3.7), we can add (3.27) and (3.28) and solve for div q0

div q0 =− j · ∇1
2v2

s − vs · j0 div vs − vs · ∇(vs · j0)
− vs · ∇e0 − e0 div vs − div(Πvs)− vn · vs div j
+ µ̄ div j0 + µ̄ div(ρvs)− (j− ρvn) · ∇ϕ+ (j− vnρ) · ∇1

2v2
s

+ vn · ∇Π + T div f0 + T div(svs) .

(3.29)

Using (3.10) and doing several rearrangements we can rewrite (3.29) once more:

div q0 =− (h · ∇) · vs + (vn − vs) · (∇ · h) + j0 · [(vn − vs) · ∇] vn
− ρs(vn − vs) · ∇(ϕ− µ̄)−∇T · [f0 − s(vn − vs)] (3.30)
+ div(f0T + j0µ̄) .
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Here we have used the newly introduced tensor h to shorten the expression

hik = Π0ik
+ [e0 − Ts− µ̄ρ− (vn − vs) · j0] δik . (3.31)

As already mentioned q0 and also div q0 must not be a function of spatial derivatives of
thermodynamic quantities. Eliminating the dependency on ∇T we obtain an expression for
f0

f0 = s(vn − vs) , (3.32)

and by using (3.13) also for f
f = svn . (3.33)

Equation (3.33) states that the entropy is only transported by the normal component. Thus,
combining (3.2) with (3.33) the complete law of entropy conservation reads

∂s

∂t
+ div(svn) = 0 . (3.34)

If neither the superfluid density ρs nor the relative velocity (vn−vs) is zero, which is fulfilled
except for trivial cases, ∇(ϕ−µ̄) has to be zero in order to eliminate the dependency on ∇µ̄ in
(3.30). Thereby, the unknown scalar function ϕ can be identified with the chemical potential
per unit mass ∇ϕ = µ̄, thus completing Euler’s equation for the superfluid component (3.5)
yielding

∂vs
∂t

+∇
(

1
2v2

s + µ̄
)

= 0 . (3.35)

To eliminate the remaining dependency of q0 on spatial derivatives of the velocities, the
remaining terms on the right-hand side of equation (3.30) have to be written as the divergence
of one single expression. In order to find this expression, we rewrite (3.30) in component form

∂xi q0i = (vn − vs)i∂xk
hik + j0i(vn − vs)k∂xk

vni − hik∂xk
vsi + ∂xi(f0iT + j0i µ̄) . (3.36)

The last term in (3.36) already fulfils the need to be written as a divergence. All other three
terms can be written as a divergence, if h takes the following form

hik = j0i(vn − vs)k . (3.37)

Inserting (3.37) into (3.36) we obtain

∂xi q0i = ∂xk
[j0i(vn − vs)k (vn − vs)i] + ∂xi(f0iT + j0i µ̄) . (3.38)

Using (3.14) we can commute i and k and finally obtain

∂xi q0i = ∂xi

[
(vn − vs)2 j0i + f0iT + j0i µ̄

]
. (3.39)

Now we have obtained an expression for q0, which does neither depend on spatial or time
derivatives of thermodynamic variables nor on spatial or time derivatives of the velocities

q0 = (vn − vs)2j0 + f0T + j0µ̄ . (3.40)

Inserting (3.37) into (3.31) we obtain an expression for Π0

Π0ik
= j0i(vn − vs)k − [e0 − Ts− µ̄ρ− (vn − vs) · j0] δik . (3.41)
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Inserting (3.40) and (3.41) into (3.12) we obtain the energy flux vector in the old rest frame

q = 1
2ρsv

2
svs + 1

2ρnv2
nvn + 1

2ρn(vn − vs)2vn + jµ̄+ Tsvn . (3.42)

The first two terms represent the transport of the kinetic energy of the two components,
each moved along by its respective velocity. The internal energy connected to the chemical
potential is moved along with the mass current j, the energy connected to entropy is moved
by the normal fluid. Note that there is a fifth term, which is connected to the kinetic energy
of the relative motion. This energy is also transported by the normal component.
Using (3.10) we can transform (3.41) into the momentum flux tensor in the old reference

frame
Πik = ρnvnivnk

+ ρsvsivsk
+ pδik . (3.43)

All its diagonal entries will be identified with the pressure p

p = −e0 + Ts+ µ̄ρ+ (vn − vs) · j0 . (3.44)

In order to compare this equation with the result (2.42) obtained by using the variational
ansatz, we insert (3.9) and (3.11) into (3.44). Thus, (3.44) can be rewritten as

p = Ts+ µ̄ρ+ 1
2ρsv

2
s + ρn(1

2v2
s − vn · vs + v2

n)− e . (3.45)

Expressing the total energy density e in terms of internal and kinetic energy according to
(3.17) we obtain

p = Ts+ µ̄ρ+ ρn(1
2v2

s − vn · vs + 1
2v2

n)− u , (3.46)

which is identical to the previous result (2.42).

4 Summary and Comparison

In this Section, we will give a short summary of the results obtained in Section 2 and 3.
Subsequently, the two approaches will be compared and discussed. At last, the limits of the
LK equations will be outlined.

4.1 LK Equations

All unknown quantities could be determined. To summarize the results all equations found
are listed below

∂ρ

∂t
+ div j = 0 , (4.1)

∂s

∂t
+ div(svn) = 0 , (4.2)

∂vs
∂t

+ (vs · ∇)vs = −∇µ̄ , (4.3)

∂ji
∂t

+ ∂Πik

∂rk
= 0 with Πik = ρsvsivsk + ρnvnivnk + pδik . (4.4)
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This is a system of 8 equations, where the current density j is given by (3.25). We introduce
the thermodynamic potential Ω per unit volume, which is given by a Legendre transformation
of the internal energy

Ω = u− Ts− µ̄ρ− 1
2ρn(vn − vs)2. (4.5)

Considering (3.46), we notice that it is equivalent to the negative pressure

p = −Ω . (4.6)

Using the thermodynamic identity

du = Tds+ µ̄dρ+ 1
2(vn − vs)2dρn (4.7)

we can deduce by considering the total differential of thermodynamic potential per unit
volume

dΩ = −sdT − ρdµ̄− ρn(vn − vs) · d(vn − vs) , (4.8)

that from the two pairs (ρ, s), (T, µ̄) only one is needed:

s (T, µ̄,vn − vs) = − ∂Ω (T, µ̄,vn − vs)
∂T

∣∣∣∣
µ̄, vn−vs

, (4.9)

ρ (T, µ̄,vn − vs) = − ∂Ω (T, µ̄,vn − vs)
∂µ̄

∣∣∣∣
T, vn−vs

. (4.10)

Equations (4.9) and (4.10) can be transformed into equations for T and µ̄

T = T (s, ρ,vn − vs) , (4.11)
µ̄ = µ̄(s, ρ,vn − vs) . (4.12)

So we know, that from the 12 variables vn, vs, ρn, ρ, s, T , µ̄ and u two are redundant, which
reduces the number of degrees of freedom to 10. To complete the eight equations (4.1) to
(4.4) two equations of state are needed. To obtain these equations an underlying, microscopic
theory has to be considered.

4.2 Comparison between Treatments
Comparing the results obtained by the two different approaches, it is apparent that the equa-
tions are exactly the same. Also, in both treatments conservation laws are the starting point
for all further derivations. However, the approaches differ in the set of initial assumptions.
The most striking difference is that in the variational approach, it is assumed that the super-
fluid carries no entropy

sn = s, ss = 0 , (4.13)

while it’s potential flow
rot vs = 0 (4.14)

is not postulated, whereas in the Khalatnikov approach, it is the other way around.
It is therefore tempting to allow sn 6= s and ss 6= 0 in the variational ansatz in the first

place and restrict the set of emerging equations in such a way, that only solutions, that fulfil
condition (4.14) remain. If this restriction led to condition (4.13) an equivalence between
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potential flow and zero superfluid entropy would be proven at least in the formalism of least
action.
To this end, equation (2.5) is altered towards

∂(ss + sn)
∂t

+ div (ssvs + snvn) = 0 (4.15)

and replaces the entropy conservation implied in the formulation of action (2.7), while the
other terms in (2.7) remain the same. In this altered ansatz the variation with respect to vs
leads to the following equation

δA
δvs

: vs = ss
ρ− ρn

∇κ+∇λ . (4.16)

Applying the restriction (4.14) in case the superfluid density ρs = ρ−ρn is not constant, there
are two possibilities, in which (4.15) is compatible with equation (4.14). The first possibility
is, that ∇κ equals zero. In this case, it can be calculated, that the set of equations reduces
to an one-fluid model with vn = vs and so on. This is a correct subset of solutions.
The other possibility is, that ss equals zero. In this case all equations derived by the altered

variational ansatz reduce to the equations obtained by the old ansatz listed in (2.17) to (2.21).
However, there is an additional equation left, which emerges from the variation with respect
to ss. This equation has to be handled with care, as we have seen, that in the subset of
solutions compatible with constraint (4.14), the function ss has to be zero and therefore the
action can no longer depend on it. It is thus necessary to reformulate the action once again
and to imply another constraint, which provides, that ss equals zero. However, this would
be equivalent to formulate the action according to (2.7). We have thus shown, that it is
necessary to formulate the entropy conservation according to (4.13) as it is done in (2.5) in
order to obtain irrotational superfluid flow (4.14). By the derivation in Section 2.3 it was
already shown, that the implication of (2.5), which contains constraint (4.13), is sufficient to
provide irrotational flow (4.14). As a conclusion, we have shown that condition (4.13) and
(4.14) are equivalent in the variational formalism.
It is not clear, how a similar consideration could be performed in the approach performed

by Khalatnikov. If the restriction (4.14) is removed from the set of initial assumptions,
Euler’s equation can not be obtained immediately. This would be problematic as all further
calculations depend on Euler’s equation for the superfluid. Adding condition (4.13) would
not entirely solve this problem, as only the entropy flux tensor would be known. However,
the energy and the momentum flux tensor would still remain undetermined. The approach
had to be completely rearranged.
Another difference between the two formalisms is that the so called source term Γ defined

by equation (2.36) does not appear explicitly in the derivation of the LK two-fluid equation
according to Landau-Khalatnikov. However, it is implicitly included. As already mentioned,
equation (2.35), which reveals the source term Γ, can be obtained from rearranging equations
(4.1) to (4.4). Therefore, it would be possible to derive the equation for Γ also directly
following the Landau-Khalatnikov approach.
Comparing the abilities of the two approaches, it has to be said, that the variational ansatz is

not capable of including any dissipative processes. Furthermore, the necessity to include Lin’s
constraint, which is not accessible to a direct physical interpretation, reduces the elegance and
simplicity of this approach. The discussions in relation to Lin’s constraint have also shown,
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that it can be difficult to include new constraints in order to eliminate certain flaws, without
creating new unintended consequences. However, this approach is still very well structured
and alterations to the ansatz given in Section 2 can be applied easily by changing the set of
independent variables or by applying new constraints with the aid of Lagrange multipliers. For
example, there have been successful attempts to extend the variational principle including the
gradient of the superfluid density as another degree of freedom. Variations of Lin’s principle
have also been made in order to allow for superfluid vorticity [16].
The Khalatnikov approach instead, is built upon only a few fundamental arguments and

plausible physical reasoning. Although the calculations are lengthy, the main ideas are quite
simple and convincing. However, it misses a certain flexibility and it is not obvious how
modifications can be reasonably integrated without changing the whole concept.

4.3 Limits of LK Equations

The equations given above apply only for small velocities. Above certain critical velocities,
the properties of superfluidity are destroyed. Those critical velocities can be derived from
the microscopic theory of elementary excitations and yield the so-called Landau criterion.
They depend not only on the liquid or gas, but also on the type of motion. E.g. considering
liquid helium-II, the critical velocities for flows in a capillary are much higher than in a large
volume. These phenomena are related to the formation of quantized vortices, which can only
be derived by a microscopic model and would go far beyond the scope of the present thesis
[6].

5 Propagation of Sound

The different types of wave propagation are one of the most characteristic properties of
a superfluid liquid. Due to the comparatively simple experimental examination of these
phenomena, they provide a good opportunity to proof theoretical predictions of the two-fluid
model. Following the propagation of so called first sound, which is due to pressure and density
waves, those different wave phenomena are referred to as second, third and so forth sound.
In the first part of this section, we will derive the propagation of first and second sound
in a two-fluid liquid by an approach mainly based on Griffin et al. [3]. Subsequently the
phenomena of third, fourth and fifth sound, which are related to special geometrical set-ups,
will be discussed. At the end of this section there will be a short summary of further wave
phenomena [20].

5.1 First and Second Sound

In order to analyse the propagation of sound in a superfluid the equations of motion for both
fluids (4.1) to (4.4) are linearised. That is all the thermodynamic variables are expanded
around their equilibrium values e.g. p(r, t) = p0 + δp(r, t). In addition, the equilibrium values
of the velocities vneq and vseq are set to zero. This is equivalent to the assumption, that the
velocities are small compared with the velocities of the sound waves.
The linearised system of hydrodynamic equations is

∂δρ

∂t
+ div δj = 0 , (5.1)
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δj = ρs0δvs + ρn0δvn , (5.2)

∂δs

∂t
+ s0 div δvn = 0 , (5.3)

∂δvs
∂t

= −∇δµ̄ , (5.4)

∂δj
∂t

= −∇δp . (5.5)

For technical reasons we now introduce the entropy per unit mass s̄ = s/ρ instead of the
entropy per unit volume s. Its time derivative

∂δs̄

∂t
= 1
ρ0

∂δs

∂t
− s0
ρ2

0

∂δρ

∂t
(5.6)

yields with (5.1), (5.2), and (5.3)

∂δs̄

∂t
= s0
ρ2

0
ρs0 div(δvn − δvs) . (5.7)

Differentiating (5.1) with respect to time and inserting (5.5) we obtain

∂2δρ

∂t2
−∆δp = 0 . (5.8)

In order to find a similar expression for s̄ we first need to express the fluctuations of the
chemical potential by fluctuations of the pressure p and the temperature T . Therefore, we
use equation (2.41) to obtain an expression for the gradient of µ̄

ρ ∇µ̄ = ∇p− s∇T − ρn
2 ∇(vn − vs)2 . (5.9)

Linearising (5.9) yields
∇ δµ̄ = ∇δp

ρ0
− s̄0∇ δT . (5.10)

Equation (5.7) is differentiated with respect to time and the velocity δvn is expressed in terms
of δj and δvs using (5.2), which leads to

∂2δ̄s

∂t2
= s̄0
ρ0
ρs0 div

(
∂δj
∂t
− ρ0

∂δvs
∂t

)
. (5.11)

For the time derivatives ∂δj
∂t and ∂δvs

∂t , equations (5.4) and (5.5) are inserted. Using (5.10) we
finally obtain

∂2δs̄

∂t2
− s̄2

0
ρs0

ρn0
∆δT = 0 . (5.12)

Equations (5.8) and (5.12) are coupled via the following thermodynamic identities

δp =
(
∂p

∂ρ

)
s̄

δρ+
(
∂p

∂s̄

)
ρ
δs̄ , (5.13)
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δT =
(
∂T

∂ρ

)
s̄

δρ+
(
∂T

∂s̄

)
ρ
δs̄ . (5.14)

Equation (5.13) can be obtained by expressing the pressure p using the thermodynamic po-
tential per unit volume Ω according to (4.6) and inserting (4.11) and (4.12) into (4.9) and
(4.10). Taking into account that in a linearised version, the dependency on the relative veloc-
ity does not contribute as p only depends on the relative velocity squared, one obtains that
the fluctuations of the pressure is a function of ρ and s only. Thereby, it is as well a function
of ρ and s̄ = s/ρ

δp = −Ω(δρ, δs) = δp(δρ, δs̄) . (5.15)
Equation (5.14) is a direct consequence of linearising (4.11).
Inserting (5.13) and (5.14) into (5.8) and (5.12) we obtain the following two coupled wave

equations

∂2δρ

∂t2
−
[(

∂p

∂ρ

)
s̄

∆δρ+
(
∂p

∂s̄

)
ρ

∆δs̄
]

= 0 , (5.16)

∂2δs̄

∂t2
− s̄2

0
ρs0

ρn0

[(
∂T

∂ρ

)
s̄

∆δρ+
(
∂T

∂s̄

)
ρ

∆δs̄
]

= 0 . (5.17)

With the simplest ansatz of a plane wave propagating through the fluid, that is δρ, δs̄ ∝
ei(q·r−ωt), we obtain

ω2

q2 δρ =
(
∂p

∂ρ

)
s̄

δρ+
(
∂p

∂s̄

)
ρ
δs̄ , (5.18)

ω2

q2 δs̄ =
[(

∂T

∂ρ

)
s̄

δρ+
(
∂T

∂s̄

)
ρ
δs̄

]
s̄2

0
ρs0

ρn0
. (5.19)

Solving the system (5.18), (5.19) we obtain the following equation for the velocity of sound
u = ω/q

u4 − u2
[(

∂p

∂ρ

)
s̄

+ ρs0s
2
0

ρn0

(
∂T

∂s̄

)
ρ

]
+ s̄2

0
ρs0

ρn0

[(
∂T

∂s̄

)
ρ

(
∂p

∂ρ

)
s̄

−
(
∂p

∂s̄

)
ρ

(
∂T

∂ρ

)
s̄

]
= 0 . (5.20)

The lengthy expression

det∂(T, p)
∂(s̄, ρ) =

(
∂T

∂s̄

)
ρ

(
∂p

∂ρ

)
s̄

−
(
∂p

∂s̄

)
ρ

(
∂T

∂ρ

)
s̄

(5.21)

can be replaced using the cyclic relation for exact differentials also known as triple product
rule (

∂ρ

∂T

)
s̄

(
∂T

∂s̄

)
ρ

(
∂s̄

∂ρ

)
T

= −1 . (5.22)

For instance, equation (5.22) can be solved for ∂T
∂ρ

∣∣∣
s̄
and inserted into (5.21), yielding

det∂(T, p)
∂(s̄, ρ) =

(
∂T

∂s̄

)
ρ

(
∂p

∂ρ

)
s̄

+
(
∂p

∂s̄

)
ρ

(
∂T

∂s̄

)
ρ

(
∂s̄

∂ρ

)
T

=
(
∂T

∂s̄

)
ρ

[(
∂p

∂ρ

)
s̄

+
(
∂p

∂s̄

)
ρ

(
∂s̄

∂ρ

)
T

]

=
(
∂T

∂s̄

)
ρ

(
∂p

∂ρ

)
T

. (5.23)
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In the last step we have used that the pressure p can be expressed due to equation (4.11) as
follows

p = p(ρ, T ) = p (ρ, s̄(T, ρ)) . (5.24)

By using the definition of the equilibrium specific heat per unit mass

cν = T

(
∂s̄

∂T

)
ρ

(5.25)

and inserting (5.23) into (5.20) we finally obtain

u4 − u2
[(

∂p

∂ρ

)
s̄

+ ρs0

ρn0

T s̄2
0

cν

]
+ ρs0

ρn0

(
T s̄2

0
cν

)(
∂p

∂ρ

)
T

= 0 . (5.26)

This formula is very generic and can be used to describe superfluid liquids or condensed Bose
gases in the hydrodynamic limit. However, in the case of any liquid, e.g. He II, equation
(5.26) can be considerably simplified, as temperature and pressure fluctuations are essentially
uncoupled (

∂p

∂T

)
ρ
' 0 . (5.27)

If we express the pressure by using equation (4.11) we find

p = p(T, ρ) = p (T (s̄, ρ), ρ) . (5.28)

Using (5.28) we can express the partial derivative of p with respect to s̄ according to(
∂p

∂ρ

)
s̄

=
(
∂p

∂ρ

)
T

+
(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
s̄

. (5.29)

By inserting (5.27) into (5.29), we obtain(
∂p

∂ρ

)
s̄

'
(
∂p

∂ρ

)
T

. (5.30)

In this case equation (5.26) is considerably simplified and has the two solutions

u2
1 =

(
∂p

∂ρ

)
s̄

, (5.31)

u2
2 = s̄2

0
ρs0

ρn0

(
∂T

∂s̄

)
ρ
. (5.32)

These solutions refer to two distinct physical phenomena referred to as first and second sound.
In the approximation (5.27), that temperature and pressure fluctuations are uncoupled, one

can also show, that first sound is a pure density wave and second sound is a pure temperature
wave. In case, a wave propagates with the velocity u2, we can insert (5.32) into (5.19) and
obtain (

∂T

∂ρ

)
s̄

δρ = 0 . (5.33)
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This means, that any temperature fluctuation is directly proportional to an entropy fluctua-
tions and no other quantities interfere. Equation (5.14) reduces to

δT =
(
∂T

∂s̄

)
ρ
δs̄ . (5.34)

If we solve (5.34) for δs̄ and insert this into (5.13) we obtain

δp =
(
∂p

∂ρ

)
s̄

δρ+
(
∂p

∂s̄

)
ρ

(
∂s̄

∂T

)
ρ
δT , (5.35)

As temperature and pressure fluctuations are uncoupled according to (5.27) this means, that
pressure fluctuations are directly proportional to density fluctuations

δp =
(
∂p

∂ρ

)
s̄

δρ+
(
∂p

∂T

)
ρ︸ ︷︷ ︸

=0

δT . (5.36)

A consideration similar to the steps above can be done for the propagation of first sound.
Thereby, equations (5.34) and (5.35) emerge as well. Thus, it becomes clear, that first and
second sound are uncoupled and describe two different physical processes.
First Sound is an ordinary phenomenon in liquid, describing the propagation of a density

or pressure wave, respectively, that is associated with normal acoustic sound. It is propagated
with the velocity u1 according to equation (5.31). In that case the temperature and entropy
fluctuations can be set to zero. Then from equation (5.7) we obtain, that the motion of the
two components during the propagation of first sound waves has to be in-phase

δvs = δvn . (5.37)

The velocity of first sound was first successfully measured in 1938 by Findlay et al. [21].
Second sound is a phenomenon characteristic for superfluids. It describes the ability to

propagate undamped entropy or temperature oscillations. The velocity of second sound u2 is
given by equation (5.32). The density and pressure fluctuations can be set to zero. Therefore,
from equation (5.1) it follows, that

δj = ρs0δvs + ρn0δvn = 0 , (5.38)

which means, that the total mass current of the liquid is not oscillating, though each of the
components does oscillate. Thus, the two motions are out-of-phase

ρs0δvs = −ρn0δvn . (5.39)

Second sound was first measured in 1946 by Peshkov in liquid helium II, who used a method
proposed by Lifshitz in 1944 [22], [23].

5.2 Third Sound
Until now, we have neglected the viscosity ηn of the normal component. However, in order
to complete the list of different sound modes in a superfluid, we will discuss a phenomenon
referred to as third sound, which only arises, if the normal fluid viscosity is taken into ac-
count. Third sound describes the propagation of surface waves along a thin film of superfluid
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liquid. Thin means in this context, that an oscillatory motion within a viscous medium is
completely damped. This damping principle can be explained easiest for an incompressible
liquid. Incompressible means, that the particle density does not change along the trajectory

∂ρ

∂t
+ v · ∇ρ = 0 . (5.40)

With equation (5.40) the continuity equation simplifies to

div v = 0 . (5.41)

We consider a plane surface in the x − y-plane, which does harmonic oscillations with a
frequency ωs in the x-direction. Its velocity is given according to

u(t) = u0 sinωst . (5.42)

Using symmetry arguments the fluid velocity can only depend on z, i.e. the distance from
the surface. In addition, the following boundary conditions have to be fulfilled:

vx(z = 0) = u0 vy(z = 0) = vz(z = 0) = 0 . (5.43)

Thus, using equation (5.41) we obtain

vz = 0 . (5.44)

By similar arguments the Navier-Stokes equation for an incompressible liquid [7]

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p+ ν∆v , (5.45)

in which ν is the kinematic viscosity defined by ν = η/ρ, simplifies to

∂v
∂t

= −1
ρ
∇p+ ν∆v . (5.46)

From the z-component of equation (5.46), we obtain that the pressure is constant. Thus, we
obtain a simplified equation for the velocity in x direction

∂vx
∂t

= ν
∂2vx
∂x2 . (5.47)

With an ansatz of the form
vx = u0 exp i(kz − ωst) (5.48)

we find that the velocity is given by

vx(z, t) = vx0 exp (−z/δ) sin (z/δ − ωst) , (5.49)

where the damping coefficient of this transverse wave, also called the penetrations depth,
equals

δ =
√

2η
ωsρ

. (5.50)
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We can read off from equation (5.49), that the motion parallel to the surface is damped
exponentially as we move away from the surface. In return this means, that for a thin film of
liquid, which is of a thickness d� δ the whole liquid sticks to the surface. As a consequence,
no surface waves can be excited in this case.
If we consider a superfluid, only the normal component is affected from this clamping effect,

but the superfluid component is not due to its zero viscosity. It is therefore possible, that a
surface wave propagates even along a very thin film of liquid. These surface waves coincide
with temperature waves, as at the peaks of the waves there is an excess of the superfluid
component, which carries no heat, whereas at the troughs the temperature is raised due to
the accumulation of the normal fluid component. This increase (decrease) of temperature
leads to evaporation (condensation).
All equations needed to derive the propagation of third sound are linearised. The temper-

ature T is given by the equilibrium temperature Teq plus a small temperature change δT and
the height of the film is given by z = zeq + δz. The rate of evaporation of the film per unit
area of surface is therefore proportional by a factor K to the temperature change δT

dm
dt = KδT . (5.51)

The conservation of mass per unit area yields

∂ρz

∂t
+ div(ρszvs) +KδT = 0 . (5.52)

Assuming, that the change of the height of the film will be much stronger than the changes
in the densities, a linearised version of (5.52) is given by

ρszeq
∂δvsx

∂x
+ ρ

∂δz

∂t
+KδT = 0 . (5.53)

Again, due to symmetry arguments the superfluid velocity can be reduced to a one dimensional
quantity vsx . The heat flow is given by

ρzeqc
∂δT

∂t
= ρszeq

∂δvsx

∂x
s̄T − LKδT , (5.54)

where c is the specific heat capacity, s̄ the entropy per unit mass and L the heat of vapor-
ization per unit mass. The equilibrium pressure peq is given by the vapour pressure, which
is dependent on the temperature and on the force, which ties the liquid to the surface. In
shallow water waves, this force would simply be the gravitational force. In the case of super-
fluid helium II, the dominating forces are van der Waals forces acting between the liquid and
the wall. Those forces are proportional to the mass by a constant f . The deviation of the
pressure from equilibrium is therefore given by

δp = βδT + fρδz , (5.55)

where β =
(

dp
dT

)
v.p.c.

is the slope of the vapour pressure curve. Inserting this specific expres-
sion for the pressure, Euler’s equation for the superfluid (5.4) becomes

∂δvsx

∂t
= −f ∂δz

∂x
+
(
s̄− β

ρ

)
∂δT

∂x
. (5.56)
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With the ansatz of a plane wave for temperature, velocity and height fluctuations

δz, δT, δvsx ∝ exp [i(ωt− kx)] (5.57)

one obtains by using equations (5.53), (5.54), and (5.56)

ω2

k2 = ρs
ρ
zeqf + ρs

ρ
s̄T

[(
s̄− β

ρ

)
− iKf

ρω

]
/

[
c− iKL

ρωd

]
. (5.58)

Without effects of evaporation, i.e. K = 0, the velocity of third sound is given by

u2
3a = ρs

ρ

[
zeqf + s̄T (s̄− β/ρ)

c

]
. (5.59)

In the case, where the frequencies are small and the evaporation is strong, the sound velocity
is given by

u2
3b = ρs

ρ
zeqf

[
1 + T s̄

L

]
. (5.60)

In both cases the similarity to water waves in a gravitational field is apparent. Those waves
propagate with a velocity c according to

c2 = gh , (5.61)

where g is the standard gravity and h is the height of water. In the case of a two-fluid liquid
on a thin film, this term is proportional to the van der Waals forces instead of gravity and is
furthermore proportional to the relative amount of the superfluid component. Therefore, at
T = 0 K the sound velocity is exactly analogous to the velocity of gravity waves and vanishes
at temperatures above the λ-point, where the superfluid density is zero.
For a more detailed view on surface waves and thin films in classic hydrodynamic see [7,

p. 83, p. 411]. A more elaborate discussion of third sound is given by Atkins [24], who first
discussed this phenomenon in 1953. Experimental verification of the principal constituents of
the theory was carried out in 1964 by Everitt et al. [25].

5.3 Fourth Sound

Fourth Sound describes the wave propagation in a thin capillary, whose diameter is much
smaller than the penetration depth δ defined by (5.50). Analogous to third sound in a thin
film, the normal component of the liquid sticks to the wall and its motion can be neglected,
i.e. δvn = 0. As in a capillary the liquid can not expand, oscillatory motions produce density
changes in first order. The heat flow into the walls of the capillary are ignored. For symmetry
reasons, we can assume that all quantities only depend on the direction of the tube x and that
the velocities in radial direction are equal to zero. Therefore, the linearised hydrodynamic
equations (5.1) to (5.5) read in this case

∂δρ

∂t
+ ρs0

∂vs
∂x

= 0 , (5.62)

∂vs
∂t

= − 1
ρ0

∂δp

∂x
+ s̄0

∂δT

∂x
, (5.63)
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∂s

∂t
= ρ0

∂δs̄

∂t
+ s̄0

∂δρ

∂t
= 0 . (5.64)

Again, we assume, that temperature and pressure fluctuations are uncoupled according to
(5.27), which simplifies the relations (5.13) and (5.14) yielding

δp =
(
∂p

∂ρ

)
s̄

δρ , (5.65)

δT =
(
∂T

∂s̄

)
ρ
δs̄ . (5.66)

Taking the partial derivative of equation (5.64) with respect to x, we obtain

∂2δs̄

∂t∂x
= − s̄0

ρ0

∂2δρ

∂t∂x
. (5.67)

Inserting (5.65) and (5.66) into (5.63) and performing the partial derivative with respect to
time, we obtain

∂2vs
∂t2

= − 1
ρ0

(
∂p

∂ρ

)
s̄

∂2δρ

∂x∂t
− s̄0

(
∂T

∂s̄

)
ρ

∂2δs̄

∂x∂t
. (5.68)

Inserting (5.67) into (5.68) the entropy per unit mass s̄ can be eliminated. Taking the partial
derivative of equation (5.62) with respect to x, we can also eliminate the density and obtain
a wave equation for vs:

∂2vs
∂t2

= ρs0

[
1
ρ0

(
∂p

∂ρ

)
s̄

+ s̄2
0
ρ0

(
∂T

∂s̄

)
ρ

]
∂2vs
∂x2 . (5.69)

With the ansatz of a plane wave vs ∝ exp i(kx− ωt) this yields

ω2

k2 = ρs0

ρ0

(
∂p

∂ρ

)
s̄

+ ρs0

ρ0
s̄2

0

(
∂T

∂s̄

)
ρ
. (5.70)

By equations (5.31) and (5.32), we can write the velocity of fourth sound as a combination
of the velocities of first and second sound

u2
4 = ρs0

ρ0
u2

1 + ρn0

ρ0
u2

2 . (5.71)

From this equation, we can read off, that at temperatures close to zero temperature, when
the normal component of the liquid vanishes, the wave propagates like a normal density wave
with the velocity of first sound. On the other hand, for high temperatures it seems like the
second term would dominate, but the velocity of third sound itself depends on the density of
the superfluid component and vanishes at high temperatures. Therefore, the decomposition
of u2

3 in equation (5.71) is slightly deceptive.
Like the phenomenon of third sound, fourth sound was first studied in 1958 by Atkins [24]

and validated in 1965 by Shapiro et al. [26].
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5.4 Fifth Sound

Fifth Sound occurs in geometrical set-ups similar to those used for the detection of third sound.
The essential conditions are again boundary conditions, that force the normal component to
stay at rest. In fact, fifth sound represents a special case of third sound, in which the
vaporization does not contribute to the wave propagation. The equations (5.53) to (5.58) can
be used with the following alterations: The vapor pressure does not come into effect, and
thus the coefficient of the vapor pressure slope β can be set to zero. Also, the evaporation
coefficient K is set to zero. The continuity equation (5.53) and the heat flow (5.54) then
reduce to

ρszeq
∂δvsx

∂x
+ ρ

∂δz

∂t
= 0 , (5.72)

ρzeqc
∂δT

∂t
= ρszeq

∂δvsx

∂x
s̄T . (5.73)

In case, the van der Waals forces are small compared to the temperature fluctuations, Euler’s
equation (5.56) is simplified yielding

∂δvsx

∂t
= s̄0

∂δT

∂x
. (5.74)

The velocity of a wave propagating under these circumstances is then given by equation (5.58)
with K = β = f = 0

u2
5 = ρs0

ρ0
s̄2

0
T

c
= ρn0

ρ0
u2

2 . (5.75)

By using the expression for the velocity of second sound (5.32), it becomes apparent, that
fifth sound is related to pure temperature waves like second sound under special geometrical
conditions.
Fifth sound was proposed theoretically in 1979 by Rudnick et al. [27] and validated exper-

imentally in 1979 by Williams et al. [28].

5.5 Further Sound Modes

There are several further wave phenomena or sound modes, that can occur in a hydrodynamic
system, which can be described by the LK two-fluid equations. However, they can not all be
discussed here. Instead in the following they are listed and references for further reading are
given.
The fifth wave mode describes the heavily damped propagation of second sound in a

capillary. Theoretical prediction in 1971 by Wiechert et al. [29], experimental verification in
1982 by Wiechert et al. [30].
Two-phase sound refers to the coupling of second sound between the vaporized phase and

the liquid phase. Theoretical prediction and experimental verification in 1979 by Putterman
et al. [31].
Surface tension sound is a wave mode, that occurs only on curved surfaces on thin films.

The velocity of propagation increases with a decrease of the curvature radius. Theoretical
prediction in 1975 by Saam et al. [32], experimental verification in 1979 by Rosenbaum et al.
[33].
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Second surface sound describes density waves in the normal component on surfaces
of films, which are thicker than the penetration depth. Theoretical prediction in 1972 by
Andreev et al., experimental verification in 1974 by Eckardt et al. [20].
Zeroth Sound describes sound propagation in a Fermi liquid at very low temperatures.

Theoretical prediction in 1957 by Landau [20], experimental verification in 1963 by Keen et
al. [34].

6 Conclusion and Outlook

In this thesis we derived the Landau-Khalatnikov equations first by the principle of least
action and second by an approach based on the Galilean relativity principle and symmetry
arguments according to Khalatnikov. Both treatments were based on the fundamental role
of conservation laws and led to the same results. However, they started with different sets of
initial assumptions. Using the variational principle, the equivalence of the two sets could be
derived. The strengths and weaknesses of the two approaches were pointed out emphasizing
the potential of the variational ansatz to be extended by inclusions of new degrees of freedom.
The obtained LK equations were linearised in order to discuss the phenomena of sound

propagation. First and second sound were derived from these equations and discussed in the
case of uncoupled temperature and pressure fluctuations. The phenomena of third, fourth
and fifths sound, which appear under special geometrical conditions, were also derived and
discussed. Subsequently, a summary of further wave phenomena in superfluids was given.
In order to unfold full applicability the LK equation need to be completed by equations of

state, which can only be obtained from a microscopic theory. As superfluidity is a macroscopic
quantum phenomenon, it would be convincing to use the Bogoliubov theory for a weakly
interacting gas of Bosons with contact interaction at low temperatures and calculate the
partition function in order to obtain the equations of state from the corresponding free energy
[2].
Another interesting step would be to extend the two-fluid model, which is by now only

capable of describing a system with isotropic contact interaction, to a model, which includes
the effects of anisotropic, e.g. dipole-dipole interaction. At T = 0 K it is proposed, that in
a Bose gas with dipole-dipole interaction and weak disorder, the superfluid density becomes
anisotropic [35]. This is also proposed to happen at finite temperatures in systems without
disorder [36]. In such a case the scalar functions ρn and ρs would have to be replaced by a
diagonal 3× 3 matrices ρnij = ρniδij , ρsij = ρsiδij with the following property

ρnx = ρny 6= ρnz , ρsx = ρsy 6= ρsz , (6.1)

where z points along the direction of the dipoles and ρδij = ρnij +ρsij . The two fluid equations
would then have to be rewritten accordingly. For example the kinetic energy density would
be

ekin = 1
2vsi(ρδij − ρnij )vsj + 1

2vniρnijvnj . (6.2)

A third aim would be to include disorder in the hydrodynamic description of a superfluid. It
has been proposed theoretically by Huand and Meng [37], that a disorder potential leads to
the formation of local condensates in the potential minima and that this causes a reduction
of the superfluid density even at zero temperature, whereas without disorder the complete
fluid is in a superfluid state [38]. This begs the question, whether disorder leads to a third
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component of the fluid. In a system at finite temperature with disorder the superfluid density,
the normal density, and presumably a third component, resulting from the formation of local
condensates, would then have to be described in a unified three-fluid model.
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