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1 INTRODUCTION

1 Introduction

The derivation of the quantum statistics of bosons by Satyendra Nath Bose [1] and the adja-
cent investigations of Albert Einstein in 1924 [2] led to the prediction of a phase transition to
a new quantum state of matter at very low temperatures. This state is characterized by the
fact that a large number of indistinguishable bosons occupy the ground state. It took about
70 years until an experimental realization of the Bose-Einstein condensation in ultracold
dilute alkali-metal gases was achieved in 1995 [3, 4]. This was a major break-through and
opened the gates to an exciting new field of research, both experimentally and theoretically.
In dilute gases, the correlations between atoms are weak and unlike in the theory of superfluid
liquid 4He, a mean-field theoretical approach can be applied. Therefore these systems can
be described by a macroscopic condensate wave function ψ(r, t) that characterizes the static
and dynamical behaviour of the Bose-Einstein condensate (BEC). This wave function obeys
a nonlinear Schrödinger equation known as the Gross-Pitaevskii equation [5, 6].

The research of vortices in classical fluids has a very long history. When Leonardo da Vinci
drew his famous sketches of water turbulence in the 16th century, he realized that turbulence
consists of many eddies of different sizes. It was in 1858 that Helmholtz proposed the idea
of a vortex filament [7]. The most important difference between the physics of the vortices
in quantum systems and those in classical systems, is the quantized circulation which is due
to the single-valuedness of the condensate wave function. The first experimental detection
of a vortex in an atomic BEC was made by Matthews et al. in 1999 [8]. Soon afterwards,
vortex creation in BECs was reported by several groups using a range of different techniques
[9, 10, 11]. Related highly active fields of research are the study of vortices in two-component
Bose-Einstein condensates, the study of vortices in condensates with dipolar interaction [12]
and the investigation of the dynamics and stability properties of a single off-axis vortex [13].

A common experimental method to create vortices in BECs is to confine the atoms in a
static, cylindrically symmetric magnetic trap, upon which a nonaxisymmetric dipole poten-
tial is superimposed, created by a stirring laser beam. The gas is evaporatively cooled to
Bose-Einstein condensation, while the superimposed laser potential is rotated with angu-
lar frequency Ω (see Figure 1). Intuitively, this scheme refers to stirring the condensate

Figure 1 – A cigar-shaped condensate is confined by an axisymmetric magnetic trap
and stirred by an off-center far-detuned laser beam. The laser beam propagates along
the long axis and creates an anisotropic quadrupole potential that rotates at an angular
velocity Ω. The image is taken from Ref. [14].
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1 INTRODUCTION

mechanically and is analogous to the seminal “rotating bucket” experiment in classical hy-
drodynamics [15]. In Figure 2 images taken during an experiment by Madison et al. using
this technique are displayed. Since the vortex core radius is too small for direct visualization,
a time of flight method was used to obtain the images, where the trap is turned off, allowing
the condensate to expand. The initial tight radial confinement means that this expansion is
mostly in the radial direction, and the expanded condensate usually becomes disc-shaped.
The vortices are clearly visible as dark spots in the otherwise bright density profile of the
trapped BEC.

Figure 2 – Absorption images of a BEC stirred with a laser beam. In all images the
condensate consists of about 1.4 × 105 atoms, the temperature is below 80 nK and the
rotation rate Ω/2π increases from 145 Hz for (a) and (c) to 168 Hz for (g). Images (a)
and (b) show the optical thickness for images (c) and (d), with the clear appearance of
the vortex core. Images (e), (f), and (g) show states with two, three, and four vortices.
The pictures are taken from Ref. [14].

In this work, we study the static and dynamic properties of a single vortex in a one-component
Bose-Einstein condensate. In Section 2 we introduce the Gross-Pitaevski equation and the
Thomas-Fermi limit and show that the circulation of a vortex in a BEC is quantized. In
Section 3 we derive within a variational approach approximate equations of motion for a
condensate with a centered vortex and discuss equilibrium points. Furthermore we calculate
the energies for a condensate with and without a vortex and obtain the critical rotation
frequency for a rotating trap at which a vortex state becomes stable. We then investigate
the behavior of the condensate in free expansion after the trapping potential is turned off.
Finally in Section 4 we review what we have achieved and discuss possible continuations of
our research work.
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2 GROSS-PITAEVSKII EQUATION

2 Gross-Pitaevskii Equation

The dynamics of a Bose-Einstein condensate at zero temperature is determined by the time-
dependent Gross-Pitaevskii (GP) equation [5, 6]

i~
∂ψ(r, t)

∂t
=

[
− ~2

2M
∇2 + V (r) + g|ψ(r, t)|2

]
ψ(r, t). (1)

In general V (r) is an arbitrary external potential. In this work, we specialize on a cylindrical
trap potential

V (ρ, z) =
M

2
ω2
ρ(ρ

2 + γ2z2), (2)

which will be the reference point for the following calculations. Here γ = ωz
ωρ

is the ratio of

the trap frequencies. The two-particle interaction strength g is given by

g =
4π~2as
M

, (3)

where, as we are in the low-energy limit, only the s-wave scattering is important and as
denotes the s-wave scattering length [16]. Note that only two-particle interactions are con-
sidered, which is an appropriate approximation for dilute gases. The GP equation is often
referred to as a nonlinear Schrödinger equation where the nonlinearity arises from the two-
particle interaction and the wavefunction is normalized to the particle number N , which leads
to the normalization condition

N =

∫
|ψ(r, t)|2d3r. (4)

Performing the following ansatz for a separation of time

ψ(r, t) = ψ(r) e−
i
~µt (5)

and inserting it into equation (1) we arrive at the time-independent GP-equation

µψ(r) =

[
− ~2

2M
∇2 + V (r) + g|ψ(r)|2

]
ψ(r). (6)

Here µ represents the chemical potential, which is determined by the normalization condition
(4).

2.1 Thomas-Fermi Approximation

We now consider the stationary case without a vortex. For large clouds with a large number
of particles an accurate approximation to the ground-state wave function may be obtained
by neglecting the kinetic energy term in equation (6), which then simplifies to

n(r) = |ψ(r)|2 =
µ− V (r)

g
, (7)
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2.2 Superfluid Velocity and Quantized Circulation 2 GROSS-PITAEVSKII EQUATION

and n(r) = 0, if the right-hand side becomes negative. Here the boundaries of the cloud are
determined by the condition

V (r) = µ. (8)

This leads to the so-called Thomas-Fermi (TF) radii which give the extension in radial and
axial direction of the cloud

R⊥ =

√
2µ

Mw2
ρ

, R‖ =

√
2µ

M(wργ)2
. (9)

The chemical potential µ has to be calculated using the normalization condition (4) and in
case of the trap potential (2) turns out to be:

µ =

[
15w3

ργNg

8π

(
M

2

) 3
2

] 2
5

. (10)

Finally the density profile has a parabolic shape

nTF(ρ, z) = nTF0

[
1−

(
ρ

R⊥

)2

−
(
z

R‖

)2
]
, (11)

where the density at the trap center is given by

nTF0 =
µ

g
. (12)

2.2 Superfluid Velocity and Quantized Circulation

Multiplying the time-dependent GP equation (1) with ψ∗(r, t) and substracting its complex
conjugate, one arrives at:

∂|ψ|2

∂t
+∇

[
~

2Mi
(ψ∗∇ψ − ψ∇ψ∗)

]
= 0, (13)

which has the form of a continuity equation for the particle density n and may be written as

∂n

∂t
+∇(nv) = 0, (14)

where the velocity v of the condensate is defined by

v =
~

2Mi

(ψ∗∇ψ − ψ∇ψ∗)
|ψ|2

. (15)

Using the Madelung transformation [17] the condensate wave function can be written in
terms of its density n = |ψ|2 and phase S(r, t) by

ψ =
√
n eiS . (16)
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3 VARIATIONAL APPROACH

Inserting equation (16) into equation (15) reveals a simple expression for the condensate
velocity which depends on the gradient of the phase

v =
~
M
∇S. (17)

This has far-reaching consequences for the possible motion of the condensate, since it imme-
diately follows, that

∇× v = 0 (18)

and, therefore, the velocity field is irrotational unless the phase shows a singularity.
From the single-valuedness of the condensate wave function it follows that, around a closed
loop C, the change in phase ∆S must be an integer multiple of 2π. Thus the circulation κ
which is defined by

κ =

∮
C

vdr, (19)

is calculated to be

κ = 2πl
~
M
, (20)

where l is an integer number. This result reveals, as was first proposed by Onsager [18] in
the context of superfluid liquid 4He, that the circulation is quantized. For a vortex line at ρ0
equation (18) generalizes under consideration of (20) to

∇× v = 2πl
~
M
δ(2)(ρ− ρ0)ẑ, (21)

where δ(2) is the two-dimensional Dirac delta function and ρ the polar vector in the xy plane.

3 Variational Approach

In this section we use a variational approach to obtain approximate equations of motions
for parameters of a suitable trial function. This technique is well-established and has been
successfully applied in several previous studies [19, 20].

3.1 Least Action Principle

Multiplying the time-dependent GP equation (1) with δψ∗ and its complex conjugate with
δψ and integrating over space and time, we are led to the equivalent least action principle:

δA[ψ∗, ψ] = 0, (22)

with the action

A =

∫
dt

∫
d3rL (23)

and the Lagrange density
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3.2 Finding a Suitable Trial Function 3 VARIATIONAL APPROACH

L =
i~
2

[
ψ∗(r, t)

∂ψ(r, t)

∂t
− ψ(r, t)

∂ψ∗(r, t)

∂t

]
− ~2

2M
∇ψ(r, t)∇ψ∗(r, t)

− V (r)ψ(r, t)ψ∗(r, t)− 1

2
gψ∗(r, t)2ψ(r, t)2.

(24)

Inserting a suitable trial function with time-dependent parameters into equation (24) and
integrating over space, leads to the Lagrange function

L =

∫
d3rL (25)

of the system. With the help of the Euler-Lagrange formalism

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (26)

we arrive at effective Lagrangian equations of motion for our time-dependent variational
parameters qi. Although not exact, this method gives a good qualitative and quantitative
description of the underlying physical problem.

3.2 Finding a Suitable Trial Function

We now consider a Bose-Einstein condensate with a vortex in the harmonic trap with cylin-
drical symmetry from equation (2). In this case, the phase S only depends on the polar angle
ϕ and equation (16) transforms to

ψ(ρ, z, ϕ) =
√
n(ρ, z) eilϕ = f(ρ, z) eilϕ . (27)

Inserting equations (2) and (27) into (6) leads to an equation for the amplitude f :

− ~2

2M

[
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+
∂2f

∂z2

]
+

~2

2Mρ2
l2f +

M

2
ω2
ρ(ρ

2 + γ2z2)f + gf 3 = µf. (28)

As we can see, the superflow term containing the angular momentum l represents a centrifugal
barrier proportional to 1/ρ2. Thus the amplitude has to vanish at ρ = 0, as otherwise the
equation collapses. To determine the length scale ζ of the vortex core size, we compare the
relevant energies near the trap center which are the kinetic energy that is proportional to
~2/2Mζ2, and the interaction energy, which is proportional to f 2g. For the amplitude to
return to its bulk value these energies must approximately be the same and the resulting
length scale is determined to be

ζ =

√
~2

2Mgf 2(ζ, 0)
=

1√
8πaf 2(ζ, 0)

. (29)
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3 VARIATIONAL APPROACH 3.2 Finding a Suitable Trial Function

Here f 2(ζ, 0) is taken to be the local Thomas-Fermi density without a vortex at the trap-
center nTF0 and ζ is called the coherence length. Combining equations (9), (12) and (29) we
are led to the important relation

ζ

dho
=
dho
R⊥

, dho =

√
~

Mωρ
. (30)

The TF oscillator length dho is the geometric mean of ζ and R⊥, and equation (30) then
yields a clear separation of TF length scales ζ � dho � R⊥.

We now obtain approximate solutions of equation (28) for the amplitude f in the cases
ρ � ζ and ζ � ρ < Rρ respectively, where Rρ is the radial extension of the cloud. For
ρ� ζ the dominant terms in equation (28) arise from the kinetic energy and the associated
derivatives with respect to ρ. Thus we neglect all other terms and are left with

− ~2

2M

[
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)]
+

~2

2Mρ2
l2f = 0. (31)

Solving for f yields the ρ-dependence

f = cρl, n = c2ρ2l, ρ� ζ, (32)

where c is a suitable constant. On the other hand, for ζ � ρ < Rρ, the kinetic energy can
be neglected and we are left with the familiar Thomas-Fermi solution (11).
A suitable trial function for a variational approach has to reconcile both asymptotic forms
(11) and (32), which is done by the following function

ψ(ρ, z, ϕ) = C

√√√√( ρ2

ρ2 + ξ2

)l [
1−

(
ρ

Rρ

)2

−
(
z

Rz

)2
]

eilϕ . (33)

Here ξ specifies the distance at which the condensate density reaches half of the value of a
condensate without a vortex at the trap center and hence characterizes the size of the vortex
core. This value is supposed to be of the order of the coherence length ζ introduced in (29)
and, therefore, should be small compared to the other relevant quantities. The exponential
term on the right-hand side is essential for the wavefunction of a rotating Bose-Einstein
condensate, since the phase is responsible for the angular velocity as discussed in Section 2.2.
In general it costs energy to create a vortex and the amount of this energy is dominated
by the kinetic energy of the superfluid flow due to the vortex. In the case of a cylindrically
symmetric trap it follows from equations (20) and (27) that the velocity is given by

vϕ =
l~
Mρ

. (34)

Thus the energy associated with the superfluid flow is of the order of

Ev =

∫
d3r

1

2
Mnv2 =

l2~2

2M

∫
d3r

n

ρ2
. (35)
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3.3 Obtaining the Lagrange Function 3 VARIATIONAL APPROACH

We see that Ev increases with l2 and therefore it is energetically favorable for higher quantized
vortices to decay into multiple singly quantized vortices. Here Ev stands for the leading term
in the energy it costs to create a vortex. Hence, the most important case is l = 1, and so we
will restrict ourselves from now on to the study of this particular case.

3.3 Obtaining the Lagrange Function

Taking (33) as a reference point, we choose our time-dependent trial function to be of the
following form

ψ(ρ, z, ϕ, t) = C(t)

√√√√ ρ2

ρ2 +Rρ(t)2β(t)2

{
1−

[
ρ

Rρ(t)

]2
−
[

z

Rz(t)

]2}
eiϕ+iBρ(t)ρ

2+iBz(t)z2 .

(36)
Here Rz(t), Rρ(t), β(t), Bρ(t) and Bz(t) are time-dependent variational parameters, where
Bρ(t) and Bz(t) are necessarily included to describe the condensate dynamics. Note, that
we have introduced β(t) = ξ(t)/Rρ(t) which is the ratio of the vortex core size to the radial
extension of the cloud. Furthermore, we have set the angular momentum quantum number l
to 1, since, as has been shown in Subsection 3.2, higher quantized vortices decay into multiple
singly quantizes vortices. Inserting (36) into the Lagrange density from equation (24), the
Lagrange function is obtained by integrating over space. The condensate density has to
remain positive, which gives a condition for the integration domain for z and ρ:

1−
[

ρ

Rρ(t)

]2
−
[

z

Rz(t)

]2
≥ 0. (37)

For reasons of lucidity we introduce the following abbreviation

A1(t) =
√

1 + β(t)2 Arcsch[β(t)] (38)

and
A2(t) = −3 + 5β(t)2

[
3A1 − 4 + 3β(t)2 (A1 − 1)

]
. (39)

The normalization constant C(t) in (36) is determined via the normalization condition (4)
and turns out to be

C(t) =

√
− 45N

8πRρ(t)2Rz(t)A2(t)
. (40)

The Lagrange function can be split into four parts which are now to be calculated separately:

L = Ltime + Lkin + Lpot + Lint. (41)

The potential part

Lpot = −
∫
d3rV (r)|ψ(r, t)|2 (42)
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3 VARIATIONAL APPROACH 3.3 Obtaining the Lagrange Function

gives

Lpot = −MNω2
ρ

[
−3

7

Rρ(t)
2

A2(t)
− β(t)2Rρ(t)

2

2
+
γ2Rz(t)

2(1 + β(t)2)

10
+

6γ2Rz(t)
2

70A2(t)

]
. (43)

The part arising from the interaction

Lint = −g
2

∫
d3r|ψ(r, t)|4 (44)

is calculated to be

Lint =
9N2g

πRρ(t)2Rz(t)

[
9β(t)2

8A2(t)
+

1

2A2(t)
+

27

28A2(t)2

]
. (45)

The part denoted with Ltime is

Ltime =
i~
2

∫
d3r

[
ψ∗(r, t)

∂ψ(r, t)

∂t
− ψ(r, t)

∂ψ∗(r, t)

∂t

]
(46)

and gives

Ltime = ~N

{
6Rz(t)

2Ḃz(t)

35A2(t)
+

[1 + β(t)2]Rz(t)
2Ḃz(t)

5
− 6Rρ(t)

2Ḃρ(t)

7A2(t)
−Rρ(t)

2Ḃρ(t)β(t)2

}
.

(47)
The kinetic contribution is

Lkin = − ~2

2M

∫
d3r∇ψ(r, t)∇ψ∗(r, t). (48)

Remembering that the Thomas-Fermi approximation corresponds to neglecting the kinetic
energy part arising from the curvature of the slowly varying condensate background envelope√

1− [ρ/Rρ(t)]
2 − [z/Rz(t)]

2, we follow Ref. [12] and drop all terms that are due to the

gradient of this part. The kinetic contribution to the Lagrange function is thus calculated in
TF approximation to be

Lkin =
N~2

m

(
− 65

8Rρ(t)2A2(t)
− 165β(t)2

16Rρ(t)2A2(t)

+
12Rρ(t)

2Bρ(t)
2

7A2(t)
− 6Rρ(t)

2Bρ(t)
2β(t)2

A2(t)
− 40Rρ(t)

2Bρ(t)
2β(t)4

A2(t)
− 30Rρ(t)

2Bρ(t)
2β(t)6

A2(t)

+
6Rz(t)

2Bz(t)
2

7A2(t)
+

46Rz(t)
2Bz(t)

2β(t)2

5A2(t)
+

14Rz(t)
2Bz(t)

2β(t)4

A2(t)
+

6Rz(t)
2Bz(t)

2β(t)6

A2(t)

+
3A1(t)

16A2(t)

{
40 + 80β(t)2 + 55β(t)4

[1 + β(t)2]Rρ(t)2
+ 160β(t)4[1 + β(t)2]Rρ(t)

2Bρ(t)
2

+32β(t)2[1 + β(t)2]2Rz(t)
2Bz(t)

2

})
.

(49)
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3.4 Equations of Motion 3 VARIATIONAL APPROACH

Since β(t) is small, we neglect from now on all terms of higher than second order in β. After
introducing the following abbreviations

A3(t) = β(t)2
{

30 ln

[
2

β(t)

]
− 61

}
, (50)

A4(t) = 30 + β(t)2
{

349− 120 ln

[
2

β(t)

]}
, (51)

A5(t) = 4~2Bz(t)
2 +M [Mω2

ργ
2 − 2~Ḃz(t)], (52)

A6(t) = 4~2Bρ(t)
2 +M [Mω2

ρ − 2~Ḃρ(t)], (53)

A7(t) = 38− 15 ln

[
2

β(t)

]
, (54)

A8(t) = 410 + 3 ln

[
2

β(t)

]{
−187 + 60 ln

[
2

β(t)

]}
, (55)

A9(t) =

[
−78 + 72 ln

[
2

β(t)

]
+ β(t)2

{
439 + 360 ln

[
2

β(t)

]2
− 762, ln

[
2

β(t)

]}]
(56)

the Lagrange function becomes

L = − NgA4(t)

56πRρ(t)2Rz(t)
− 5~2A9(t)

144MRρ(t)2
− A6(t)Rρ(t)

2 [6 + A3(t)]

42
+
A5(t)Rz(t)

2 [−15 + A3(t)]

210
.

(57)

3.4 Equations of Motion

Now that we have obtained the Lagrange function of the system, we proceed by minimizing
the corresponding action with respect to our variational parameters. This leads to Euler-
Lagrange equations of the form (26). Minimizing for Rρ(t) gives

18NgA4(t) +
35π~2A9(t)Rz(t)

M

− 48π [6 + A3(t)]Rρ(t)
4Rz(t)

[
2~2

M
Bρ(t)

2 +
1

2
Mω2

ρ − ~Ḃρ(t)

]
= 0.

(58)

Minimizing with respect to Rz(t) yields

15NgA4(t)− 16πRρ(t)
2Rz(t)

3 [15− A3(t)]

[
2~2

M
Bz(t)

2 +
1

2
Mω2

ργ
2 − ~Ḃz(t)

]
= 0. (59)
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Varying β(t), we get

45MNg

{
−409 + 120 ln

[
2

β(t)

]}
β(t)2 − 175π~2A8(t)Rz(t)β(t)2 + 3150~2πRz(t)

+48πMRρ(t)
2Rz(t)β(t)2A7(t)

{
5Rρ(t)

2

[
2~2

M
Bρ(t)

2 +
1

2
Mω2

ρ − ~Ḃρ(t)

]
−Rz(t)

2

[
2~2

M
Bz(t)

2 +
1

2
Mω2

ργ
2 − ~Ḃz(t)

]}
= 0.

(60)

Finally, minimizing for Bρ(t) and Bz(t) we obtain

Bρ(t) =
M

2~

[
2β(t)A7(t)β̇(t)

6 + A3(t)
− Ṙρ(t)

Rρ(t)

]
(61)

and

Bz(t) =
M

2~

[
2β(t)A7(t)β̇(t)

−15 + A3(t)
− Ṙz(t)

Rz(t)

]
. (62)

Inserting (61) and (62) into (58)–(60) and rescaling to dimensionless variables

rρ = Rρ/

√
~

Mωρ
, rz = Rz/

√
~

Mωρ
, τ = ωρt, P =

MN

4π~2
/

√
~

Mωρ
g, (63)

we arrive at a system of three coupled ordinary differential equations. We again expand up
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to second order in β and after rearranging the equations we are led to

r̈z(τ) =− 15PA4(τ)

2(A3(τ)− 15)rρ(τ)2rz(τ)2
+

4β(τ)A7(τ)ṙz(τ)β̇(τ)

A3(τ)− 15

+
2 (15 + A7(τ)) rz(τ)β̇(τ)2

A3(τ)− 15
− 4β(τ)2A7(τ)2rz(τ)β̇(τ)2

15 [A3(τ)− 15]
(64)

− γ2rz(τ) +
2β(τ)A7(τ)rz(τ)β̈(τ)

A3(τ)− 15
,

r̈ρ(τ) =
35A9(τ)

24[6 + A3(τ)]rρ(τ)3

+
3A4(τ)P

[6 + A3(τ)]rρ(τ)3rz(τ)
− rρ(τ) +

2A7(τ)2β(τ)2rρ(τ)2β̇(τ)2

3[6 + A3(τ)]
(65)

+
2[15 + A7(τ)]rρ(τ)β̇(τ)2

6 + A3(τ)
+

2A7(τ)β(τ)[2ṙρ(τ)β̇(τ) + rρ(τ)β̈(τ)]

6 + A3(τ)
,

β̈(τ) =

(
7875

4A7(τ)β(τ)2rρ(τ)2
− rz(τ)

[
15r̈z(τ) + 4A7(τ)β(τ)β̇(τ)ṙz(τ)

]
− 875A8(τ)

8A7(τ)rρ(τ)2

+15
[
5rρ(τ)2 − γ2rz(τ)2

]
+ 25rρ(τ)

[
3r̈ρ(τ)− 2A7(τ)β(τ)β̇(τ)ṙρ(τ)

]
(66)

+
225P {−409 + 120 ln [2/β(t)]}

2A7(τ)rz(τ)rρ(τ)2

)
/A7(τ)β(τ)

[
25rρ(τ)2 + 2rz(τ)2

]
.

Notice that the resulting dynamics is essentially due to having introduced the variational
parameters Bρ(t) and Bz(t) in the ansatz (36).

3.5 Equilibrium Positions

We now study the stationary points of the system and therefore set all velocities and accel-
erations to zero. This reduces equations (64)–(66) to

γ2rz0 =− 15PA4

2(A3 − 15)r2ρ0r
2
z0

, (67)

rρ0 =
35A9

24[6 + A3]r3ρ0
+

3A4P

[6 + A3]r3ρ0rz0
, (68)

15γ2r2z0 =
7875

4A7β2
0r

2
ρ0

+
225P

{
−409 + 120 ln

[
2
β0

]}
2A7rz0r2ρ0

+ 75r2ρ0 −
875A8

8A7r2ρ0
. (69)

3.5.1 Approximate Analytical Solution

Apart from a numerical solution of these equations, we are also interested in an approximate
analytical expression for the equilibrium positions. Therefore we solve equation (67) for P
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and neglect the part that goes with β2, which gives

P =
1

15
γ2r2ρ0r

3
z0. (70)

Inserting this result into equations (68) and (69), and again only taking terms in β to lowest
order with us, we are led to

r2z0 =
455

24γ2r2ρ0
−

10 ln
[

2
β0

]
γ2r2ρ0

+
r2ρ0
γ2

(71)

and

105 = β2
0

[
35

6
A8 − 4A7rρ0 − 12γ2

(
−97 + 30 ln

[
2

β0

])
r2ρ0r

2
z0

]
. (72)

Eliminating rz0 between equations (71) and (72) we obtain an equation depending on β0 and
rρ0. Solving for rρ0 only one positive, real solution exists, namely

rρ0 =

51/4

(
36− β2

0

{
2081− 2676 ln

[
2
β0

]
+ 720 ln

[
2
β0

]2})1/4

23/4
√

3β0
. (73)

Neglecting the terms in the bracket on the right-hand side that go with β2
0 and solving for

β0 we obtain

β0 =

√
5
2

r2ρ0
. (74)

This result is consistent with other studies [21] and coincides up to a factor of
√

5/2 with the
coherence length of equation (30) which certifies that the length scale of the vortex core size
is indeed determined by the coherence length. Solving (74) for rρ0, inserting the result into
equation (71) and neglecting terms of higher order in β0 leads to the analogous approximate
dependence of β0 on rz0

β0 =

√
5
2

γ2r2z0
. (75)

Reintroducing the rescaled scattering length P from equation (70) we arrive at approximate
equations for the fixpoint positions of the condensate

β0 =
51/10

√
2(3Pγ)2/5

, (76)

rρ0 = (15Pγ)1/5, (77)

rz0 =
rρ0
γ
. (78)
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Note that equations (77) and (78) coincide with the TF-Radii R⊥ and R‖ from equation (9)
and (10) for a condensate without a vortex in our rescaled units. This proves that the spatial
extension of the condensate is not significantly influenced by the presence of a vortex.
However, we are also interested in the first corrections to (77) and (78) in order to see
in which direction the radii are altered due to the presence of a vortex. Therefore, we
insert the approximate solution for β0 into the fixpoint equations (67) and (68) and replace
rρ0 → rρ−TF+δrρ and rz0 → rz−TF+δrz where rρ−TF and rz−TF are the approximate solutions
from equations (77) and (78). Since the corrections δrρ and δrz are supposed to be small, we
only take first order terms with us and solve the resultant system of two linear equations in
δrρ and δrz. The leading terms are straightforwardly determined to be

δrρ =
{
−24.59 + 845.43Pγ + 414.16(Pγ)1/5

−2
[
24.66 + 22.69Pγ − 289.90(Pγ)1/5

]
ln(Pγ) + 4

[
−3.18 + 8.42(Pγ)1/5

]
ln2(Pγ)

}
/
[
24.0(Pγ)4/5 + 3.39Pγ + 5.78Pγ ln(Pγ)

]2
, (79)

δrz =
{

16.39− 97.55Pγ − 166.35(Pγ)1/5

+
[
6.42− 45.38Pγ + 26.28(Pγ)1/5

]
ln(Pγ) + 4

[
2.13− 13.19(Pγ)1/5

]
ln2(Pγ)

}
/
{
γ
[
24.0(Pγ)4/5 + 3.39Pγ + 5.78Pγ ln(Pγ)

]2}
. (80)

We see that for reasonable values of P and γ with Pγ � 1, δrρ is positive and δrz is negative.
Thus the vortex pushes the condensate apart in radial direction, letting in shrink slightly in
the z-direction.

3.5.2 Numerical Solution

The exact fixpoint equations (67)–(69) cannot be solved analytically because the quantities
are correlated in an essentially non-algebraic way. Therefore we solve (67)–(69) numerically
for two different aspect ratios γ = 5 and γ = 0.2. In order to bring out the dependence of
the various quantities upon the strength of the interaction, we plot the results as a function
of the s-wave scattering length as, since this quantity can be controlled in an experiment
via Feshbach resonances [22]. In all the calculations depicted in the following figures, we

have limited the minimum value of the scattering length to be 200
√

~
Mωρ

/N , because in

the limit as → 0 the approximation we made in calculating the Lagrange function, that
β = ξ/Rρ is small, begins to break down. Also the kinetic energy part that was neglected
according to the Thomas-Fermi approximation becomes more important as the interaction
energy, which is proportional to as, decreases. The maximum value for the scattering length

was set at as = 5000
√

~
Mωρ

/N . The decision, where to set the lower and upper boundary

for the scattering length, was guided by the limits used in previous numerical studies [12].
The graphics also include the exact solutions to the fixpoint equations that we would have
obtained if we had not expanded the Lagrange function up to second order in β. These
equations were not included explicitly, as they are too cumbersome to be presented.
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Figure 3 – Cross-section of the particle density of a BEC with a central vortex
(solid curve) and without a vortex (dashed curve) at a scattering length of as =
800
√
~/(Mωρ)/N at z = y = 0.

In Figure 3 we have displayed the cross-section of the density profile of a condensate with a
vortex described by our trial function for the stationary case, where the variational parameters
have been calculated numerically as pointed out in this section. We have also included the
density profile of a condensate without a vortex in the Thomas-Fermi limit. The displayed
density cross-sections correspond to an oblate trap (γ = 5) and to a scattering length of
as = 800

√
~/(Mωρ)/N at z = y = 0. The two profiles are very much alike, differing

significantly only at the center of the trap where the vortex is located.
Figure 4 shows the radial extension of a condensate with a vortex. As the scattering length is
increased, the radius widens, since the increasing repulsive interaction forces the atoms apart.
Comparing the calculated radii to the TF-radii of a condensate without a vortex yields that
the spatial extensions of the cloud remain nearly unaltered due to the presence of a vortex.
Figure 5 depicts the aspect ratio κ = Rρ/Rz of the condensate. We see that the aspect ratio
equals the ratio of trap frequencies γ as it does for a condensate without a vortex. Obviously
our approximation made by neglecting terms of higher than second order in β in the Lagrange
function is very close to the exact value and therefore justified. Only in the case of a highly
prolate trap does the radial extension become smaller and therefore the appropriateness of
the expansion in β = ξ/Rρ begins to break down as this ratio becomes too large.
Figure 6 plots the ratio of the vortex core size to the radial size of the condensate β = ξ/Rρ.
The core radius shrinks as the scattering length is increased. Again it is the increased
interaction energy that is responsible and that drives the condensate apart especially at its
bulk value, which is located next to the vortex and therefore pushes against the vortex “wall”.
Figure 7 plots the dependence of β on Rρ. We see that for the oblate trap equation (74) yields
an excellent result. As before, the approximation is less accurate but still fairly reasonable
for a highly prolate trap.
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(b) γ = 0.2

Figure 4 – The radial size Rρ of a condensate with a vortex in an oblate trap (a) and
a prolate trap (b) as a function of the scattering length as. Here Rρ is measured in
units of the radial harmonic oscillator length dho of the trap. Black dashed curve: Exact
numerical solution. Gray dashed curve: Numerical solution for the Lagrange function
expanded up to second order in β. Gray solid curve: TF-radius for a condensate without
a vortex which coincides with the approximate analytical solution from equation (77) for
a condensate with a vortex.
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(b) γ = 0.2

Figure 5 – The aspect ratio κ = Rρ/Rz of a condensate with a central vortex in an
oblate trap (a) and a prolate trap (b). Black dashed curve: Exact numerical solution.
Gray dashed curve: Numerical solution for the Lagrange function expanded up to second
order in β. Gray solid curve: Aspect ratio of a condensate without a vortex in the TF
limit.
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(b) γ = 0.2

Figure 6 – The ratio of the vortex core size to radial extension β = ξ/Rρ of a condensate
in an oblate trap (a) and in a prolate trap (b). Black dashed curve: Exact numerical
solution. Gray dashed curve: Lagrange function expanded up to second order in β. Solid
gray curve: Approximate analytical solution from equation (76).
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(b) γ = 0.2

Figure 7 – Dependence of β on Rρ for a condensate with a central vortex in an oblate
trap (a) and a prolate trap (b). Black dashed curve: Exact numerical solution. Gray
dashed curve: Lagrange function expanded up to second order in β. Solid gray curve:
Approximate analytical solution from equation (74).
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3.6 Energies and Critical Rotational Frequencies

The total energy of a condensate is the sum of the kinetic, potential and interaction energies

E =
~2

2M

∫
d3r∇ψ(r, t)∇ψ∗(r, t) +

∫
d3rV (r)|ψ(r, t)|2 +

g

2

∫
d3r|ψ(r, t)|4. (81)

For the stationary case, the Lagrange function reduces to the negative energy of the system
and the respective integrals have already been calculated in equations (43), (45), (47) and
(49). Note that all accelerations and velocities have to be set to zero, as well as the variational
parameters Bρ and Bz analogous to equations (61) and (62). In the TF-limit the energy of
a condensate with a central vortex is thus given by

ETot =N~ωρ
{
−3

7

r2ρ0
A2

−
β2
0r

2
ρ0

2
+
γ2r2z0(1 + β2

0)

10
+

6γ2r2z0
70A2

− 36P

r2ρ0rz0

(
9β2

0

8A2

+
1

2A2

+
27

28A2
2

)
+

65

8r2ρ0A2

+
165β2

0

16r2ρ0A2

− 3A1

16A2

40 + 80β2
0 + 55β4

0

(1 + β2
0)r2ρ0

}
.

(82)

To obtain an analytical expression for the energy we expand equation (82) to fourth order in β
and insert our approximate solutions for the equilibrium positions from equations (76)–(78).
This leads to

ETot =
N~ωρ
(Pγ)2

{
0.184 + 0.185(Pγ)4/5 + 0.622(Pγ)8/5 + 1.055(Pγ)12/5

+
[
0.351 + 0.707(Pγ)4/5 + 0.339(Pγ)8/5

]
ln(Pγ) (83)

+
[
0.224− 0.055(Pγ)4/5

]
ln2(Pγ) + 0.111 ln3(Pγ)

}
.

In Figure 8 the numerically obtained energy and the approximate analytical solution (83)
are plotted against the scattering length as for an oblate trap with γ = 5 and a prolate trap
with γ = 0.2. The agreement of the two curves is excellent. The total energy rises with
increasing scattering length as expected, since the part in the energy functional due to the
interaction is directly proportional to as. However, note that the energy due to the vortex
is very small compared to the total energy of the condensate. The energy of a condensate
without a vortex in the TF-limit is straightforwardly determined by substituting equation
(11) with the relevant radii from (9) and (10) into equation (81) where according to the
TF-limit the kinetic energy is neglected. In our rescaled units it turns out to be

E0 = N~ωρ
5

14
(15Pγ)2/5. (84)

In general it costs energy to create a vortex and if we denote this energy by Ev we may obtain
it by substracting E0 from ETot

Ev = ETot − E0. (85)

20



3 VARIATIONAL APPROACH 3.6 Energies and Critical Rotational Frequencies

0 1000 2000 3000 4000 5000

20

30

40

50

60

as @ Ñ � M ΩΡ �ND

E
T

ot
@N

Ñ
Ω

Ρ
D

Analyt.

N.Exact

(a) γ = 5

0 1000 2000 3000 4000 5000

6

8

10

12

14

16

as @ Ñ � M ΩΡ �ND

E
T

ot
@N

Ñ
Ω

Ρ
D

Analyt.

N.Exact

(b) γ = 0.2

Figure 8 – The energy of a condensate with a central vortex scaled in units of N~ωρ
plotted against the scattering length as in an oblate trap (a) and a prolate trap (b).
Black dashed curve: Exact numerical solution. Gray solid curve: Approximate analytical
solution.

It is possible to stabilize a vortex state by applying a rotating trap potential [23]. To under-
stand this we consider a frame rotating at angular velocity Ω about the z-axis for which the
energy of the system becomes

E ′ = E − ΩLz. (86)

For a nonrotating condensate without angular momentum the energy in the rotating frame
remains the same as before, whereas for a condensate with a singly quantized vortex the
energy is reduced. This is due to the fact that every particle carries angular momentum of
~ and consequently the total angular momentum adds up to Lz = N~. We see that for a
condensate in a trap rotating at angular velocity Ω the vortex state becomes energetically
favorable when Ω exceeds a critical rotational frequency at which the energy cost to create a
vortex equals the lowering of the energy due to the rotating trap potential. Thus the critical
angular frequency becomes

Ωc =
Ev

N~
. (87)

Inserting the earlier results for the energies from (83) and (84) into (85) and (87) leads to an
explicit expression for the critical frequency at which the vortex becomes stable

Ωc =
ωρ

(Pγ)2
{

0.184 + 0.185(Pγ)4/5 + 0.622(Pγ)8/5

+
[
0.351 + 0.707(Pγ)4/5 + 0.339(Pγ)8/5

]
ln(Pγ) (88)

+
[
0.224− 0.055(Pγ)4/5

]
ln2(Pγ) + 0.111 ln3(Pγ)

}
.

In Figure 9 the critical rotation frequency Ωc is displayed as a function of the scattering
length as for an oblate trap with γ = 5 and a prolate trap with γ = 0.2. Here we have
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plotted the numerical solution, as well as our explicit analytical solution from equation (88).
Furthermore an analytical expression for the critical angular velocity obtained by Pethick et
al. [23] is included in the graphic

Ωc =
5

2

~
MR2

⊥
ln

(
0.671R⊥

ζ

)
. (89)

This result was derived by integrating the kinetic energy density Mn(ρ, z)v2(ρ)/2, arising
from the superfluid flow (34) around the vortex, over the profile of the condensate. The
lower limit of the integral is set by the coherence length ζ from equation (29) and the density
is taken to be the central density for a condensate without a vortex. This approach was
already outlined in Section 3.2 to show that higher quantized vortices decay into multiple
singly quantized vortices. In our rescaled units equation (89) becomes

Ωc =
ωρ

(Pγ)2
[
0.579(Pγ)8/5 + 0.339(Pγ)8/5 ln(Pγ)

]
. (90)

We see that the leading terms in equations (88) and (90) nearly coincide.
A closer look at Figure 9 reveals that our analytical approximation (88) agrees very well with
the numerical result and is indeed consistent with the analytical result derived by Pethick
et al. from equations (89) and (90). Especially for the prolate trap, it can be seen that our
result is even slightly closer to the numerical solution than Pethick’s formula.
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(b) γ = 0.2

Figure 9 – The critical angular velocity Ωc of a rotating trap at which a vortex state
becomes energetically favorable is plotted against the scattering length as for an oblate
trap (a) and a prolate trap (b). Black dashed curve: Exact numerical solution. Gray
dashed curve: Approximate analytical solution from equation (88). Gray solid curve:
Analytical formula (90) derived by Pethick et al. [23].
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3.7 Expansion Behavior

An interesting aspect in the investigation of BECs is the question of how a trapped condensate
expands after the trapping potential is turned off. This is of utmost importance especially
in the context of the experimental detection of vortex states, since the vortex core region
is significantly smaller than the radial extension of the condensate and hence difficult to
visualize directly.
To investigate the expansion behavior of a condensate with a central vortex after release
from the trap, we have to modify the previously obtained equations of motion in such a way
that we erase the harmonic oscillator parts −γ2rz(τ) and −rρ(τ) in equations (64) and (65)
and the part 15 [5rρ(τ)2 − γ2rz(τ)2] in equation (66) that is due to the trapping potential,
respectively. The resulting equations of motions

r̈z(τ) =− 15PA4(τ)

2(A3(τ)− 15)rρ(τ)2rz(τ)2
+

4β(τ)A7(τ)ṙz(τ)β̇(τ)

A3(τ)− 15

+
2 (15 + A7(τ)) rz(τ)β̇(τ)2

A3(τ)− 15
− 4β(τ)2A7(τ)2rz(τ)β̇(τ)2

15 [A3(τ)− 15]
(91)

+
2β(τ)A7(τ)rz(τ)β̈(τ)

A3(τ)− 15
,

r̈ρ(τ) =
35A9(τ)

24[6 + A3(τ)]rρ(τ)3

+
3A4(τ)P

[6 + A3(τ)]rρ(τ)3rz(τ)
+

2A7(τ)2β(τ)2rρ(τ)2β̇(τ)2

3[6 + A3(τ)]
(92)

+
2[15 + A7(τ)]rρ(τ)β̇(τ)2

6 + A3(τ)
+

2A7(τ)β(τ)[2ṙρ(τ)β̇(τ) + rρ(τ)β̈(τ)]

6 + A3(τ)
,

β̈(τ) =

(
7875

4A7(τ)β(τ)2rρ(τ)2
− rz(τ)

[
15r̈z(τ) + 4A7(τ)β(τ)β̇(τ)ṙz(τ)

]
− 875A8(τ)

8A7(τ)rρ(τ)2

+25rρ(τ)
[
3r̈ρ(τ)− 2A7(τ)β(τ)β̇(τ)ṙρ(τ)

]
(93)

225P {−409 + 120 ln [2/β(t)]}
2A7(τ)rz(τ)rρ(τ)2

)
/A7(τ)β(τ)

[
25rρ(τ)2 + 2rz(τ)2

]
,

are essentially the same that we would have obtained if we had not included the trapping
potential in the Lagrange function before extremizing the action. We now solve these equa-
tions numerically for an oblate trap with γ = 5 and a prolate trap with γ = 0.2 and take as
initial conditions the numerically determined equilibrium positions for a trapped condensate
from Section 3.5 and zero velocities.
In a previous study [24] it has been suggested that the vortex core radius expands faster
than the radial extension of the cloud, which makes experimental detection feasable by using
a time-of-flight method, where the condensate is first set free and then pictures are taken
after a short time of expansion. Figure 10 shows the evolution of the ratio of the vortex core
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size to the radial extension of the cloud β = ξ/Rρ in time. Indeed, this ratio increases and
especially for an oblate trap and a high scattering length the vortex core radius grows rapidly
in time. This is an important insight for the experimental detection and the investigation of
vortex states. Hence, our study qualitatively confirms the result from Ref. [24] which was
obtained with a different trial function. Note that we have only plotted the graph until β
reaches 0.15 as our assumption for β to be small begins to break down.
Another quantity of interest is the aspect ratio of the condensate and its evolution in time
after the release from the trap. In noncondensed sytems the gaseous cloud always strives
towards an isotropic density distribution and, consequently, the aspect ratio tends to unity
no matter what it was in the trapped state. In the case of trapped BECs, however, an aspect
ratio inversion takes place. This represents a phenomenon which is impossible in classical
systems, and, therefore, a characteristic of quantum behavior.
Figure 11 displays the radial and axial free expansion in time. The aspect ratio inversion is
clearly visible and the aspect ratio is unity as the curves for both directions cross each other.
The gradient of the curves suggests that, after an initial stage, the expansion in the different
directions develops with constant velocity.
Recently it was observed in an experimental study [25] that in turbulent condensates with
tangeled vortex configurations, the aspect ratio inversion is suppressed and the ratio stays
constant during the free expansion. However, for a single vortex we cannot confirm this
tendency. In Figure 12 we have depicted the dynamical change of the aspect ratio κ for
a condensate with and without a vortex. The curve for a condensate without a vortex
is determined by numerically solving the equations of motion obtained from an analogous
variational principle with a different trial function

ψ(ρ, z, t) = C

√
1−

[
ρ

R⊥(t)

]2
−
[

z

R‖(t)

]2
eiB⊥(t)ρ2+iB‖(t)z

2

, (94)

which corresponds to the Thomas-Fermi approximation. For both curves Figure 12 clearly
depicts the aspect ratio inversion with little difference between the curves. Therefore, we
conclude that a single vortex does not affect the global expansion of the condensate signifi-
cantly and measuring the aspect ratio after free expansion does not provide an effective mean
to detect single vortex states.
In Figure 13 a density plot of the condensate in the trapped state and after turning off the
trapping potential is depicted. The vortex core region is clearly visible as a bright line and
its width increases in time, faster than the radial extension.
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Figure 10 – Evolution in time of the ratio of the vortex core radius to the total radial
extension β = ξ/Rρ after turning off the trapping potential in an oblate trap (a) and a
prolate trap (b) for different scattering lengths as.
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Figure 11 – Evolution in time of the spatial extensions Rρ and Rz of the system after
turning off the trapping potential in an oblate trap (a) and a prolate trap (b) for different
scattering lengths as.
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Figure 12 – Evolution in time of the aspect ratio κ of the condensate after turning off
the trapping potential in an oblate trap (a) and a prolate trap (b) for different scattering
lengths as.

Figure 13 – Density profiles of an expanding condensate with a central vortex after
turning off the trapping potential. Time is measured in units of ω−1ρ . The scattering

length is as = 800
√

~
Mωρ

/N and the ratio of the trap frequencies before turning off the

potential was γ = 5.
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4 Discussion and Outlook

In this work we studied a Bose-Einstein condensate with a central vortex using a variational
approach. We have derived approximate equations of motion (64)–(66) for variational pa-
rameters that describe the spatial extensions Rρ and Rz and the ratio β of the vortex core
size to the radial extension of the condensate. We then studied the equilibrium positions of
the condensate and, apart from numerical solutions, we also found approximate analytical
expressions for the stationary points of the system (76)–(78). Thereby we discovered that the
spatial extensions of the cloud do not significantly differ from those of a condensate without
a vortex. All numerical results are in excellent agreement with previous studies [12].
In Section 3.6 we have found analytical formulas for the energy (83) of a condensate with a
central vortex and in equation (88) for the critical frequency Ωc of a rotating trap at which
the vortex state becomes stable. This result was crosschecked by numerical calculations and
furthermore compared to a formula for Ωc derived by Pethick et al. [23], with which it was
in very good quantitative agreement.
In Section 3.7 we have analysed the free expansion behavior of a previously trapped conden-
sate with a central vortex and confirmed the proposition made in previous studies [24], that
in free expansion the vortex core radius expands relatively faster than the radial extension
of the cloud. This is an important insight for both the experimental detection and the visu-
alization of vortex states.

In a prior attempt we utilized a different trial function in our variational approach, namely

ψ(ρ, z, ϕ, t) = C(t) exp

{
iϕ+

[
1

2Rρ(t)2
+ iBρ(t)

]
ρ2 +

[
1

2Rz(t)2
+ iBz(t)

]
z2 − ξ(t)2

ρ2

}
.

(95)
This choice was motivated by the successful investigation of the dynamics of a BEC without
a vortex via a Gaussian trial function [20]. However, it turned out to be that, within our
range of investigated scattering lengths, the vortex state was energetically favorable even
when no rotating trap potential was applied which is physically illegitimate. The reason is
that the use of a Gaussian trial function is only appropriate in the weak-coupling limit as the
GP equation then reduces to a regular Schrödinger equation for which in case of an harmonic
trap potential the ground state wave function is Gaussian. Since we were interested in the
opposite case, namely the TF limit where the interaction energy dominates the kinetic energy
leading to small vortex core sizes, we had to use a different trial function, and, therefore, we
chose our trial function to be of the form (36).

A possible continuation of this work would be to study the collective excitations of the con-
densate and the corresponding normal modes and oscillation frequencies. This could then be
compared to theoretical studies approaching this issue not via a variational approach, but
by a more direct investigation of the Gross-Pitaievski equation via a Bogoliubov-de Gennes
analysis [26]. Furthermore, the whole physical questioning could be generalized to the study
of off-axis vortices. Topics of interest could then be the phenomenon of vortex bending due
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to symmetry breaking as well as the investigation of precession frequencies, which can be
interpreted as collective excitations [13].

The Feshbach resonance technique, which enables a variation of the scattering length via
a magnetic field, is one of the most promising tools for manipulating the properties of BECs
and has been investigated experimentally and theoretically to excite collective modes. As
vortex states are in fact a collective excitation of the condensate it could be futile to in-
vestigate if a vortex state could be stabilized or destabilized by this technique. This would
correspond to replace the rescaled interaction strength P by P → P (τ) = P0 + P1 cos(Ωτ)
in the equations of motion (65)–(66). In Ref. [27] a first step in this direction has been
made, as the possibility to stabilize a vortex state via modulation of the scattering length
is demonstrated in a uniform condensate. However, this seems to be possible only for an
attractive interaction which corresponds to P0 being negative. For a harmonic trap it has
been shown by Bagnato et al. that the vortex mode cannot be excited by a modulation of
the scattering length [28], but it remains possible that employing a nonsymmetric trapping
potential would make the generation of the vortex state possible. An investigation of our
equation of motions (65)–(66) with a periodically modulated interaction strength P might
still be worthwhile since the study in Ref. [28] was done in the weak-coupling regime whereas
our study is carried out in the strong-coupling TF limit.
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