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Abstract

We investigate both the static and the dynamic properties of weakly interacting
Bose-Einstein condensates (BEC) in a one-dimensional gravitational cavity
[1,2]. There the effect of gravity is compensated by an exponentially decaying
potential, which is created by the total internal reflection of an incident laser
beam from the surface of a dielectric serving as a mirror for the atoms [3,4].
By solving the underlying Gross-Pitaevskii equation with a variational Gaussian
condensate wave function [5], we derive a coupled set of differential equations
for both the width and the height of the condensate. By considering small
deflections around the respective equilibrium positions, we determine the
collective excitations of the BEC. Furthermore, we analyze how the BEC cloud
expands ballistically due to gravity after switching off the evanescent laser field.

Gross-Pitaevskii (GP) Equation

◮ The dynamics of one dimensional BEC at zero temperature is determined by the
time dependent GP Equation

ι~
∂

∂t
Ψ(z, t) =

{

− ~
2

2m

∂2

∂z2
+ V (z) + G‖Ψ(z, t)‖2

}

Ψ(z, t)

◮ The last term represents the two-particle interaction of BEC atoms, where its
strength G = 2a~ωr is related to the s-wave scattering length a, ωr denotes
a radial frequency,

◮ V (z) = V0e
−κz + mgz is the potential energy,

◮ Here, we consider the one-dimensional Gaussian trial function as
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◮ Here z0(t) is the mean height of the BEC from the prism surface
◮ A(t) stands for the width of the BEC
◮ R(t) and α(t) represent variational parameters
◮ Erf(y) = 2√

π
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dx denotes the error function

Dimensionless Parameters and Soft-wall Approximation

◮ Dimensionless time τ = ωzt with the classical frequency ωz =
√
gκ

◮ Ã(τ ) = κA(t) as a dimensionless width of the BEC
◮ z̃0(τ ) = κz0(t) as a dimensionless mean height of the BEC
◮ R̃(τ ) = R(t)/κ2 and α̃(τ ) = α(t)/κ as dimensionless variational

parameters for the BEC dynamics
◮ ω̃ = ~κωz/gm as a dimensionless frequency
◮ Ṽ0 = κV0/gm as a dimensionless strength of the evanescent field
◮ k̃ = ~

2κ3/gm2 as a dimensionless kinetic energy
◮ G̃ = ω̃rã with ã = aκ being a dimensionless s-wave scattering length
◮ The soft-wall approximation provided that the mean height z̃0 is much larger

than its width Ã
◮ We can achieve this approximation by tuning correspondingly Ṽ0 and G̃, which

can be experimentally adjusted by varying the EW real intensity and by using a
Feshbach resonance, respectively

◮ With this approximation z̃0eq ≫ Ãeq the dimensionless Lagrangian reduces to
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Ã(τ )2

[
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Euler-Lagrange Equations

◮ Finally equations of motion are
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Ã(τ)2

√
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Static Solutions

◮ In order to determine the static solution Ãeq, z̃0eq, we neglect the derivatives in
above equations.
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◮ In order to make our proposed model experimentally realizable i.e. z̃0eq ≫ Ãeq,

we need Ṽ0 ≫ 4.07 × 107 which is realized in the GOST experiment [2].

Collective Oscillations

◮ In order to determine the dynamics for small deflections around the equilibrium
position, let us assume for the width of the BEC Ã(τ ) = Ãeq + δÃ(τ ) and
for the mean position of the BEC z̃0(τ ) = z̃0eq + δz̃0(τ ). If we insert this

ansatz for Ã(τ ) and z̃0(τ ) in equations of motion, it leads after a linearization
to two equations
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◮ Dimensionless collective excitation frequencies Ω̃+ (dashed) and Ω̃− (solid):
⊲ (a) as a function of the dimensionless optical decaying strength Ṽ0 for an
inverse decaying length κ = 6.67 × 106 m−1

⊲ (b) as a function of the inverse decay length κ while the strength of the EW is
V0 = 0.96 × kB K.

Time-of-flight Expansion

◮ The standard observation of the BEC is based on suddenly turning off the
trapping fields and allowing the atoms to expand ballistically.

◮ We read off that our approximation z̃0eq/Ãeq ≫ 1 for a large enough value

of Ṽ0 is valid up to the expansion time t = τ/ωz = 2.7 ms.
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