Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions

Hamid Al-Jibbouri ${ }^{1}$, Ivana Vidanović ${ }^{2}$, Antun Balaž², and Axel Pelster ${ }^{3}$
${ }^{1}$ Institut für Theoretische Physik, Freie Universität Berlin, Germany
${ }^{2}$ SCL, Institute of Physics Belgrade, University of Belgrade, Serbia
${ }^{3}$ Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

Motivation: We study geometric resonances [1] in Bose-Einstein condensates (BECs) for systems with two- and three-body interactions [2] in an axially-symmetric harmonic trap. We use analytical method [3] based on a perturbative expansion and Poincaré-Lindstedt analysis of a Gaussian variational approach [4] and numerical simulations. By changing the anisotropy of the confining potential, we numerically observe and analytically describe strong nonlinear effects: resonances and shifts in the frequencies of collective modes, and coupling of collective modes. We also discuss the stability of a condensate in the presence of an attractive two-body interaction and a repulsive three-body interaction. We show that the small repulsive three-body interaction is able to extend stability region of the condensate.

Variational approach

\star At zero temperature, BEC is described by the time-dependent Gross-Pitaevskii equation

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 M} \Delta+V(\mathbf{r})+g_{2} N|\Psi(\mathbf{r}, t)|^{2}+g_{3} N^{2}|\Psi(\mathbf{r}, t)|^{4}\right] \Psi(\mathbf{r}, t)
$$

where $V(\mathbf{r})=\frac{1}{2} m \omega_{\rho}^{2}\left(\rho^{2}+\lambda^{2} z^{2}\right)$ is harmonic trap with anisotropy λ, and g_{2}, g_{3} are parameters of two- and three-body interactions, respectively.
\star By using the Gaussian variational ansatz [4], we obtain equations for condensate widths u_{ρ} and u_{z} in the dimensionless form:

$$
\begin{array}{r}
\ddot{u}_{\rho}(t)+u_{\rho}(t)-\frac{1}{u_{\rho}(t)^{3}}-\frac{p}{u_{\rho}(t)^{3} u_{z}(t)}-\frac{k}{u_{\rho}(t)^{5} u_{z}(t)^{2}}=0, \\
\ddot{u}_{z}(t)+\lambda^{2} u_{z}(t)-\frac{1}{u_{z}(t)^{3}}-\frac{p}{u_{\rho}(t)^{2} u_{z}(t)^{2}}-\frac{k}{u_{\rho}(t)^{4} u_{z}(t)^{3}}=0 .
\end{array}
$$

Dimensionless parameters are $p=\frac{g_{2} N}{(2 \pi)^{2 / 2} \hbar \omega_{\rho}{ }^{13}}=\sqrt{\frac{\pi}{2}} \frac{a N}{l}, k=\frac{32 g_{3} \hbar \omega_{\rho}}{9 \sqrt{3 g_{2}}} 2^{2}, N$ is the number of particles, a is the s-wave scattering length, and $l=\sqrt{\hbar / m \omega_{\rho}}$ is the oscillator length
\star Initial state: $\mathbf{u}(0)=\mathbf{u}_{0}+\varepsilon \mathbf{u}_{Q}, \dot{\mathbf{u}}(0)=\mathbf{0}$
\star Real-time dynamics for $p=1, k=0.001$, and $\varepsilon=0.1$

$\omega_{\rho} t$
\star Equilibrium positions:

$\omega_{\rho} t$

$$
u_{\rho 0}=\frac{1}{u_{\rho 0}^{3}}+\frac{p}{u_{\rho 0}^{3} u_{z 0}}+\frac{k}{u_{\rho 0}^{5} u_{z 0}^{2}}, \quad \lambda^{2} u_{z 0}=\frac{1}{u_{z 0}^{3}}+\frac{p}{u_{\rho 0}^{2} u_{z 0}^{2}}+\frac{k}{u_{\rho 0}^{4} u_{z 0}^{3}}
$$

\star Frequencies of collective modes:

$$
\begin{gathered}
\text { ive modes: } \\
\omega_{B, Q}^{2}=\frac{m_{1}+m_{3} \pm \sqrt{\left(m_{1}-m_{3}\right)^{2}+8 m_{2}^{2}}}{2},
\end{gathered}
$$

where $m_{1}=4+\frac{2 k}{u_{\rho 0}^{h} u^{2}{ }_{20}^{2}}, m_{2}=\frac{p}{u_{\rho 0}^{\rho} u_{z 0}^{2}}+\frac{2 k}{u_{o p}^{\rho} u_{z 0}^{3}}, m_{3}=4 \lambda^{2}-\frac{p}{u_{00}^{2} u_{z 0}^{u}}$.

\star Repulsive three-body interaction extends the stability region of a BEC with attractive two-particle interaction [5-8] beyond the critical number of atoms in the trap:

Geometric Resonances in Bose-Einstein Condensates with
 Two- and Three-Body Interactions

Hamid Al-Jibbouri ${ }^{1}$, Ivana Vidanović ${ }^{2}$, Antun Balaz̆ ${ }^{2}$, and Axel Pelster ${ }^{3}$
${ }^{1}$ Institut für Theoretische Physik, Freie Universität Berlin, Germany
${ }^{2}$ SCL, Institute of Physics Belgrade, University of Belgrade, Serbia
${ }^{3}$ Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

References

[1] H. Al-Jibbouri, I. Vidanović, A. Balaž, A. Pelster, Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions, ArXiv:1208.0991.
 [3] I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster, Nonlinear BEC Dynamics Induced by a Harmonic Modulation of the s-wave Scattering Length, Phys. Rev. A 84, 013618 (2011).
[4] V.M. Pérez-García, H. Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller, Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis, Phys. Rev. Lett. 77, 5320 (1996).
 (2009).
[6] F. Kh. Abdullaev, A. Gammal, L. Tomio, and T. Frederico, Stability of trapped Bose-Einstein condensates, Phys. Rev. A 63, 043604 (2001).
[7] A. Gammal, T. Frederico, L. Tomio, and Ph. Chomaz, Atomic Bose-Einstein condensation with three-body interactions and collective excitations, J. Phys. B: At. Mol. Opt. Phys. 33, 4053 (2000). [8] S. Sabari, R. V. J. Raja, K. Porsezian, and P. Muruganandam, Stability of trapless Bose-Einstein condensates with two- and three-body interactions, J. Phys. B: At. Mol. Opt. Phys. 43, 125302 (2010). [9] N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations (Gordon and Breach, New York, 1961).
[10] A. Pelster, H. Kleinert, and M. Schanz, High-order variational calculation for the frequency of time-periodic solutions, Phys. Rev. E 67, 016604 (2003).
[11] F. Dalfovo, C. Minniti, and L. Pitaevskii, Frequency shift and mode coupling in the nonlinear dynamics of a Bose-condensed gas, Phys. Rev. A. 56, 4855 (1997).
[12] S. Stringari, Collective Excitations of a Trapped Bose-Condensed Gas, Phys. Rev. Lett. 77, 2360 (1996).
 and NAD-BEC, and by the European Commission under EU FP7 projects PRACE-1IP, PRACE-2IP, HP-SEE and EGI-InSPIRE.

