TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Theory of Condensed Matter and Many Body Systems

cdauer@rhrk.uni-kl.de

TUNING OF SCATTERING BY PERIODIC MODULATION

Christoph Dauer, Axel Pelster, and Sebastian Eggert

Department of Physics and Research Center Optimas, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

0.6

1.6

Feshbach Resoances in Ultracold Quantum Gases

Feshbach resonances provide a powerful tool to control the scattering length and therefore the interaction strength in ultracold atom experiments. In the case of magnetic Feshbach resonances the scattering length a can be modified by changing a magnetic field [1]:

 $a = a_{\rm bg} \left(1 - \frac{\Delta}{B - B_0} \right)$

Here we show that a time periodic magnetic field $B(t) = B_1 + B_2 \cos(\omega t)$ [2, 3] can be used to induce a "Feshbach-like" resonance at any given magnetic field B_1 by tuning the driving frequency ω .

Floquet-Partial Wave Expansion

Tunable Enhancement of Scattering Length

• Scattering resonances occur along lines, which are enumerated by $n = 1, ..., |1 + 1/(\epsilon/E_D)|$ • Scattering amplitude in vicinity of resonance is approximated by [2]:

$$\frac{1}{f_0(\omega)} = \frac{1}{a_{\rm BG}} \frac{\omega - \omega_n}{\omega - \omega_n - \delta_n} + i\gamma_n$$

– resonance frequency ω_n

– resonance width δ_n

– background scattering length $a_{\rm BG}$

– amount of maximal scattering $\max |f_0| \propto rac{1}{\gamma_n}$, with $\gamma_n pprox \sqrt{\epsilon}$

• Limit of vanishing ϵ : $a_{\text{scatt}}(\omega) = a_{\text{BG}} \left(1 - \frac{\delta_n}{\omega - \omega_n} \right) - i\pi |\delta_n| a_{\text{BG}} \delta_{\text{Dirac}}(\omega - \omega_n)$ • f_0 fulfils the Kramers-Kronig relations for anti-causal susceptibilities

Floquet theory is used to calculate steady-states of a time-periodic Hamiltonian $\hat{H}(t) = \hat{H}(t+T)$

• Wave function: Floquet state $|\psi(t)\rangle = e^{-i\frac{\epsilon}{\hbar}t}|\phi(t)\rangle$ • Floquet equation $\left(\hat{H} - i\hbar\frac{\partial}{\partial t}\right) |\phi\rangle = \epsilon |\phi\rangle$ • Floquet mode $|\phi(t)\rangle = |\phi(t+T)\rangle$ • Floquet energy ϵ

Scattering by time-periodic potential described by

 $H(\mathbf{r},t) = -\frac{\hbar^2}{2\mu}\Delta + V(r,t).$

Fourier transform $\phi_l(\mathbf{r},t) = \sum_{n=-\infty}^{\infty} e^{-in\omega t} R_{l,n}(r) P_l(\cos(\theta))$ and $V(r,t) = \sum_{n=-\infty}^{\infty} V_n(r) e^{-in\omega t}$ in order to derive radial Floquet-equation

$$\left(\Delta_r + k_n^2 - \frac{l(l+1)}{r^2} - v_0(r)\right) R_{l,n}(r) = \sum_{m \neq 0} v_m(r) R_{l,n-m}(r),$$

where $\Delta_r = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r}, \quad \frac{\hbar^2}{2\mu} k_n^2 = \epsilon + n\hbar\omega, \quad v_j = \frac{2\mu}{\hbar^2} V_j \text{ and } l \text{ angular momentum quantum number}$

Asymptotic wave function of a scattering state is given by

 $\phi_n(\mathbf{x}) = \delta_{n,0} e^{i\mathbf{k}\mathbf{r}} + f_n \frac{e^{ik_n r}}{m},$

with the scattering amplitude in *n*-th Floquet channel $f_n = f_n(\epsilon, \omega, \theta)$. Only modes above a critical index $n_c = \left[-\frac{\epsilon}{\hbar\omega}\right]$ contribute to scattering. Important scattering quantities are [2, 4]:

• Time averaged scattering length $a_{\text{scatt}} = -\lim_{\epsilon \to 0} f_0$

• Elastic cross section $\langle \langle \sigma \rangle \rangle_{\rm el} = \int_{\Omega} d\Omega |f_0|^2$

Influence of Higher Harmonics

• Total cross section (via Floquet-optical theorem [4]) $\langle \langle \sigma \rangle \rangle = \frac{4\pi}{k_0} \text{Im } f_0(\theta = 0)$

Model: Contact Potential

s-wave scattering, low energies: Absorb interaction in contact potential with time-dependent scattering length $a(t) = \bar{a} + a_1 \cos(\omega t)$, valid if $k_n r_{\text{pot}} \ll 1$.

0.5

 $v_0(r) = 2\frac{\bar{a}}{r^2}\delta(r)\frac{\partial}{\partial r}r, \ v_{\pm 1}(r) = \frac{a_1}{r^2}\delta(r)\frac{\partial}{\partial r}r$ Insert the solution $R_{0,n}(r) = \frac{\delta_{n,0}}{2} \frac{ie^{-ik_n r}}{k_m r}$ – $D_n \frac{i e^{i k_n r}}{k_n r}$ into radial Floquet equation, inte-.H 1.5 grate around origin and get recursion relation

$$\begin{pmatrix} i \\ \overline{k_n \overline{a}} - 1 \end{pmatrix} D_n - \frac{a_1}{2\overline{a}} (D_{n+1} + D_{n-1}) = \lambda_n$$

$$\bullet \lambda_n = \left(\frac{i}{k_n \overline{a}} + 1\right) \frac{\delta_{n,0}}{2} + \frac{a_1}{2\overline{a}} \left(\frac{\delta_{n+1,0}}{2} + \frac{\delta_{n-1,0}}{2}\right)$$

$$\bullet \text{ Length scale } \overline{a}$$

$$\bullet \text{ Energy scale } E_D = \frac{\hbar^2}{2\mu \overline{a}^2} \text{ (dimer energy)}$$

$$\text{Scattering amplitudes } f_n = \frac{-i}{k_n} \left(D_n - \frac{\delta_{n,0}}{2}\right)$$

$$\bullet \text{ Result: Scattering resonances (large } f_0)$$

-real f_0 at $\epsilon = 0.01 \frac{\hbar^2}{2\mu} \frac{1}{\bar{a}^2}$ 0.2 0.6 0.8 a_1 in units of \bar{a} -imag f_0 at $\epsilon = 0.01 \frac{\hbar^2}{2\mu} \frac{1}{\bar{a}^2}$

Consider higher Fourier modes of
$$a(t) = a_{\text{bg}} \left[1 - \frac{\Delta}{B_1 - B_0 + B_2 \cos(\omega t)} \right] = \sum_{n = -\infty}^{\infty} e^{-in\omega t} A_n,$$

$$A_n = a_{\text{bg}} \left\{ \delta_{n,0} - \frac{\Delta}{(B_1 - B_0)\sqrt{1^2 - y^2}} \left[\frac{\sqrt{1 - y^2} - 1}{y} \right]^{|n|} \right\}, \ y = \frac{B_2}{B_1 - B_0}, \text{ if } B_2 < |B_1 - B_0|, \ \epsilon = 0$$

• Resonance approximated by $\frac{1}{a_{\text{scatt}}(\omega)} = \frac{1}{a_{\text{BG}}} \frac{\omega - \omega_n}{\omega - \omega_n - \delta_n} + i\gamma_n$ for small a_1 • Finite maximal amount of scattering (finite γ_n), it decreases with B_2 • Resonant frequency ω_n shifted downwards compared to harmonic drive • Width δ_n increases with B_2 , but smaller compared to harmonic drive

Connection to Experimental Groups

• AG Widera: Magnetic Rb-Cs Feshbach resonance [6]

25 P_{3/2}

– include spinor structure of scattering atoms

• AG Ott: Optical Feshbach resonance with Rydberg molecules [7] – investigate scattering in driven-dissipative environment

 AG von Freymann and AG Linden: Probing stability of topological protection in a 1D SSH-model realized with optical wave guides [8]

 $\lambda = 297 \ nm$

References

- [1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82 1225 (2010).
- [2] D. H. Smith. Inducing Resonant Interactions in Ultracold Atoms with a Modulated Magnetic Field. Phys. Rev. Lett. 115 193002 (2015).
- [3] A. M. Kaufman, R. P. Anderson, T. M. Hanna, E. Tiesinga, P. S. Julienne, and D. S. Hall. Radio-frequency dressing of multiple Feshbach resonances. Phys. Rev. A 80 050701 (2009)
- [4] A. G. Sykes, H. Landa, and D. S. Petrov. Two- and three-body problem with Floquet-driven zero-range interactions. Phys. Rev. A 95 062705 (2017).
- [5] S. A. Reyes, D. Thuberg, D. Perez, C. Dauer, and S. Eggert. Transport through an AC-driven impurity: Fano interference and bound states in the continuum. NJP 19 043029 (2017)
- [6] F. Schmidt, D. Mayer, Q. Bouton, D. Adam, T. Lausch, N. Spethmann, and A. Widera. Quantum spin dynamics of individual neutral impurities coupled to a Bose-Einstein condensate. arXiv:1802.08702 (2018).
- [7] O. Thomas, C. Lippe, T. Eichert, and H. Ott. Experimental realization of a Rydberg optical Feshbach resonance in a quantum many-body system. Nat. Commun. 9 (2018).
- [8] Z. Cherpakova, C. Jörg, C. Dauer, F. Letscher, M. Fleischhauer, S. Eggert, S. Linden, and G. von Freymann. Breakdown of topological protection under local periodic driving. arXiv:1807.02321 (2018).