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Dilute Bose gas with weak disorder

K. Huang and H. F. Meng, Phys. Rev. Lett. 69, 644 (1992):

Dilute superfluid gas with random interaction
→ Model for 4He in porous media
→ Understand qualitatively disorder effects on superfluidity
→ Condensation: not sufficient condition for having super-
fluidity

The action of the theory:
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Ensemble averages assumed:
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Delta correlated disorder: ξ → 0

Perturbative approach: uniform gas

Bogoliubov particle number equation: disorder-induced condensate depletion
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ng → Bogoliubov depletion due to the atomic interaction g
nR → Disorder-induced depletion

Normal component due to the disorder:

nn = n− ns = (4/3)nR → n0 > ns

Conditions of validity of the theory:

• Dilute gas: n1/3a≪ 1

• Weak disorder approximation:

nR ≪ n⇔ R′
0 ≡ m2R0/8π
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~
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• Self-averaging condition:

ξ ≪ ξheal = 1/
√

8πn0a,

ξheal is the healing length of the superfluid

Hydrodynamic equations

ξ≪ ξheal → “Two-fluids” collisionless hydrodynamic equations at T = 0:
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Normal component in linear regime is stationary, vn = 0

→ “Fourth sound” linearized hydrodynamic equation:
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Disorder affects collective excitations in two ways:

(∂µ/∂n)−1 → change of the macroscopic compressibility

ns 6= n → disorder-induced superfluid depletion

Homogeneous gas → phonon dispersion: δn ∼ eiωt, ~ω = cqz
For ξ = 0 reproduces the correct disorder-induced shift on the velocity of sound:
S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. B 49, 12938 (1994).

c2 =c20 (1 + 5nR/3n) ; c20 = 4π~
2an/m2

What We Calculate

We use the hydrodynamic approach to

calculate perturbatively the effects of

weak disorder on the collective modes in

trapped 3D Bose-Einstein condensates

Thomas-Fermi approximation in harmonic
traps

Harmonic isotropic trap:
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ωx = ωy = ωz = ωHO

Harmonic oscillator length: aHO =
√

~/mωHO

Large N Thomas-Fermi limit: Na
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≫ 1
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The Thomas-Fermi approximation: RTF ≫ aHO, ξheal
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)2 ⇒
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⇓
local density approximation

where the healing length in the trap is defined as ξheal = 1/
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8πn(0)a

Total number of particles in local density approximation in presence of disorder:
Example: case ξ = 0
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Local equilibrium condition:

include beyond mean-field disorder corrections in the equation of state:

Example: case ξ = 0
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↓
modified Thomas-Fermi density:

n (r) = nTF (r) − 6 nR (r)

Collective modes in the collisionless regime
~ωHO

<∼ ~ωk ≪ µ

When
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→ beyond mean-field effects for the atom-atom interaction can be neglected

Hydrodynamic equation in the trap with disorder:

Example : delta-correlated disorder ξ = 0,
(the structure of the equations does not change for finite ξ)
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R0 = 0 → Stringari’s hydrodynamic equation:

mω2
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Stringari, PRL 77, 2360 (1996):
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Results for delta-correlated disorder (ξ = 0)

Shift in the compressional modes

•Monopole mode, nr = 1, l = 0, ωM =
√

5ωHO, δn ∝ 1 − (5/3)r2:
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To compare with the beyond-mean-field correction of the Beliaev theory:
δωM
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= (63π/128)
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a3n (0) (L. Pitaevskii and S. Stringari, PRL 81, 4541 (1998))

Shifts in the surface modes

nr = 0, ωl =
√
l ωHO, δn (r) = rlYlm, ∇2δn (r) = 0

→ No shift due to the beyond-mean-field effects in the atomic interaction

•Dipole mode, l = 1 (Kohn’s theorem states ωdip = ωHO)
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•Quadrupole mode l = 2, m = 2
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Effects of finite disorder correlation length
(ξ 6= 0)

Dipole relative shift
δωdip(ξ)
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and quadrupole relative shift
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Hydrodynamic approach valid when ξ ≪ ξheal ⇔ ξ̃ ≪ 1

Current experiments in Thomas-Fermi limit (RTF/aHO ≃ 10):
ξ̃ ≥ 6 ⇔ ξ ≥ ξheal

Anisotropy effects for delta correlated
disorder

Anisotropic trap:
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Anisotropy factor: λ = ωz/ω⊥
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Anisotropy:

quadrupole mode with m = 0 couple to monopole mode
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Disorder effects:
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Conclusions and Perspectives

•Collective modes can be measured with great accuracy in trapped BECs.
beyond-mean-field effects can be measured.

A. Altmeyer et al., PRL 98, 040401 (2007).

•Realistic test for the predictions of the Huang and Meng theory (see also G. E.
Astrakharchik et al., PRA 66, 023603 (2002)).

•New effects due to disorder for trapped condensates: deviation from Kohn’s the-
orem can be observed


