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Abstract

We construct a mean-field model of many-body systems with rapid periodic driving. Then the evolutions of the model system are mapped onto evolutions with slowly
varying parameters. Such a mapping between a Floquet evolution and a slow process allows us to investigate non-equilibrium many-body dynamics and examine how
rapidly driven systems may avoid heating up, at least when mean-field theory is still valid. We learn that rapid periodic driving may not yield to heating because the
time evolution of the system has a kind of hidden adiabaticity, inasmuch as it can be mapped exactly onto that of an almost static system.

Mapping scheme and identities

I The ruling (Heisenberg) equation for a quantum gas experiment is:
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I Our mappings aim at relating
exactly in a non-trivial way the
dynamics of a quantum gas
evolving under 2 completely
different experimental
conditions, A and B. Any
particular mapping is defined by
a function λ(t).

I Suppose that a first quantum field ψ̂B evolves following Eq. (1). Construct
a second quantum field ψ̂A such that [1, 2]:
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Then ψ̂A also evolves according to Eq. (1) with transformation formulas:
• UA(r, r′, tA)→ UB(r, r′, tB) = λ2−sU(r, r′, tA);
• VA(r, tA)→ VB(r, tB) = λ2

[
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where f (t) = λ
(
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d
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)2
λ. For a contact interaction, s = D; and for a

dipole-dipole interaction, s = 3. No restriction on initial states is required.

Driving without heating: setup

I Consider two experiments:
• A (static evolution): the trap and interaction strengths are constant.
• B (Floquet evolution): the interaction strength is modulated with
driving frequency 2ωB while the trap remains constant.

I The pair of trapping potentials (static) and interaction strengths are:

{gA, VA =
Mω2
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r 2
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B
r 2

2
}. (3)

I The free parameter is:
λ(tB) =

ωB√
ω2
B

cos2(ωBtB) + ω2
A

sin2(ωBtB)
. (4)

For a sketch of interaction strengths
and traps for D = 1, see this picture→
• Why the absence of heating?
→ The fields coincide after each period:

ψ̂A

(
r, tA(

nπ

ωB
)
)

= ψ̂B

(
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ωB

)
.

No secular heating in A =⇒ No secular
heating in B [3].
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→ The driving is a certain periodic but anharmonic modulation of the gas’s
two-body interaction, at a particular frequency, which makes it possible to
map the Floquet experiment onto a static evolution with no secular heating.

Mean-field example of the mapping: numerical result
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Broader class of periodically driven systems

• Setup
I Consider an experimental setting with:

VB =
Mω2

B
x2

2
, gB(t) = gA

ωB√
ω2
B

cos2(1
2
ωt) + ω2

A
sin2(1

2
ωt)

. (5)

I Evolve the system at constant gA over many time periods T = 2π/ω and
run it for different strengths gA and frequencies ω from 0.1ωB to 10ωB.

I Expectations: ω = 2ωB (no heating), ω 6= 2ωB (heating)

• Numerical estimation of the heating rate
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The energy growth is ∆E = EGP(t)− EGP(0) with

EGP(t) =

∫
dx
[ ~2

2M

∣∣∣∣∂ψ∂x
∣∣∣∣2 + V (x)|ψ|2 +

g (t)

2
|ψ|4

]
. (6)

It is taken at times tn = nT . The heating rate is obtained as Γ := β∞.

Effect of interaction on the heating
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I ω = 2ωB (no heating: Γ = 0 due to the mapping)
I ω 6= 2ωB (heating increases with interaction strength gA)

Effect of frequency driving on the heating

frequency (trap units)

0 5 10 15 20

h
e

a
ti
n

g
 r

a
te

 (
tr

a
p

 u
n

it
s
)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

(a)

frequency ratio ν

1 2 3

h
e

a
ti
n

g
 r

a
te

 (
tr

a
p

 u
n

it
s
)

10
-8

10
-6

10
-4

10
-2

(b)

frequency ratio ν
1.8 2 2.2 2.4(h

e
a

ti
n

g
 r

a
te

)1
/3

 (
tr

a
p

 u
n

it
s
)

0

0.1

Γ
1/3

Fano fit(c)

(a) Semilog plot
of Γ vs driving
frequency νω

(b) Zoom into
smaller νω where
subharmonics are
excited
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of Γ
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• Heating spikes at BdG excitation frequencies of the background gas.
• Heating trough at ω = 2ωB
• Fano resonance around the heating trough, with Fano function:

Γ1/3 = 1.55σ
(ν − 2)2

σ2 + (ν − 2− δ)2
, (7)

where σ = 1/105 (shape factor) and δ = −0.027 (asymmetry parameter).
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