
MEAN-FIELD THEORY FOR THEEXTENDED BOSE-HUBBARD MODEL
Nicolas Gheeraert1, Shai Chester1, Sebastian Eggert2, and Axel Pelster2,3

1Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany

3Hanse-Wissenschaftskolleg, Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany

Introduction
We use mean-field theory on a quadratic and a triangular optical lattice to solve
the Extended Bose-Hubbard model, of which the Hamiltonian is given by:

Ĥ =−J ∑
<i, j>

â†
i â j −µ∑

i

n̂i +
V
2 ∑

<i, j>

n̂in̂ j

whereâi and â†
i are the bosonic annihilation and creation operators at sitei,

andn̂i = â†
i âi. We consider the case of hard-core repulsion, where each site can

only be occupied by at most 1 boson. For the triangular case our results show
a supersolid phase and our general phase diagram is in qualitative agreement
with recent Monte-Carlo simulation.

Derivation of the Mean-Field Hamiltonian on Sublattices

We first apply the mean-field theory approximation:

â†
i â j = 〈â†

i 〉â j + â†
i 〈â j〉−〈â†

i 〉〈â j〉
n̂in̂ j = 〈n̂i〉n̂ j + n̂i〈n̂ j〉−〈n̂i〉〈n̂ j〉

Next we divide the lattice into sublattices such that no two members of a sub-
lattice are nearest neighbors.

We now specialize to the quadratic case, while the triangular case is derived
similarly. Decomposing the Hamiltonian for each sublattice:

Ĥ ≃ ĤMF =∑
iA

[

−4J
(

ψB(âiA+â†
iA)−ψAψB

)

−µn̂iA+2V(2ρBn̂iA−ρAρB)
]

+∑
iB

[

−4J
(

ψA(âiB + â†
iB)−ψAψB

)

−µn̂iB +2V(2ρAn̂iB −ρAρB)
]

where 〈âi〉= 〈â†
i 〉= ψA, if i ∈ A 〈âi〉= 〈â†

i 〉= ψB, if i ∈ B
〈n̂i〉= ρA, if i ∈ A 〈n̂i〉= ρB, if i ∈ B

Since both parts of the Hamiltonian are local and the lattices are homogenous,
we can consider a simpler two-site system corresponding to two adjacent sites
each pertaining to a different sublattice [1]:

ĥMF =−4J
[

ψB(âA + â†
A)+ψA(âB+ â†

B)
]

+ n̂A(−µ+4VρB)

+ n̂B(−µ+4VρA)+8JψAψB−4VρAρB
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Quadratic Lattice

• In the two-site basis, the matrix form of the Hamiltonian is:








E0 −4JψB −4JψA 0
−4JψB E0−µ+4ρB 0 −4JψA

−4JψA 0 E0−µ+4ρA −4JψB

0 −4JψA −4JψB E0−2µ+4(ρA +ρB)









with E0 = 4J(ψBψA +ψAψB)−4ρAρB andV = 1

•Mott Insulator (MI) and Density Wave (DW) Phases:ψ = 0
ψA = ψB = 0, which makes the Hamiltonian diagonal. For these phases:

Energy Densities Region of minimality Phase

0 ρA = 0 ρB = 0 µ< 0 Lower Mott Insulator (MI)
−µ ρA = 0 ρB = 1 0< µ< 4 Density Wave (DW)
−µ ρA = 1 ρB = 0 0< µ< 4 Density Wave (DW)

−2µ+4 ρA = 1 ρB = 1 4< µ Upper Mott Insulator (MI)

•Superfluid (SF) Phase:ψ 6= 0

ψA = ψB 6= 0 andρA = ρB 6= 0, thus Hamiltonian no longer diagonal, but can
still be exactly diagonalized. Unlikeψ = 0 case, for all regions there is only
one minimal eigenvalue, which can be exactly extremized:

ψSF=

√
4J−µ+4

√
4J+µ

4(2J+1)
, ρSF=

4J+µ
4+8J

, ESF=−(4J+µ)2

8J+4

•Phase Transitions:
For Superfluid-Density Wave (SF-DW) and Superfluid-Mott Insulator (SF-
MI) phase transition curves, we simply equate the exact energies and solve for
µ in terms ofJ:
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•Values of the order parameters:ψ and ρ

Triangular Lattice

• In the three-site basis, the matrix form of the Hamiltonian is:






















































E0 −3J(ψB +ψC) −3J(ψA +ψC) −3J(ψA +ψB) 0 0 0 0

−3J(ψB +ψC)
3(ρC+ρB)

+E0−µ
0 0 −3J(ψA +ψC) −3J(ψA +ψB) 0 0

−3J(ψA +ψC) 0
3(ρA +ρC)

+E0−µ
0 −3J(ψB +ψC) 0 −3J(ψA +ψB) 0

−3J(ψA +ψB) 0 0
3(ρA +ρB)
+E0−µ

0 −3J(ψB+ψC) −3J(ψA +ψC) 0

0 −3J(ψA +ψC) −3J(ψB+ψC) 0
3(ρA +ρB+2ρC)

+E0−2µ
0 0 −3J(ψA +ψb)

0 −3J(ψA +ψB) 0 −3J(ψB+ψC) 0
3(ρA +2ρB+ρC)

+E0−2µ
0 −3J(ψA +ψc)

0 0 −3J(ψA +ψB) −3J(ψA +ψC) 0 0
3(2ρA +ρB+ρC)

+E0−2µ
−3J(ψB+ψc)

0 0 0 0 −3J(ψA +ψB) −3J(ψA +ψC) −3J(ψB+ψC)
6(ρA +ρB+ρC)

+E0−3µ























































with E0 = 6J(ψAψB+ψAψC+ψBψC)−3(ρAρB+ρAρC+ρBρC) andV = 1

•Mott Insulator and Density Wave Phases:ψ = 0

ψA = ψB = ψC = 0, which makes the Hamiltonian diagonal. For these phases:

Energy Minimalρ Region of Minimality Phase
0 ρA = ρB = ρC = 0 µ< 0 Lower MI
−µ ρA = 1,ρB = ρC = 0 0< µ< 3 Lower DW
−µ ρA = ρB = 1,ρC = 0 0< µ< 3 Lower DW
−µ ρA = ρB = 0,ρC = 1 0< µ< 3 Lower DW

−2µ+3 ρA = ρB = 1,ρC = 0 3< µ< 6 Upper DW
−2µ+3 ρA = 0,ρB = ρC = 1 3< µ< 6 Upper DW
−2µ+3 ρB = 0,ρA = ρC = 1 3< µ< 6 Upper DW
−3µ+9 ρA = ρB = ρC = 1 6< µ Upper MI

•Superfluid Phase:ψ 6= 0

ψA = ψB = ψC 6= 0 andρA = ρB = ρC 6= 0, thus Hamiltonian no longer diag-
onal, but can still be exactly diagonalized. Unlikeψ = 0 case, for all regions
there is only one minimal eigenvalue, which can be exactly extremized:

ψSF=

√
6J−µ+6

√
6J+µ

6(2J+1)
, ρSF=

6J+µ
6(2J+1)

, ESF=−(6J+µ)2

8J+4

•Supersolid Phase:0 6=ψA =ψB 6=ψC 6= 0, ρA = ρB 6= ρC 6= 0

Hamiltonian can still be exactly diagonalized with one universally minimal
eigenvalue (ESS), which is too complicated for exact extremization.

•Phase Transitions:
For SF-DW and SF-MI transitions, equate exact energies to find transition
curves. DW-SS is second order transition, thus apply DW parameters to SS
extremization equation∂ESS

∂ψA
= 0 to find transition curve. Similar method can-

not be used for SS-SF because it is first order and exact energyfor SS is un-
known, thus no analytical curve has been found, even though numeric simula-
tion shows that curve is simple vertical line.
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Exact phase diagram found using Monte Carlo
methods [2]. Note: J-axis is dilated by 2 here.

Quantum fluctuations cause Superfluid to shrink,
also SS-SF no longer vertical line.


