Nicolas Gheeraert ${ }^{1}$ ，Shai Chester ${ }^{1}$ ，Sebastian Eggert ${ }^{2}$ ，and Axel Pelster ${ }^{2,3}$
${ }^{1}$ Institut für Theoretische Physik，Freie Universität Berlin，Arnimallee 14， 14195 Berlin，Germany
${ }^{2}$ Technische Universität Kaiserslautern，Erwin－Schrödinger－Straße， 67663 Kaiserslautern，Germany
${ }^{3}$ Hanse－Wissenschaftskolleg，Lehmkuhlenbusch 4， 27753 Delmenhorst，Germany

Introduction

We use mean－field theory on a quadratic and a triangular optical lattice to solve the Extended Bose－Hubbard model，of which the Hamiltonian is given by

$$
\hat{H}=-J \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}-\mu \sum_{i} \hat{n}_{i}+\frac{V}{2} \sum_{<i, j\rangle} \hat{n}_{i} \hat{n}_{j}
$$

where \hat{a}_{i} and \hat{a}_{i}^{\dagger} are the bosonic annihilation and creation operators at site i ， and $\hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}$ ．We consider the case of hard－core repulsion，where each site can only be occupied by at most 1 boson．For the triangular case our results show a supersolid phase and our general phase diagram is in qualitative agreement with recent Monte－Carlo simulation．

Derivation of the Mean－Field Hamiltonian on Sublattices
We first apply the mean－field theory approximation：

$$
\begin{aligned}
\hat{a}_{i}^{\dagger} \hat{a}_{j} & =\left\langle\hat{a}_{i}^{\dagger}\right\rangle \hat{a}_{j}+\hat{a}_{i}^{\dagger}\left\langle\hat{a}_{j}\right\rangle-\left\langle\hat{a}_{i}^{\dagger}\right\rangle\left\langle\hat{a}_{j}\right\rangle \\
\hat{n}_{i} \hat{n}_{j} & =\left\langle\hat{n}_{i} \hat{n}_{j}+\hat{n}_{i}\left\langle\hat{n}_{j}\right\rangle-\left\langle\hat{n}_{i}\right\rangle\left\langle\hat{n}_{j}\right\rangle\right.
\end{aligned}
$$

Next we divide the lattice into sublattices such that no two members of a sub－ lattice are nearest neighbors．

We now specialize to the quadratic case，while the triangular case is derived similarly．Decomposing the Hamiltonian for each sublattice：

$$
\begin{aligned}
& \hat{H} \simeq \hat{H}_{\mathrm{MF}}=\sum_{i_{\mathrm{A}}}\left[-4 J\left(\psi_{B}\left(\hat{a}_{i_{\mathrm{A}}}+\hat{a}_{i_{\mathrm{A}}}^{\dagger}\right)-\psi_{\mathrm{A}} \psi_{\mathrm{B}}\right)-\mu \hat{n}_{i_{\mathrm{A}}}+2 V\left(2 \rho_{\mathrm{B}} \hat{n}_{i_{\mathrm{A}}}-\rho_{\mathrm{A}} \rho_{\mathrm{B}}\right)\right] \\
& +\sum_{i_{\mathrm{B}}}\left[-4 J\left(\psi_{A}\left(\hat{a}_{i_{\mathrm{B}}}+\hat{a}_{i_{\mathrm{B}}}^{\dagger}\right)-\psi_{\mathrm{A}} \psi_{\mathrm{B}}\right)-\mu \hat{n}_{i_{\mathrm{B}}}+2 V\left(2 \rho_{\mathrm{A}} \hat{n}_{i_{\mathrm{B}}}-\rho_{\mathrm{A}} \rho_{\mathrm{B}}\right)\right] \\
& \begin{array}{lll}
\text { where } & \left\langle\hat{a}_{i}\right\rangle=\left\langle\hat{a}_{i}^{\dagger}\right\rangle=\psi_{\mathrm{A}}, \text { if } i \in \mathrm{~A} & \left\langle\hat{a}_{i}\right\rangle=\left\langle\hat{a}_{i}^{\dagger}\right\rangle=\psi_{\mathrm{B}}, \text { if } i \in \mathrm{~B} \\
& \left\langle\hat{n}_{i}\right\rangle=\rho_{\mathrm{A}}, \text { if } i \in \mathrm{~A} & \left\langle\hat{n}_{i}\right\rangle=\rho_{\mathrm{B}}, \text { if } i \in \mathrm{~B}
\end{array} \\
& \left\langle\hat{n}_{i}\right\rangle=\rho_{\mathrm{B}} \text {, if } i \in \mathrm{~B}
\end{aligned}
$$

Since both parts of the Hamiltonian are local and the lattices are homogenous， we can consider a simpler two－site system corresponding to two adjacent sites each pertaining to a different sublattice［1］：

$$
\begin{aligned}
\hat{h}_{\mathrm{MF}}= & -4 J\left[\psi_{\mathrm{B}}\left(\hat{a}_{\mathrm{A}}+\hat{a}_{\mathrm{A}}^{\dagger}\right)+\psi_{\mathrm{A}}\left(\hat{a}_{\mathrm{B}}+\hat{a}_{\mathrm{B}}^{\dagger}\right)\right]+\hat{n}_{\mathrm{A}}\left(-\mu+4 V \rho_{\mathrm{B}}\right) \\
& +\hat{n}_{\mathrm{B}}\left(-\mu+4 V \rho_{\mathrm{A}}\right)+8 J \psi_{\mathrm{A}} \psi_{\mathrm{B}}-4 V \rho_{\mathrm{A}} \rho_{\mathrm{B}}
\end{aligned}
$$

Acknowledgements：Special thanks to DAAD for giving us the opportunity to perform this work within the RISE program． References
［1］J．Links et al．，Ann．Henri Poinc．7， 1591 （2006）
［2］X．－F．Zhang et al．，Phys．Rev．B 84， 174515 （2011）

－In the two－site basis，the matrix form of the Hamiltonian is：

$$
\left(\begin{array}{cccc}
E_{0} & -4 J \psi_{\mathrm{B}} & -4 J \psi_{\mathrm{A}} & 0 \\
-4 J \psi_{\mathrm{B}} E_{0}-\mu+4 \rho_{\mathrm{B}} & 0 & -4 J \psi_{\mathrm{A}} \\
-4 J \psi_{\mathrm{A}} & 0 & E_{0}-\mu+4 \rho_{\mathrm{A}} & -4 J \psi_{\mathrm{B}} \\
0 & -4 J \psi_{\mathrm{A}} & -4 J \psi_{\mathrm{B}} & E_{0}-2 \mu+4\left(\rho_{\mathrm{A}}+\rho_{\mathrm{B}}\right)
\end{array}\right)
$$

with $E_{0}=4 J\left(\psi_{\mathrm{B}} \psi_{\mathrm{A}}+\psi_{\mathrm{A}} \psi_{\mathrm{B}}\right)-4 \rho_{\mathrm{A}} \rho_{\mathrm{B}}$ and $V=1$
－Mott Insulator（MI）and Density Wave（DW）Phases：$\psi=0$
$\psi_{\mathrm{A}}=\psi_{\mathrm{B}}=0$ ，which makes the Hamiltonian diagonal．For these phases：

$$
\begin{array}{llll}
\hline \text { Energy } & \text { Densities } & \text { Region of minimality } & \text { Phase }
\end{array}
$$

0	$\rho_{\mathrm{A}}=0 \rho_{\mathrm{B}}=0$	$\mu<0$	Lower Mott Insulator（MI）
$-\mu$	$\rho_{\mathrm{A}}=0 \rho_{\mathrm{B}}=1$	$0<\mu<4$	Density Wave（DW）
$-\mu$	$\rho_{\mathrm{A}}=1 \rho_{\mathrm{B}}=0$	$0<\mu<4$	Density Wave（DW）
$-2 \mu+4$	$\rho_{\mathrm{A}}=1 \rho_{\mathrm{B}}=1$	$4<\mu$	Upper Mott Insulator（MI）

－Superfluid（SF）Phase：$\psi \neq 0$

$\psi_{\mathrm{A}}=\psi_{\mathrm{B}} \neq 0$ and $\rho_{\mathrm{A}}=\rho_{\mathrm{B}} \neq 0$ ，thus Hamiltonian no longer diagonal，but can still be exactly diagonalized．Unlike $\psi=0$ case，for all regions there is only one minimal eigenvalue，which can be exactly extremized：

$$
\psi_{\mathrm{SF}}=\frac{\sqrt{4 J-\mu+4} \sqrt{4 J+\mu}}{4(2 J+1)}, \quad \rho_{\mathrm{SF}}=\frac{4 J+\mu}{4+8 J}, \quad E_{\mathrm{SF}}=-\frac{(4 J+\mu)^{2}}{8 J+4}
$$

－Phase Transitions：

For Superfluid－Density Wave（SF－DW）and Superfluid－Mott Insulator（SF－ MI）phase transition curves，we simply equate the exact energies and solve for μ in terms of J ：

Triangular Lattice
－In the three－site basis，the matrix form of the Hamiltonian is：

E_{0}	${ }^{-3 /\left(\psi_{B}+\psi_{C}\right)}$	wc）	${ }^{(}\left(_{4}+\psi_{4}\right)$	0	0	0	0
$-3 / \psi_{s}+\psi_{\text {c }}$		0	－	${ }^{-3 /}\left(\psi_{4}+\psi_{c}\right)$	${ }^{-3 /\left(\psi_{4}+\psi_{s}\right)}$	0	0
$-3 /\left(\omega_{A}+\psi_{c}\right)$	。	$\underset{\substack{3\left(\rho_{A}+p_{\text {c }} \\+E_{0}-\mu\right.}}{\text { a }}$	0	${ }^{-3 /}\left(\psi_{\mathrm{B}}+\psi_{c}\right)$	0	${ }^{-3 /}\left(\psi_{4}+\psi_{8}\right)$	0
${ }^{-3 /}\left(\psi_{A}+\psi_{\text {w }}\right)$	0	0		0	${ }^{-3 /\left(\psi_{B}+\psi_{c}\right)}$	${ }^{-3 /}\left(\psi_{A}+\psi_{C}\right)$	0
。	${ }^{-3 /\left(\varphi_{4}+\psi_{c}\right)}$	${ }^{-3}\left(\psi_{\mathrm{p}}+\mathrm{Y}_{\mathrm{c}}\right)$	$0{ }^{3}$		0	0	${ }^{-3 /}$
0	（ $\left(_{\text {A }}+\psi_{8}\right)$	0	${ }^{-3 /\left(Y_{4}+Y_{C}\right)}$	0		0	（ $\psi_{2}+\psi_{\text {c }}$
0	0	${ }^{-3 /}\left(\psi_{A}+\psi_{B}\right)$	（ $\psi_{\text {a }}+\psi_{c}$ ）	0	0		－3／$\left(\psi_{B}+\psi_{e}\right)$
0	0	。	0	$-3 /\left(\psi_{4}+\psi_{\text {c }}\right)$	${ }^{-3 /}\left(\varphi_{4}+\psi_{C}\right)$	${ }_{-3 /}\left(\psi_{+}+\psi_{C}\right)$	

with $E_{0}=6 J\left(\psi_{\mathrm{A}} \psi_{\mathrm{B}}+\psi_{\mathrm{A}} \psi_{\mathrm{C}}+\psi_{\mathrm{B}} \psi_{\mathrm{C}}\right)-3\left(\rho_{\mathrm{A}} \rho_{\mathrm{B}}+\rho_{\mathrm{A}} \rho_{\mathrm{C}}+\rho_{\mathrm{B}} \rho_{\mathrm{C}}\right)$ and $V=1$
－Mott Insulator and Density Wave Phases：$\psi=0$
$\psi_{\mathrm{A}}=\psi_{\mathrm{B}}=\psi_{\mathrm{C}}=0$ ，which makes the Hamiltonian diagonal．For these phases：

Energy	Minimal ρ	Region of Minimality	Phase
0	$\rho_{\mathrm{A}}=\rho_{\mathrm{B}}=\rho_{\mathrm{C}}=0$	$\mu<0$	Lower MI
$-\mu$	$\rho_{\mathrm{A}}=1, \rho_{\mathrm{B}}=\rho_{\mathrm{C}}=0$	$0<\mu<3$	Lower DW
$-\mu$	$\rho_{\mathrm{A}}=\rho_{\mathrm{B}}=1, \rho_{\mathrm{C}}=0$	$0<\mu<3$	Lower DW
$-\mu$	$\rho_{\mathrm{A}}=\rho_{\mathrm{B}}=0, \rho_{\mathrm{C}}=1$	$0<\mu<3$	Lower DW
$-2 \mu+3$	$\rho_{\mathrm{A}}=\rho_{\mathrm{B}}=1, \rho_{\mathrm{C}}=0$	$3<\mu<6$	Upper DW
$-2 \mu+3$	$\rho_{\mathrm{A}}=0, \rho_{\mathrm{B}}=\rho_{\mathrm{C}}=1$	$3<\mu<6$	Upper DW
$-2 \mu+3$	$\rho_{\mathrm{B}}=0, \rho_{\mathrm{A}}=\rho_{\mathrm{C}}=1$	$3<\mu<6$	Upper DW
$-3 \mu+9$	$\rho_{\mathrm{A}}=\rho_{\mathrm{B}}=\rho_{\mathrm{C}}=1$	$6<\mu$	Upper MI

－Superfluid Phase：$\psi \neq 0$
$\psi_{\mathrm{A}}=\psi_{\mathrm{B}}=\psi_{\mathrm{C}} \neq 0$ and $\rho_{\mathrm{A}}=\rho_{\mathrm{B}}=\rho_{\mathrm{C}} \neq 0$ ，thus Hamiltonian no longer diag－ onal，but can still be exactly diagonalized．Unlike $\psi=0$ case，for all regions there is only one minimal eigenvalue，which can be exactly extremized：

$$
\psi_{\mathrm{SF}}=\frac{\sqrt{6 J-\mu+6} \sqrt{6 J+\mu}}{6(2 J+1)}, \rho_{\mathrm{SF}}=\frac{6 J+\mu}{6(2 J+1)}, E_{\mathrm{SF}}=-\frac{(6 J+\mu)^{2}}{8 J+4}
$$

－Supersolid Phase： $0 \neq \psi_{\mathrm{A}}=\psi_{\mathrm{B}} \neq \psi_{\mathrm{C}} \neq 0, \rho_{\mathrm{A}}=\rho_{\mathrm{B}} \neq \rho_{\mathrm{C}} \neq 0$ Hamiltonian can still be exactly diagonalized with one universally minimal eigenvalue（ E_{SS} ），which is too complicated for exact extremization．

－Phase Transitions：

For SF－DW and SF－MI transitions，equate exact energies to find transition curves．DW－SS is second order transition，thus apply DW parameters to SS extremization equation $\frac{\partial E_{S S}}{\partial \psi_{A}}=0$ to find transition curve．Similar method can－ not be used for SS－SF because it is first order and exact energy for SS is un－ known，thus no analytical curve has been found，even though numeric simula－ tion shows that curve is simple vertical line．

${ }^{\mu}$

Exact phase diagram found using Monte Carlo methods［2］．Note：J－xais is iliated by 2 here．
Quantum fuctuations cause Superfluid to shrink， Quantum also SS－SF no no longer vertical line．
ald

