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Abstract

We analyze the fractional statistics of anyons within the realm of a one dimensional (1D) lattice

model. To this end we consider the Anyon-Hubbard Hamiltonian, where the hopping dynamics of

correlated anyons can be mapped to an occupation-dependent hopping Bose-Hubbard model us-

ing the fractional Jordan-Wigner transformation. By calculating the two-point correlation function of

either anyonic or bosonic creation and annihilation operators, we investigate the quasi-momentum

distributions of anyons and bosons interpolating between Bose-Einstein and Fermi-Dirac statis-

tics. To this end we apply a modified Gutzwiller mean-field approach, which goes beyond a clas-

sical one by including the influence of the fractional phase of anyons within the many-body wave-

function. Numerically, we use the density-matrix renormalization group in the language of matrix

product states. The results show that shift and asymmetry of the quasi-momentum distribution of

bosons strongly depend on the particle number density, whereas for anyons it mainly originates

from its own nonlocal string property.

We propose a simple scheme for realizing the physics of 1D anyons with ultracold bosonic atoms

in an optical lattice. It relies on lattice-shaking-induced resonant tunneling against the energy off-

sets created by the combination of both a potential tilt and on-site repulsion. In contrast to former

proposals based on internal atomic degrees of freedom, no lasers additional to those already used

for the creation of the optical lattice are required.

Anyon-Hubbard Model

• Anyon-Hubbard Model in 1D lattice:

Ĥa = −J

L
∑

j=1

(â
†
jâj+1 + h.c.) +

U

2

L
∑

j=1

n̂j(n̂j − 1) ,

where the operators â
†
j and âj obey the generalized commutation relations [1,2]:

âjâ
†
k
− e−iθsgn(j−k)â

†
k
âj = δjk , âjâk − eiθsgn(j−k)âkâj = 0 .

• Occupation-dependent hopping Bose-Hubbard Model [1]:

Ĥb = −J

L
∑

j=1

(b̂
†
j b̂j+1e

iθn̂j + h.c.) +
U

2

L
∑

j=1

n̂j(n̂j − 1),

by using fractional version of the Jordan-Wigner transformation: âj = b̂j exp
(

iθ
∑j−1

i=1 n̂i

)

.

Quasi-Momentum Distribution of Bosons

• Correlation function of bosons:

〈b̂†i b̂j〉 = δijn0 + (1− δij)[A + Bei(i−j)θ] ,

where A ≡ F 2
1 (F

2
0 +

√
2F0F2), B ≡ F 2

1 (
√
2F0F2 + 2F 2

2 ).

• Quasi-momentum distribution of bosons:

〈n̂(b)
k

〉 = n0−(A + B) + ALδk,0 +B
1− cos[(k + θ)L]

L[1− cos(k + θ)]
.

• Thermodynamic limit:

〈n̂(b)
k

〉 L→∞−−−−→ n0−(A +B) + Aδ(k) + Bδ(k + θ) .
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Quasi-Momentum Distribution of Anyons

• Correlation function of anyons:

〈â†i âj〉
i<j−−→ [A + Bei(i−j+1)θ]

∏

i<l<j

w ,

〈â†i âj〉
i>j−−→ [A + Bei(i−j−1)θ]

∏

j<l<i

w∗ .

• Quasi-momentum distribution of anyons:

〈n̂(a)
k
〉 = n0 +

A

L

[

e−ik(L− 1)− Lu + uL

(1− u)2
+ c.c.

]

+
B

L

[

e−ik(L− 1)− Lv + vL

(1− v)2
+ c.c.

]

,

where u = we−ik and v = we−i(k+θ).

• Thermodynamic limit:

〈n̂(a)
k
〉 L→∞−−−−→

|w|<1
n0 + A

2 cos k − 2W cosχ

1− 2W cos(k − χ) +W 2

+ B
2 cos k − 2W cos(θ − χ)

1− 2W cos[(k + θ)− χ] +W 2
,

where W = |w| and χ = arg(w).
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Hard-Core Limit

• Quasi-momentum distribution has maximum:

K
(a)
max =

{

π −K, n0 ≥ 2(
√
2−1) and ϑ1≤ θ≤ ϑ2,

K, Otherwise,

where we have introduced the abbreviations

ϑ1 =
π

4
+ arcsin

(2− n0√
2n0

)

, ϑ2 =
3π

2
− ϑ1 ,

K = arcsin
sin θ(2n0 − n20) + n20 sin θ cos θ

(1− cos θ)(1− n0)2 + (1 + cos θ)
.

0 π/4 π/2 3π/4 π

θ

0

π/4

π/2

3π/4

K
(a
)

m
ax

(a)
n0=0.75 DMRG
n0=0.50 DMRG
n0=0.25 DMRG
n0=0.75 GW
n0=0.50 GW
n0=0.25 GW

0 1/480 1/240
1/L

0.0
0.2
0.4
0.6
0.8
1.0
1.2

K
(a
)

m
ax

(b)

0 1/480 1/240
1/L

1.00

1.02

1.04

1.06

n
L m
a
x
/
n
L
→
∞

m
a
x (c)

θ=π/4

θ=π/2

θ=3π/4

θ=π

Floquet Realization of 1D Anyons

• Raman-assisted scheme [1]

• Raman-assisted scheme without the need of Feshbach resonances [3]

• Optical lattice

Ĥ(t) =
∑

l

{

−J ′
[

b̂
†
l
b̂l−1 + h.c.

]

+
U ′

2
n̂l(n̂l − 1) + Vln̂l + [∆ + F (t)]ln̂l

}

will static tilt and time-periodic inertial force

F (t) = F (t + T ) = −~χ̇(t) .

• Resonance and high-frequency conditions for “photon” assisted tunneling

∆ = ~ω, U ′ = 2~ω + U ,

J ′, δ, U, |Vl − Vl−1| ≪ ~ω .

• Dynamics is described by time-independent effective Hamiltonian:

Ĥeff = −
∑

l

[

b̂
†
l
b̂l−1Jeff(N̂l,l−1) + h.c.

]

+
∑

l

[U

2
n̂l(n̂l − 1) + Vln̂l

]

with number-dependent complex effective tunneling matrix element for N -“photon” pro-

cess

Jeff(N ) =
J ′

T

∫ T

0
dt exp

(

iωtN − iχ(t)
)

.

• Effective tunneling matrix elements in the low density limit:

Jeff(1) = Jeff(−1) = Jeiϕ0 ,

Jeff(3) = Jei(θ+ϕ0) ,

which are achieved by the driving function

χ(t) = A cos(ωt) +B cos(2ωt) .
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