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Abstract

We investigate the dimensionally induced phase transition from the normal to the Bose-Einstein- | | | —— . L L

condensed phase for a weakly interacting Bose gas in an optical lattice [1]. To this end we make 30 1 Bf:,ff‘ger | etight-binding approgjlzlmatlon by Zwerger [11]
use of the Hartree-Fock-Bogoliubov-Popov theory, where we include numerically exact hopping 25 | eff. massapprox. [{  J(V])) = %ET (%) e~ 2V W/ Er

energies and effective interaction strengths. At first we determine the critical chemical potential, | 1/m* asymptote ||
where we find a much better agreement with recent experimental data than a pure Hartree-Fock . 2/ asymptote solving one-dimensional Schrdinger equation
treatment. This finding is in agreement with the dominant role of quantum fluctuations in lower NN | a "
dimensions, as they are explicitly included in our theory. Furthermore, we determine for the 1D- | 5 with Bloch theorem J = — | dkej.e™
3D-transition the power-law exponent of the critical temperature for two different non-interacting i : | | | | e approximate ¢ quadraticgllzy with effective
Bose gas models yielding the same value of 1/2, which indicates that they belong to the same % mass M* g

universality class. For the weakly interacting Bose gas we find for both models that this exponent

Is robust with respect to finite interaction strengths.

Mermin-Wagner e continuous change of dimensionality of e tight-binding approximation g

theorem: No Bose- 57\ N Bose system with optical lattices [3] i | | ; ; ; e Bose-Hubbard parameter U —
Einstein condensa- = e e experiment proposed by Ref. [4,5] featu- ' g = dnh2as /M

tion in one- and two \ B A ring a 1D Luttinger liquid theory : : : : : )
dimensional, homo- WS & 2 e mismatch between theory and experi- | | | | | * for 2D lattice g,;f(s) = g [ dzluw(z)[] |
geneous systems gt q ment for Luttinger liquid (1D) and Hartree- i — tightbinding|| @ Effective mterac;’uon strength decreases with
at T +# 0 [2] R Fock (3D) theory . — wamnier  |{ decreasing lattice depth through coherence

' | | | - with neighbouring sites
Investigate the phase transition to the Bose-Einstein condensate in the 1D-3D crossover.

Recent experiment of
1D-3D crossover for im-

balanced Fermion sy-
stem showed intriguing HIFBP Bloch/ Warmiier | | | e critical chemical potential separates phases of

phase separation and HFBP tight-binding/Zwerger | decoupled 1D tubes and 3D condensate

. HF Bloch/Wannier | | '
Orde”ng [6] - HF tight-binding /Zwerger | | ® Hartree_FOCk (HF) He — QQGHnC

e Hartree-Fock-Bogoliubov-Popov (HFBP) u. =
2geftNe — 9N
e experimental data of Ref. [3]

I\/Ierm'n-Wagner theorem [7] i ' | e effective mass approximation biggest deviation
i S | | | | eimprovement through numerically exact Wan-
— HF tight-binding /eff. mass approx. nier functions

® e Experiment
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e numerically computed band energies ¢, by

|
e Bogoliubov inequality ({A, ATW([BT, [H, B]]) > 2kgT|([A4, B))|? 4 5 I e very good agreement of HFBP theory with ex-
72 fe2 u/ kBT periment

N

eset A=bl, B =

Z bl];karp with [bg, b;f)] = 0, p and €, = I
Quantum fluctuations need to be considered in the dimensional crossover.
/\.‘. N ~

» Hamiltonian incorporating two-body interactions 4 = » - eka by, + — Z Vi p+kb
k k,p q

kgTM|(b)]? 1 . b
NﬁQkQ — 5 with ngE = <bkbk>

e order parameter must vanish in low dimensions (D = 1,2) at T' # 0 due to infrared divergence

—kbpbq

e lower boundary for number of particles ng >

0.56 e power-law of critical temperature for 1D

- T '_ regime kg1./E, = K (J/E,)"
Hybrid T 0.54 |30 enon-interacting exponent o = 1/2
0.52 125 e« of hybrid model (a) robust against weak

050 | interactions, gas parameter: v = na?,

e 2D lattice in 3D space, tune lattice depth between decoupled 1D tubes and 3D condensate s | . as S-wave scattering length

e introduce 3D lattice model (b):
0.46 |
1Y ek:2ZJ — cos(k;a)l, i = x,y, 2

0.44

0.0 0.|1 012 013 014 0I5 0I6 0.0 Oll OI2 0|3 0|4 0|5 0|6
y1/3 Y173 e find same robust exponent for both sy-
stems

Same universality class is empirically confirmed.
e |lattice depth 1/, proportional to laser intensity of laser pairs,
dimensionless lattice depth s = 1,/ E,- with recoil energy E, = m°h?/(2a*M) References
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e Bogoliubov dispersion E}, = \/si + 2gnpeg With e, = €, — 1+ gng +2gnand n =ng +n

o free energy F = V(—ung + %n% — git?) + % > (Ey — ek — gno)
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