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Abstract

We investigate the dimensionally induced phase transition from the normal to the Bose-Einstein-

condensed phase for a weakly interacting Bose gas in an optical lattice [1]. To this end we make

use of the Hartree-Fock-Bogoliubov-Popov theory, where we include numerically exact hopping

energies and effective interaction strengths. At first we determine the critical chemical potential,

where we find a much better agreement with recent experimental data than a pure Hartree-Fock

treatment. This finding is in agreement with the dominant role of quantum fluctuations in lower

dimensions, as they are explicitly included in our theory. Furthermore, we determine for the 1D-

3D-transition the power-law exponent of the critical temperature for two different non-interacting

Bose gas models yielding the same value of 1/2, which indicates that they belong to the same

universality class. For the weakly interacting Bose gas we find for both models that this exponent

is robust with respect to finite interaction strengths.

Motivation

Mermin-Wagner

theorem: No Bose-

Einstein condensa-

tion in one- and two

dimensional, homo-

geneous systems

at T 6= 0 [2]

• continuous change of dimensionality of

Bose system with optical lattices [3]

• experiment proposed by Ref. [4,5] featu-

ring a 1D Luttinger liquid theory

• mismatch between theory and experi-

ment for Luttinger liquid (1D) and Hartree-

Fock (3D) theory

Investigate the phase transition to the Bose-Einstein condensate in the 1D-3D crossover.

Recent experiment of

1D-3D crossover for im-

balanced Fermion sy-

stem showed intriguing

phase separation and

ordering [6].

Mermin-Wagner theorem [7]

• Bogoliubov inequality 〈{Â, Â†}〉〈[B̂†, [Ĥ, B̂]]〉 ≥ 2kBT |〈[Â, B̂]〉|2

• set Â = b̂
†
k
, B̂ =

∑

k

b̂
†
k
b̂k+p with [b̂k, b̂

†
p] = δk,p and ǫk =

~
2k2

2M

• Hamiltonian incorporating two-body interactions Ĥ =
∑

k

ǫkb̂
†
k
b̂k +

1

2

∑

k,p,q

Vkb̂
†
p+kb̂

†
q−k

b̂pb̂q

• lower boundary for number of particles nk ≥ kBTM |〈b̂0〉|2
N~2k2

− 1

2
with nk = 〈b̂†

k
b̂k〉

• order parameter must vanish in low dimensions (D = 1, 2) at T 6= 0 due to infrared divergence

Hybrid model

• 2D lattice in 3D space, tune lattice depth between decoupled 1D tubes and 3D condensate

• lattice depth V0 proportional to laser intensity of laser pairs,

dimensionless lattice depth s = V0/Er with recoil energy Er = π2~2/(2a2M )

• Bloch dispersion for particle in 3D with 2D lattice: ǫk = 4J − 2J cos(kxa)− 2J cos(kya) +
~
2k2z
2M

• quadratic approximation of lattice dimension with effective mass M∗:
∂2ǫk
∂k2x

=
~
2

M∗ = 2Ja2

Hartree-Fock-Bogoliubov-Popov theory [8-10]

• Bogoliubov dispersion Ek =
√

ε2
k
+ 2gn0εk with εk = ǫk − µ + gn0 + 2gñ and n = n0 + ñ

• free energy F = V (−µn0 +
g

2
n20 − gñ2) +

1

2

∑

k

(Ek − εk − gn0)−
1

β

∑

k

ln
(

1− e−βEk

)

with quantum and thermal fluctuations

• extremization
∂F
∂n0

= 0 ⇒ µ = gn0 +
2g

V

∑

k

[

εk + 1
2gn0

Ek

(

1

eβEk − 1
+
1

2

)

− 1

2

]

• resolve mismatch from Hugenholtz-Pines theorem with second-order Beliaev theory

• particle density − 1

V

∂F
∂µ

= n = n0 +
1

V

∑

k

[

εk + gn0
Ek

(

1

eβEk − 1
+
1

2

)

− 1

2

]

Hopping energy
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• tight-binding approximation by Zwerger [11]

J(V0) =
4√
π
Er

(

V0

Er

)3/4
e−2

√
V0/Er

• numerically computed band energies ǫk by

solving one-dimensional Schrödinger equation

with Bloch theorem J =
a

π

∫

BZ
dkǫke

ika

• approximate ǫk quadratically with effective

mass M∗

Effective interaction strength
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• tight-binding approximation g1Deff (s) ≈ 4asEr
√
s

• Bose-Hubbard parameter U = g
∫

dr|w(r)|4,
g = 4π~2as/M

• for 2D lattice g1Deff (s) = g
[∫

dx|w(x)|4
]2

• effective interaction strength decreases with

decreasing lattice depth through coherence

with neighbouring sites

Critical chemical potential
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Experiment

• critical chemical potential separates phases of

decoupled 1D tubes and 3D condensate

• Hartree-Fock (HF) µc = 2geffnc

• Hartree-Fock-Bogoliubov-Popov (HFBP) µc =
2geffnc − gn0

• experimental data of Ref. [3]

• effective mass approximation biggest deviation

• improvement through numerically exact Wan-

nier functions

• very good agreement of HFBP theory with ex-

periment

Quantum fluctuations need to be considered in the dimensional crossover.

Critical temperature

• power-law of critical temperature for 1D

regime kBTc/Er = K (J/Er)
α

• non-interacting exponent α = 1/2

• α of hybrid model (a) robust against weak

interactions, gas parameter: γ = na3s,
as s-wave scattering length

• introduce 3D lattice model (b):

ǫk = 2
∑

i

Ji[1− cos(kia)], i = x, y, z

• find same robust exponent for both sy-

stems

Same universality class is empirically confirmed.
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