

IBREAKDOWN OF KOINT THEOREM N
Hamid Al-Jibbouri and Al
¹Institut für Theoretische Physik, Freie U
²Fachbereich Physik and Forschangszentrum OPTIMAS, Ter
²Fachbereich Physik and Forschangszentrum OPTIMAS. Ter
²Fachbereich Physik and Stat
$$h^{2} = h^{2}$$
 (h^{2} (h^{2}) (h^{2})
³Fachbereich Physik and Feicher Fachber
ge eich at bin method approach the trainbeit resonance
bin terestructus bescher fach for the senare of the sen

BREAKDOWN OF KOHN THEOREM NEAR FESHBACH RESONANCE Axel Pelster² Universität Berlin, Germany chnische Universität Kaiserslautern, Germany nearizing the equations of mo- \star Equations of motions in dimensionl $\left| \frac{\Delta \partial f}{\partial z_0} \right|$ $$\begin{split} \ddot{u}_{\rho} + u_{\rho} - \frac{1}{u_{\rho}^{3}} - \frac{P_{\text{BG}}}{u_{z}u_{\rho}^{3}} \bigg[1 - 16\varepsilon \ \varepsilon_{1}^{1/2} \\ \ddot{u}_{z} + \lambda^{2}u_{z} - \frac{1}{u_{z}^{3}} - \frac{P_{\text{BG}}}{u_{z}^{2}u_{\rho}^{2}} \bigg[1 - 16\varepsilon \ \varepsilon_{1}^{1/2} \\ \end{split}$$ $(-m_3)^2 + 8m_2^2$ $\ddot{z}_0 + \lambda^2 \left[1 + \frac{16P_{\rm BG}}{u_2^2 u_z} \varepsilon \varepsilon_1^{1/2} \int_0^\infty \frac{1}{(4\varepsilon_1)^2} \right]$ g Mathematica. esonance with $\varepsilon_1 = \frac{\mathcal{H}\mu_{\rm B}}{\hbar\omega_o}$ and $\mathcal{S} = \mathcal{H}s$. \star Thomas-Fermi (TF) approximation: $\operatorname{Sec}\left[\frac{u_z\lambda}{u_\rho}\right]$ $\left| \frac{\left(u_z^2 \lambda^2 - u_\rho^2 \right)}{\left(u_z^2 \lambda^2 - u_\rho^2 \right)} \right| = 0$ $\lambda = 0.5$ $u_{\rho 0} - \text{Red}$ $u_{z 0} - \text{Blue}$ $u_{\rho 0}/u_{z 0} - \text{Green}$ $\operatorname{cSec}\left[\frac{u_z\lambda}{u_\rho}\right]$ 8ε $\left[\frac{u_z^2 \lambda^2 - u_\rho^2}{\left(u_z^2 \lambda^2 - u_\rho^2\right)}\right] = 0$ 155 157 156 $+\frac{u_{\rho}}{u_{z}\left(u_{\rho}^{2}-u_{z}^{2}\lambda^{2}\right)^{2}}\bigg]z_{0}=0$ $\varepsilon=\frac{\Delta\mu_{\mathrm{B}}}{\hbar\omega_{\rho}}=0.096052\times10^{6}.$ $B_0 G$ * Dipole Mode: * Exact: $\omega_D^2 = \lambda^2 \left[1 + 16\varepsilon \varepsilon_1^{1/2} \frac{P_{\text{BG}}}{u_{\rho 0}^2 u_{z0}} \int_0^\infty \frac{d\mathcal{S} \ e^{-\mathcal{S}}\mathcal{S}}{(4\varepsilon_1 + \mathcal{S}u_{\rho 0}^2) (4\varepsilon_1 + \mathcal{S}u_{z0}^2 \lambda^2)^{3/2}} \right]$ * TF: $\omega_D^2 = \lambda^2 + \frac{32P_{\text{BG}}\lambda^3\varepsilon \kappa_1(\rho 0, \varepsilon, \varepsilon_1)}{3u_{\rho 0}^{10}}$ $u_{ ho 0} = \lambda u_{z0}$ $\lambda = 2$ –Solid Dashed λ=0.5 155 156 * Breathing and quadrupole modes in the TF: $m_1 = 1 + \frac{3P_{\text{BG}}\lambda}{u_{\rho 0}^5} \left[1 + \kappa_2(u_{\rho 0}, \varepsilon, \varepsilon_1)\right], m_2 = \frac{P_{\text{BG}}\lambda^2}{u_{\rho 0}^5} \left[1 + \kappa_3(u_{\rho 0}, \varepsilon, \varepsilon_1)\right],$ $m_3 = \lambda^2 + \frac{2P_{\text{BG}}\lambda^3}{u_{\rho 0}^5} \left[1 + \kappa_4(u_{\rho 0}, \varepsilon, \varepsilon_1)\right]$.5 1 1.5 2 2.5 3 $\lambda = 0.8$ $\delta\lambda^2 + 9\lambda^4$ 155.02 155 $\frac{1}{u_{\rho 0}^5} \left(1 - \frac{2279\varepsilon}{96u_{ ho 0}^2} \right)$ $B_0 G$ (solid), and TF approximation (dashed), respectively. shbach – Solid eshbach – Dashed \star Also quadrupole and breathing modes have been discussed. \star We showed that Ref. [1] is not valid in the vicinity of the Feshbach resonance. 1.5 2 2.5 3

Right-Hand Side of Feshbach Resonance

less form:

$$\int_{0}^{\infty} \frac{d\mathcal{S} \ e^{-\mathcal{S}} \left(2\varepsilon_{1} + \mathcal{S}u_{\rho}^{2}\right)}{\left(4\varepsilon_{1} + \mathcal{S}u_{\rho}^{2}\right)^{2} \sqrt{4\varepsilon_{1}} + \mathcal{S}u_{z}^{2}\lambda^{2}}\right] = 0$$

$$\frac{\sqrt{2}}{\sqrt{2}} \int_{0}^{\infty} \frac{d\mathcal{S} \ e^{-\mathcal{S}} \left(2\varepsilon_{1} + \mathcal{S}u_{z}^{2}\lambda^{2}\right)}{\left(4\varepsilon_{1} + \mathcal{S}u_{\rho}^{2}\right) \left(4\varepsilon_{1} + \mathcal{S}u_{z}^{2}\lambda^{2}\right)^{3/2}}\right] = 0$$

$$\frac{d\mathcal{S} \ e^{-\mathcal{S}}\mathcal{S}}{\left(4\varepsilon_{1} + \mathcal{S}u_{z}^{2}\lambda^{2}\right)^{3/2}}\right] z_{0} = 0$$

• Acknowledgment: German Academic Exchange Service (DAAD)

BREAKDOWN OF KOHN THEOREM NEAR FESHBACH RESONANCE Hamid Al-Jibbouri¹ and Axel Pelster²

¹Institut für Theoretische Physik, Freie Universität Berlin, Germany ²Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

References

[1] E. R. F. Ramos, F. E. A. dos Santos, M. A. Caracanhas, and V. S. Bagnato, Coupling Collective Modes in a Trapped Superfluid, Phys. Rev. A 85, 033608 (2012). [2] W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123, 1242 (1961). [3] L. Pitaevskii and S. Stringari, *Bose-Einstein Condensation* (Oxford University Press, Oxford, 2003). [4] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Second edition (Cambridge University Press, Cambridge, 2008). [5] T. Esslinger, I. Bloch, and T. W. Hänsch, Bose-Einstein Condensation in a Quadrupole-Ioffe-Configuration Trap, Phys. Rev. A 58, R2664 (1998). [6] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Resonances in Ultracold Collisions of ⁶Li, ⁷Li, and ²³Na, Phys. Rev. A **51**, 4852 (1995). [7] P. A. Altin, N. P. Robins, D. Döring, J. E. Debs, R. Poldy, C. Figl, and J. D. Close, ⁸⁵Rb Tunable-Interaction Bose-Einstein Condensate Machine, Rev. Sci. Instrum. 81, 063103 (2010). [8] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach Resonances in Ultracold Gases, Rev. Mod. Phys. 82, 1225 (2010). [9] S. Yi and L. You, Expansion of a Dipolar Condensate, Phys. Rev. A 67, 045601 (2003). [10] V. M. Pérez-García, H. Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller, Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis, Phys. Rev. Lett. 77, 5320 (1996). [11] V. M. Pérez-García, H. Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller, Dynamics of Bose-Einstein Condensates: Variational Solutions of the Gross-Pitaevskii Equations, Phys. Rev. A 56, 1424 (1997). [12] I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster, Nonlinear BEC Dynamics Induced by a Harmonic Modulation of the S-Wave Scattering Length, Phys. Rev. A 84, 013618 (2011). [13] H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster, Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions, J. of Phys B 46, 065303 (2013). [14] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of Φ^4 -Theories (World Scientific, Singapore, 2001).

