berlin Dissipative Two-Mode Tavis-Cummings Model with Time-Delayed Feedback Control [PRA **92**, 063832 (2015)] Wassilij Kopylov¹, Milan Radonjić², Tobias Brandes¹, ECHNISCHE UNIVERSITÄT Antun Balaž³ and Axel Pelster⁴ SERSLAUTERN

¹ Institut für Theoretische Physik, Technische Universität Berlin, Germany ² Photonics Center, Institute of Physics Belgrade, Serbia ³Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia ⁴Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany

Abstract

We investigate the dynamics of a twomode laser system based on a quantum mechanical Tavis-Cummings model [1].

Fixed Point Analysis

- Calculate fixed points by switching to a rotated frame with self-consist. determined frequency ω • Shift frequencies: $\omega_m \to \omega_m - \omega$; $\Delta \to \Delta - \omega$
 - $\partial_t(a_1, a_2, J^+, J_z) = (0, 0, 0, 0) \Rightarrow J_z^0 = \Re(J_z^0) + \Im(J_z^0) \Rightarrow \omega \Rightarrow (a_1, a_2, J^+, J_z)^0$ • Up to 4 possible fixed points

Pyragas Feedback: Selecting the Lasing Mode

□ Without feedback initial condition selects the

lasing mode:

BELGRADE

Using mean-field equations, we determine the phase diagram and apply on top three different time delayed feedback schemes of Pyragas form to influence the system behavior.

2-Mode-TC

Hamiltonian of a closed system [1] $\widehat{H} = \sum_{m=1}^{2} \omega_m \widehat{a}_m^{\dagger} \widehat{a}_m + \Delta \widehat{J}_z + \frac{g}{\sqrt{N}} \sum_{m=1}^{2} (\widehat{a}_m \widehat{J}^+ + \widehat{a}_m^{\dagger} \widehat{J}^-)$

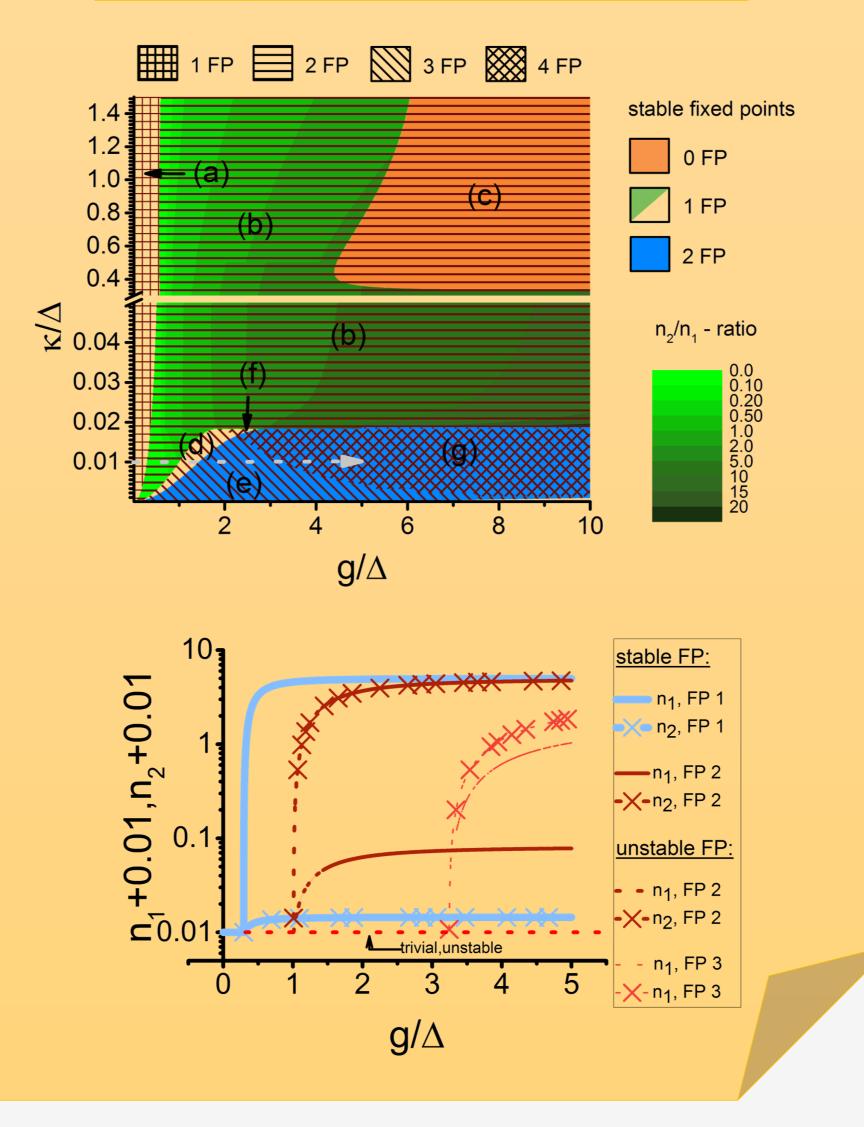
with

- \hat{J}_z, \hat{J}^{\pm} collective spin operators
- $\hat{a}_{1,2}^{(\dagger)}$ ladder operators of the optical mode
- g atom-field-coupling
- ω_1, ω_2 frequencies of the 2 modes
- Δ atomic frequency
- N number of atoms

- □ Stability analysis
 - Up to 2 stable non-trivial fixed points
 - Areas with one dominating mode
 - Complete absence of stability is possible
- Apply Pyragas feedback to modify behavior of the system [3,4]

Phase and Bifurcation Diagram

Area	(a)	(b)	(c)	(d)	(e)	(f)	(g)
Fixed Points	1	2	2	3	3	4	4
Stable	1	1	0	1	2	1	2

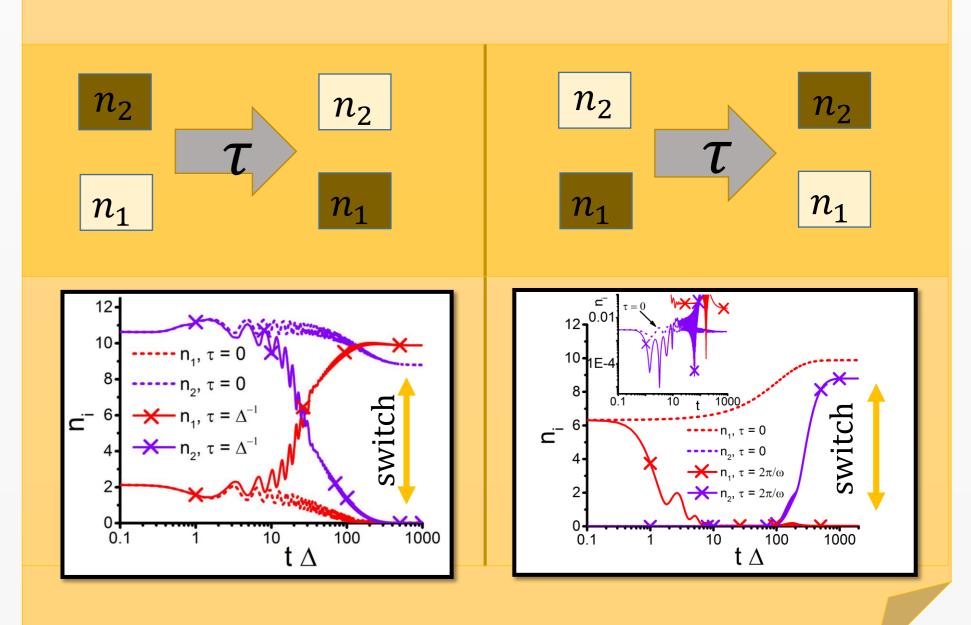


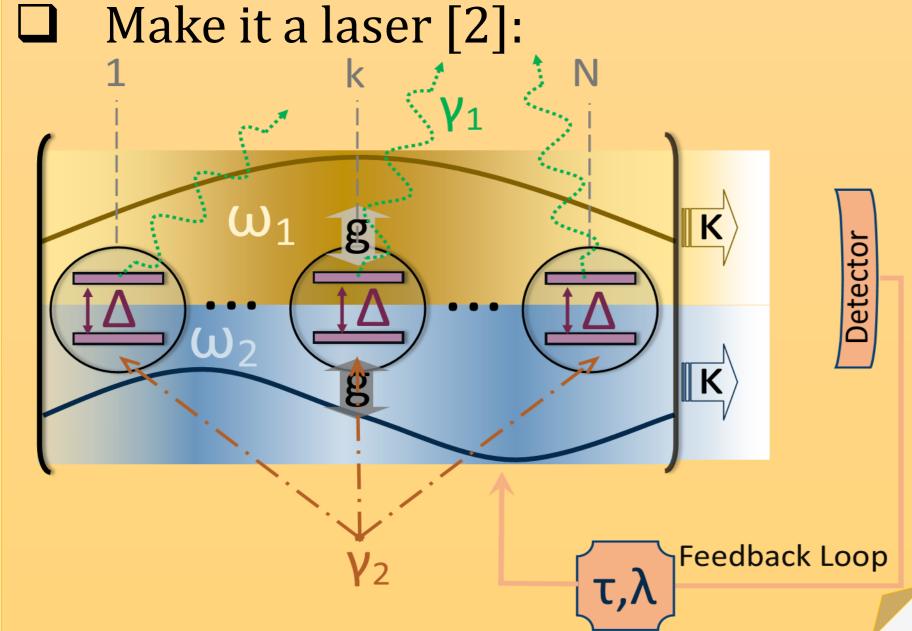
Ľ	2-					FP 1 FP 2
	0.0	0.5	1.0	1.5	2.0	

 $n_{1}(0)$ □ The feedback scheme selects the lasing mode irrespective of initial condition (here $\omega_1 < \omega_2$).

Scheme 1	Scheme 2
Feedback: ω_1 $\rightarrow (\omega_1 + \lambda(n_2(t - \tau) - n_2))$	Feedback: $\dot{a}_1 = \dots + \lambda(a_1(t - \tau) - a_1)$
Its action: ω_1 - mode acquires large population [5]	Its action: ω_2 - mode acquires large population
Realization: moving mirror	Realization: extra mirror

Feedback switch, works in area (e)





2-Mode-TC Laser

Description based on master equation: [2]

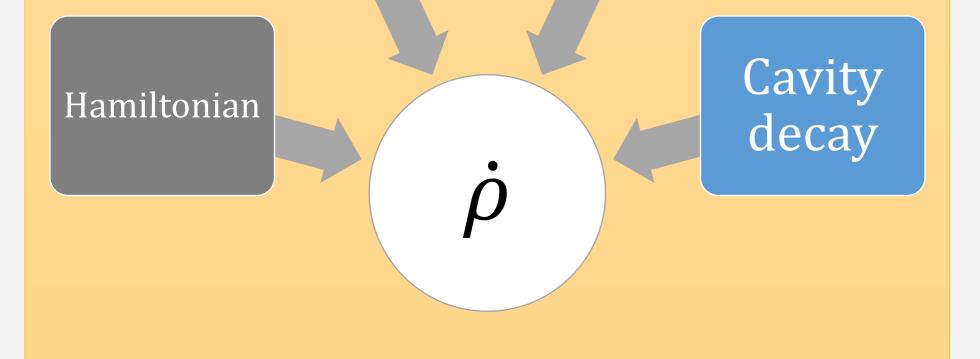
> Atomic Atomic pumping decay

Pyragas Feedback: Stabilization

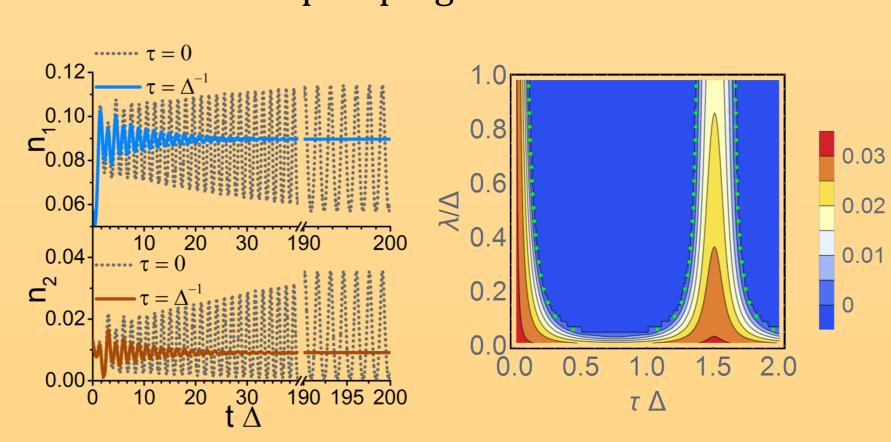
 \Box Feedback: $\dot{J}_z = \cdots + \lambda (J_z[t - \tau] - J_z[t])$ □ Its effect: stabilizes the unstable mode □ Works in: area (c) Realization: pumping

Conclusions

- Complex phase diagram with multiple fixed points is found even without feedback.
- Given Feedback opens the possibility to select the radiating mode, or to stabilize the system.
- Generation Feedback works well if there is only one unstable or two stable points. Mixture of stable/unstable points often leads to oscillating behavior or partial destabilization.
- Extension of the model with a thermalization mechanism would yield a minimal model to study the transitions between a condensate- and a laserlike state, which originate from a macroscopic occupation of the lower and higher cavity mode,



- Resulting rescaled mean-field eqs.
 - $(-i \,\omega_1 \kappa) a_1 i \, g \, J^ \dot{a}_1$ = $\dot{a}_2 = (-i\omega_2 - \kappa)a_2 - igJ^ (i\Delta - \Gamma_{\downarrow})J^{+} - i 2g(a_{1}^{*} + a_{2}^{*})J_{z}$ İ+ $= -i g(a_1 + a_2)J^+ + i g(a_1^* + a_2^*)J^ +\Gamma_{\uparrow}(z_0-J_z)$



□ Without feedback the fixed point (black dotted lines) is unstable, thus the mode occupation oscillates forever $(\tau = 0).$

 \Box With feedback, the fixed point gets stable ($\tau = \frac{1}{\Lambda}$). \Box The control diagram in the (τ, λ) - plane. In the blue area the fixed point is stable.

References

[1] M. Tavis et al., Phys. Rev. **170**, 379 (1968) [2] H. Haken, Licht und Materie (1970); C. Gardiner, P. Zoller, Quantum Noise (2004) [3] W. Just, et al., Phil. Trans. Roy. Soc. A **368**, 303 (2009)[4] K. Pyragas, Phys. Lett. A **170**, 421 (1992) [5] M. Virte et al., APL **105**, 121104 (2014) [6] P. Kirton and J. Keeling, PRL **111**, 100404 (2013)