

Nonequilibrium Quantum Phase Transitions

in a Hybrid Atom-Optomechanical System N. Mann¹, M. Reza Bakhtiari¹, A. Pelster², and M. Thorwart¹

¹I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany

²Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany

Motional Atom-Membrane Coupling

- laser field induces effective long-range coupling between atoms and membrane
- displaced membrane leads to linear displacement force on atoms
- back-action by displaced center-of-mass (CoM) position of atoms which redistribute photons and alter radiation pressure on membrane

 $i\partial_t \psi = \left[V \sin^2(z) - \omega_R \partial_z^2 + Ng |\psi|^2 - 2\sqrt{N\lambda} \operatorname{Re}(\alpha) \sin(2z) \right] \psi$ $i\partial_t \alpha = \left(\Omega_m - i\Gamma_m\right) \alpha - \sqrt{N}\lambda \int dz \sin(2z) |\psi|^2$

Gaussian ansatz for condensate wave function with 4 variables: $\zeta(t)$, $\sigma(t)$, $\kappa(t)$, $\eta(t)$

Internal State Atom-Membrane Coupling

- polarization beam splitter (PBS) utilized to allow for polarization rotation
- displaced membrane induces phase shift of light which translates to polarization rotation in PBS and may induce **two-photon transition** $|-\rangle \leftrightarrow |+\rangle$
- **back-action** induced by a transition of **atoms** under the emission of a σ_+ photon which alters radiation pressure on membrane

$$i\partial_t \psi_- = \left[-\frac{\Omega_a}{2} - \omega_R \partial_z^2 - \frac{V}{2} \cos(2z) + N \sum_{\tau=\pm} g_{\tau-} |\psi_\tau|^2 \right] \psi_- - \sqrt{N\lambda} \operatorname{Re}(\alpha) \cos(2z) \psi_+$$
$$i\partial_t \psi_+ = \left[\frac{\Omega_a}{2} - \omega_R \partial_z^2 - \frac{V}{2} \cos(2z) + N \sum_{\tau=\pm} g_{\tau+} |\psi_\tau|^2 \right] \psi_+ - \sqrt{N\lambda} \operatorname{Re}(\alpha) \cos(2z) \psi_- - 2\sqrt{N\lambda} \chi \operatorname{Re}(\alpha) \cos(2z) \psi_-$$

$$\psi(z,t) = \left(\frac{1}{\pi\sigma(t)^2}\right)^{1/4} \exp\left(-\frac{[z-\zeta(t)]^2}{2\sigma(t)^2} + i\kappa(t)z + i\eta(t)z^2\right)$$

Cumulant Expansion with Gaussian Ansatz [1]

- \Rightarrow time evolution of **weight**: zeroth order cumulant $c_{-}(t), c_{+}(t)$
- **first** order cumulant \Rightarrow time evolution of CoM **position**: $\zeta(t),\kappa(t)$
- $\sigma(t), \eta(t)$ time evolution of **width**: second order cumulant \Rightarrow

Nonequilibrium Quantum Phase Transition [1]

reduced equations of motion for variational parameters:

> $\dot{\alpha} = -i\partial_{\alpha^*}E - \Gamma_m\alpha$ $(2\omega_R)^{-1}\ddot{\zeta} = -\partial_{\zeta}E$ $(4\omega_R)^{-1}\ddot{\sigma} = -\partial_{\sigma}E$

$i\partial_t \alpha = \left(\Omega_m - i\Gamma_m\right) \alpha - \sqrt{N\lambda} \left[dz \cos(2z) \operatorname{Re}(\psi_+^* \psi_-) - \sqrt{N\lambda} \chi \left[dz \cos(2z) |\psi_+|^2 \right] \right]$

Gaussian ansatz for condensate with 4 variables: $c_{\tau}(t), \sigma(t), \eta(t)$ with $\psi_{\tau}(z, t) = c_{\tau}\psi(z, t)$

Tuning the Order of a Quantum Phase Transition [2]

reduced equations of motion for variational parameters:

$$\dot{\alpha} = -i\partial_{\alpha^*}E - \Gamma_m\alpha$$
$$\dot{c}_{\tau} = -i\partial_{c_{\tau}^*}E$$
$$(4\omega_R)^{-1}\ddot{\sigma} = -\partial_{\sigma}E$$

$$E[\alpha, c_{\tau}, \sigma] = \Omega_{m} |\alpha|^{2} + \frac{\Omega_{a}}{2} \left[|c_{+}|^{2} - |c_{-}|^{2} \right] + \left[\frac{\omega_{R}}{2\sigma^{2}} + \frac{Ng}{\sqrt{8\pi\sigma}} - \frac{V}{2} e^{-\sigma^{2}} \right] - \sqrt{N\lambda} \left[\chi |c_{+}|^{2} + 2\operatorname{Re}(c_{+}^{*}c_{-}) \right] \operatorname{Re}(\alpha) e^{-\sigma^{2}} d\alpha$$

- collective excitation frequencies and decay rates
- membrane **displacement variance** (critical exponent -1)

• normalized potential energy surface and steady state (dashed) with $c_+ \equiv \gamma$

- always 1st order NQPT if $\chi \neq 0$
- either continuous or discontinuous NQPT if $\chi = 0$

critical point at which 2nd order **becomes 1st** order NQPT:

2nd order 1st order $\Omega_a \ge \Omega_c$ $\Omega_a < \Omega_c$

 ω_{σ} : breathing mode frequency

Enhanced Membrane Squeezing by Atom Interactions [3]

lattice model

- experimentally accessible quantities: ω_{α} , n(k), σ_0
- atom-membrane entanglement in steady state (with vacuum fluctuations)

$H = \Omega_m b^{\dagger} b + \frac{\Omega_a}{2} \sum_{i\tau} \tau d_{j\tau}^{\dagger} d_{j\tau} - J \sum_{\langle ii \rangle \tau} d_{j\tau}^{\dagger} d_{i\tau} + \frac{U}{2} \sum_{i\tau\tau'} d_{j\tau}^{\dagger} d_{j\tau'} d_{j\tau'} d_{j\tau} d_{j\tau} - \frac{\Lambda}{2} \left(a^{\dagger} + a \right) \sum_{i} \left(d_{j+}^{\dagger} d_{j-} + \text{H.c.} \right)$

- Bogoliubov prescription combined with path integral formalism
- analytic solution of thermal observables

References

- [1] N. Mann, M. Reza Bakhtiari, A. Pelster, M. Thorwart, Phys. Rev. Lett. **120**, 063605 (2018)
- [2] N. Mann, A. Pelster, M. Thorwart, submitted, arXiv:1810.12846
- [3] N. Mann, M. Thorwart, Phys. Rev. A 98, 063804 (2018)
- [4] B. Vogell, K. Stannigel, P. Zoller, K. Hammerer, M. T. Rakher, M. Korppi, A. Jöckel, P. Treutlein, Phys. Rev. A 87, 023816 (2013)
- [5] B. Vogell, T. Kampschulte M. T. Rakher, A. Faber, P. Treutlein, K. Hammerer, P. Zoller, NJP 17, 043044 (2015)