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Hamiltonian

• hard-core extended Bose-Hubbard Hamiltonian

Ĥ = −
∑

i,j

Jijâ
†
i âj +

1

2

∑

i,j

Vijn̂in̂j − µ
∑

i

n̂i

describes hard-core dipolar bosons in a lattice.

– bosonic creation, annihilation and number operators for lattice site i: â
†
i , âi, n̂i = â

†
i âi

– tunneling between lattice sites i and j: Jijâ
†
i âj

– interaction between lattice sites i and j: 1
2Vijn̂in̂j

– chemical potential: µ

– hard-core: strong on-site repulsion ⇒ not more than one particle per site

• For the lattices, that we investigate, the Hamiltonian can be rewritten:

˚̂
H =−J̊

∑

ij

Γijâ
†
i âj +

1

2

∑

ij

Ωijn̂in̂j − µ̊
∑

i

n̂i

according to

V :=
∑

i Vij =
∑

j Vij, J :=
∑

i Jij =
∑

j Jij

Ωij :=
Vij
V ,

∑

iΩij = 1,
∑

j Ωij = 1, Γij :=
Jij
J ,

∑

i Γij = 1,
∑

j Γij = 1
˚̂
H = Ĥ

V , J̊ = J
V , µ̊ = µ

V

– “̊ ” stands for “unitless”

– creates useful scaling of phase diagram axes

– J̊ , µ̊: axes of phase diagram

– Γij, Ωij: distribution of hopping and interaction respectively

Gutzwiller mean-field approximation

• product state approximation, normalization condition

|ψ〉 =
⊗

i

(c0i |0i〉 + c1i |1i〉) |c0i|
2 + |c1i|

2 =1 ∀i

• expectation values (with respect to product state):

〈ψ| n̂i |ψ〉 = |c1i|
2= : ̺i 〈ψ| â

†
i âj |ψ〉= c0ic

∗
1ic

∗
0jc1j =ψ

∗
i ψj

〈ψ| âi |ψ〉 = c∗0ic1i= : ψi 〈ψ| n̂in̂j |ψ〉= |c1i|
2
∣

∣c1j
∣

∣

2
= ̺i̺j

• energy expectation value (mean-field energy):

E̊ = 〈ψ|
˚̂
H |ψ〉 =−J̊

∑

ij

Γijψ
∗
i ψj +

1

2

∑

ij

Ωij̺i̺j − µ̊
∑

i

̺i

Numerical calculation

• substitution ensures, that normalization condition is fulfilled:

c0i =cosαi e
iϕ0i ̺i = |c1i|

2 = sin2 αi

c1i =sinαi e
iϕ1i ψi =c

∗
0ic1i = cosαi sinαi e

iϕi

ϕi :=ϕ0i − ϕ1i

• order parameters:

– ̺i ∈ R: density at lattice site i

– ψi ∈ C: indicator for superfluidity at lattice site i

• numerical calculation: minimalization of E̊ with respect to αi’s and ϕi’s

Transition between quadratic and triangular lattice

quadratic transition triangular
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• transition: interaction V2 and hopping J2 change relative to V1 and J1

Whole phase diagram and 1st zoom

• green dashed lines: continuous phase transition

• red solid lines: discontinuous phase transition

• yellow areas: phases with spatial symmetry occurring in quadratic lattice

• red areas: phases with spatial symmetry occurring in triangular lattice

• green areas: phases with spatial symmetry occurring in both

• blue areas: phases with spatial symmetry occurring in neither (new phases)
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First zoom towards blue areas (see black rectangles in transition phase diagram):

New phases for positive hopping and 2nd zoom

Visualization of spacial distributions

(right image):

• HSV color space used for color-

coding

• Size of circles and direction of lines

used for geometric visualization

• Area of circles and brightness V: ̺i

• Length of lines and saturation S: |ψi|

• Direction of lines and hue H: argψi
(complex phase of ψi)
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• Stripe pattern

• all sites superfluid

• Pattern can be descri-

bed with two sites in

the unit cell

New phases for negative hopping, 2nd and 3rd zoom

• Zoom into black rectangle from left image

• Scaled just in horizontal direction
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• Patterns can be described with six sites in the unit cell

• In the SFAa
A
b
B
c
A
d
A
e
B
f phase the complex phases of ψi are changing within the phase diagram,

which doesn’t happen for the quadratic or triangular lattice, but only here in the transition bet-

ween both.


