WITH INTERMEDIATE GEOMETRIES

${ }^{1}$ Physics Department, Freie Universität Berlin, 14195 Berlin, Germany

Hamiltonian

- hard-core extended Bose-Hubbard Hamiltonian

$$
\hat{H}=-\sum_{i, j} J_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} \sum_{i, j} V_{i j} \hat{n}_{i} \hat{n}_{j}-\mu \sum_{i} \hat{n}_{i}
$$

describes hard-core dipolar bosons in a lattice.

- bosonic creation, annihilation and number operators for lattice site $i: \hat{a}_{i}^{\dagger}, \hat{a}_{i}, \hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}$
- tunneling between lattice sites i and $j: J_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}$
- interaction between lattice sites i and $j: \frac{1}{2} V_{i j} \hat{n}_{i} \hat{n}_{j}$
-chemical potential: μ
- hard-core: strong on-site repulsion \Rightarrow not more than one particle per site
- For the lattices, that we investigate, the Hamiltonian can be rewritten

$$
\hat{H}=-j \sum_{i j} \Gamma_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} \sum_{i j} \Omega_{i j} \hat{n}_{i} \hat{n}_{j}-\hat{\mu} \sum_{i} \hat{n}_{i}
$$

according to

$$
V:=\sum_{i} V_{i j}=\sum_{j} V_{i j}, J:=\sum_{i} J_{i j}=\sum_{j} J_{i j}
$$

$$
\hat{\tilde{H}}=\frac{\ddot{H}}{V}, \dot{J}=\frac{\vec{J}}{V}, \dot{\mu}=\frac{\mu}{V}
$$

_" " " stands for "unitless"

- creates useful scaling of phase diagram axes
- J, μ : axes of phase diagram
$-\Gamma_{i j}, \Omega_{i j}$: distribution of hopping and interaction respectively

Gutzwiller mean-field approximation

- product state approximation, normalization condition

$$
|\psi\rangle=\bigotimes\left(c_{0 i}\left|0_{i}\right\rangle+c_{1 i}\left|1_{i}\right\rangle\right) \quad\left|c_{0 i}\right|^{2}+\left|c_{1 i}\right|^{2}=1 \quad \forall i
$$

- expectation values (with respect to product state):

$$
\begin{aligned}
\langle\psi| \hat{n}_{i}|\psi\rangle & =\left|c_{1 i}\right|^{2}=: \varrho_{i} & & \langle\psi| \hat{a}_{i}^{\dagger} \hat{a}_{j}|\psi\rangle=c_{0 i} c_{1 i}^{*} c_{0 j}^{*} c_{1 j}=\psi_{i}^{*} \psi_{j} \\
\langle\psi| \hat{a}_{i}|\psi\rangle & =c_{0 i}^{*} c_{1 i}=: \psi_{i} & & \langle\psi| \hat{n}_{i} \hat{n}_{j}|\psi\rangle=\left|c_{1 i}\right|^{2}\left|c_{1 j}\right|^{2}=\varrho_{i} \varrho_{j}
\end{aligned}
$$

- energy expectation value (mean-field energy):

$$
\stackrel{\circ}{E}=\langle\psi| \stackrel{\circ}{H}|\psi\rangle=-\stackrel{\circ}{J} \sum_{i j} \Gamma_{i j} \psi_{i}^{*} \psi_{j}+\frac{1}{2} \sum_{i j} \Omega_{i j} \varrho_{i} \varrho_{j}-\dot{\mu} \sum_{i} \varrho_{i}
$$

Numerical calculation

- substitution ensures, that normalization condition is fulfilled:

$$
\begin{aligned}
c_{0 i} & =\cos \alpha_{i} e^{i \varphi_{0 i}} & \varrho_{i} & =\left|c_{1 i}\right|^{2}
\end{aligned}=\sin ^{2} \alpha_{i} .
$$

- order parameters:
- $\varrho_{i} \in \mathbb{R}$: density at lattice site i
$-\psi_{i} \in \mathbb{C}$: indicator for superfluidity at lattice site i
- numerical calculation: minimalization of E with respect to α_{i} 's and φ_{i} 's

- transition: interaction V_{2} and hopping J_{2} change relative to V_{1} and J_{1}

Whole phase diagram and 1st zoom

- green dashed lines: continuous phase transition
- red solid lines: discontinuous phase transition
- yellow areas: phases with spatial symmetry occurring in quadratic lattice
- red areas: phases with spatial symmetry occurring in triangular lattice
- green areas: phases with spatial symmetry occurring in both
- blue areas: phases with spatial symmetry occurring in neither (new phases)

$$
\begin{array}{ccc}
\text { quadratic } & \text { transition } & \text { triangular } \\
\frac{V_{2}}{V_{1}}=\frac{J_{2}}{J_{1}}=0 & \frac{V_{2}}{V_{1}}=\frac{J_{2}}{J_{1}}=0.65 & \frac{V_{2}}{V_{1}}=\frac{J_{2}}{J_{1}}=1
\end{array}
$$

First zoom towards blue areas (see black rectangles in transition phase diagram):

New phases for positive hopping and 2nd zoom

Visualization of spacial distributions (right image):

- HSV color space used for color coding
- Size of circles and direction of lines used for geometric visualization
- Area of circles and brightness V: ϱ_{i}
- Length of lines and saturation $\mathrm{S}:\left|\psi_{i}\right|$
- Direction of lines and hue $\mathrm{H}: \arg \psi_{i}$ (complex phase of ψ_{i})

Supersolid

$\mathrm{SF}^{A B}$:

- Stripe pattern
- all sites superfluid
- Pattern can be described with two sites in the unit cell

New phases for negative hopping, 2nd and 3rd zoom

- Zoom into black rectangle from left image
- Scaled just in horizontal direction
- Patterns can be described with six sites in the unit cell
 which doesn't happen for the quadratic or triangular lattice, but only here in the transition between both.

