Out-of-equilibrium dynamics of ultracold bosons in time-dependent random potentials

Milan Radonjić and Axel Pelster

Department of Physics, Technische Universität Kaiserslautern, Germany

Abstract: We investigate the impact of time-dependent random potentials on a weakly interacting Bose gas. Our ultimate aim is to explore and exploit the versatility of various scenarios of driven time-dependent random disordered potentials for studying out-of-equilibrium dynamics of ultracold bosons. Here we study smooth quench of the disordered potential from the initial disorder-free state. Depending on the quench rise time we focus on two limiting cases: adiabatic and sudden quench. In the long-time limit the former scenario reproduces the static disorder equilibrium case [1], while the latter leads to the formation of a non-equilibrium steady state

Ultracold bosons in random potentials

$i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t)=\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+\mathcal{U}(\mathbf{x}, t)-\mu_{0}+g|\Psi(\mathbf{x}, t)|^{2}\right] \Psi(\mathbf{x}, t)$
System is initially in equilibrium: $\quad \Psi(\mathbf{x}, 0)=\sqrt{n}, \quad \mu_{0}=g n$
Externally driven smooth quench of random potential:
$\mathcal{U}(\mathbf{x}, t)= \begin{cases}0, & t \leq 0 \\ f(t) u(\mathbf{x}), & t>0\end{cases}$
Properties of driving function:
$f(0)=0, \quad \lim _{t \rightarrow \infty} f(t)=1$
Statistical characterization of disorder:
$\langle u(\mathbf{x})\rangle=0, \quad\left\langle u(\mathbf{x}) u\left(\mathbf{x}^{\prime}\right)\right\rangle=\mathcal{R}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$
Off-diagonal long-range order and condensate density [2]:
$n_{0}(t)=\lim _{\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \rightarrow \infty}\left\langle\Psi(\mathbf{x}, t) \Psi^{*}\left(\mathbf{x}^{\prime}, t\right)\right\rangle=|\langle\Psi(\mathbf{x}, t)\rangle|^{2}$
Particle density: $\left.\quad n=\left.\langle | \Psi(\mathbf{x}, t)\right|^{2}\right\rangle$
Condensate depletion: $\quad q(t)=n-n_{0}(t)$

Perturbative treatment of weak disorder

Perturbative ansatz à la [3]:
$\Psi(\mathbf{x}, t)=\Psi_{0}(t)+\Psi_{1}(\mathbf{x}, t)+\Psi_{2}(\mathbf{x}, t)+\ldots$
$\left|\Psi_{\alpha}(\mathbf{x}, t)\right| \sim|u(\mathbf{x})|^{\alpha}, \quad \Psi_{\alpha}(\mathbf{x}, 0)=0, \quad \alpha \geq 1$
Zeroth order solution: $\quad \Psi_{0}(t)=\sqrt{n}$
First order equations:
$i \hbar \frac{\partial}{\partial t} \Psi_{1}(\mathbf{x}, t)=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+\mu_{0}\right) \Psi_{1}(\mathbf{x}, t)+\mu_{0} \Psi_{1}^{*}(\mathbf{x}, t)+\sqrt{n} f(t) u(\mathbf{x})$
$-i \hbar \frac{\partial}{\partial t} \Psi_{1}^{*}(\mathbf{x}, t)=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+\mu_{0}\right) \Psi_{1}^{*}(\mathbf{x}, t)+\mu_{0} \Psi_{1}(\mathbf{x}, t)+\sqrt{n} f(t) u(\mathbf{x})$
Second order equations:
$i \hbar \frac{\partial}{\partial t} \Psi_{2}(\mathbf{x}, t)=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+\mu_{0}\right) \Psi_{2}(\mathbf{x}, t)+\mu_{0} \Psi_{2}^{*}(\mathbf{x}, t)+\mathcal{F}(\mathbf{x}, t)$ $-i \hbar \frac{\partial}{\partial t} \Psi_{2}^{*}(\mathbf{x}, t)=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+\mu_{0}\right) \Psi_{2}^{*}(\mathbf{x}, t)+\mu_{0} \Psi_{2}(\mathrm{x}, t)+\mathcal{F}^{*}(\mathbf{x}, t)$
$\mathcal{F}(\mathbf{x}, t)=\left[f(t) u(\mathbf{x})+g \sqrt{n}\left(\Psi_{1}(\mathbf{x}, t)+2 \Psi_{1}^{*}(\mathbf{x}, t)\right)\right] \Psi_{1}(\mathbf{x}, t)$
$\mathcal{F}^{*}(\mathbf{x}, t)=\left[f(t) u(\mathbf{x})+g \sqrt{n}\left(\Psi_{1}^{*}(\mathbf{x}, t)+2 \Psi_{1}(\mathbf{x}, t)\right)\right] \Psi_{1}^{*}(\mathbf{x}, t)$

Condensate depletion

Exponentially rising driving function: $f_{\tau}(t)=1-e^{-t / \tau}$

Stationary condensate depletion in 3D:
$q_{\tau} \equiv \lim _{t \rightarrow \infty} q_{\tau}(t)=n \int_{\mathbb{R}^{3}} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} \hat{\mathcal{R}}(\mathbf{k})\left[\frac{\hbar^{2} \omega_{\mathbf{k}}^{2}}{\hbar^{4} \Omega_{\mathbf{k}}^{4}}+\frac{\hbar^{2} \omega_{\mathbf{k}}^{2}+\hbar^{2} \Omega_{\mathbf{k}}^{2}}{2 \hbar^{4} \Omega_{\mathbf{k}}^{4}\left(1+\Omega_{\mathbf{k}}^{2} \tau^{2}\right)}\right]$
$\hbar \omega_{\mathbf{k}}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}, \quad \hbar \Omega_{\mathbf{k}}=\sqrt{\hbar \omega_{\mathbf{k}}\left(\hbar \omega_{\mathbf{k}}+2 \mu_{0}\right)}$
$\hat{\mathcal{R}}(\mathbf{k})=\int_{\mathbb{R}^{3}} \mathrm{~d}^{3} \mathbf{x} e^{-i \mathbf{k} \mathbf{x}} \mathcal{R}(\mathbf{x})$
Delta-correlated disorder: $\quad \mathcal{R}(\mathbf{x})=R \delta(\mathbf{x}), \quad \hat{\mathcal{R}}(\mathbf{k})=R$
Equilibrium of Huang \& Meng [1]: $\quad q_{\mathrm{HM}}=R \sqrt{\frac{\pi n}{2 g}}\left(\frac{m}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}}$
Disorder rise time influences steady state:

Gaussian-correlated disorder:
$\mathcal{R}(\mathbf{x})=R \frac{e^{-\mathbf{x}^{2} / \sigma^{2}}}{\pi^{3 / 2} \sigma^{3}}, \quad \hat{\mathcal{R}}(\mathbf{k})=R e^{-\mathbf{k}^{2} \sigma^{2} / 4}$

References:

[1] K. Huang and H.-F. Meng, Hard-sphere Bose gas in random external potentials, Phys. Rev. Lett. 69, 644 (1992)
[2] R. Graham and A. Pelster, Order via nonlinearity in randomly confined Bose gases, Int. J. Bif. Chaos 19, 2745 (2009)
[3] B. Nikolić, A. Balaž, and A. Pelster, Dipolar Bose-Einstein Condensates in Weak Anisotropic Disorder, Phys. Rev. A 88, 013624 (2013)

