KAISERSLAUTERN

Natália S. Móller, Vanderlei Bagnato, and Axe Pelster
Department of Physics and Research Center Optimas, Technische Universität Kaiserslautern,
DAD OPTIMAL
67663 Kaiserslautern, Germany

Quasi two dimensional ellipsoid

\times Let us consider ellipsoids with surface equation given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+z^{2}=R^{2}$.
x Following the same arguments as for a sphere, we get the following equations for ellipsoids.
$i \hbar \partial_{t} \psi=-\frac{\hbar^{2} \Delta_{\mathrm{ell}} \psi}{2 m R^{2}}+\frac{\hbar^{2} \psi}{4 m l^{2}}\left(\sin ^{2} \theta+a^{2} \cos ^{2} \theta\right)+\frac{m \omega^{2} l^{2} \psi}{4}+U \psi+\frac{g N|\psi|^{2}}{\sqrt{2 \pi} l R^{2}}$ $\frac{\hbar}{2 m l^{3}}\left(\sin ^{2} \theta+a^{2} \cos ^{2} \theta\right)-\frac{m \omega^{2} l}{2}+\frac{g N|\psi|^{2}}{2 \sqrt{2 \pi} l^{2} R^{2}}=0$.

Quasi two dimensional ellipsoid without interactions
x Gaussian length proportional to the harmonic oscillator length $l=\sqrt[4]{1+\left(a^{2}-1\right) \cos ^{2} \theta}$ lose and

$$
i \hbar \partial_{t} \psi=-\frac{\hbar^{2} \Delta_{\mathrm{ell}} \psi}{2 m R^{2}}+\frac{\hbar \omega}{2} \sqrt{1+\left(a^{2}-1\right) \cos ^{2} \theta} \psi+U(\theta, \varphi) \psi .
$$

KIf $a=0.2$ the equation for the Gaussian length becomes $l=\sqrt[4]{1-0.96 \cos ^{2} \theta}$ loss.

Conclusions and perspectives

Conclusions

x We derived equations for the wave functions for particles confined on the surface of a sphere or of an ellipsoid.
x The behaviour on the sphere is symmetric, but on the ellipsoid we can obtain an angular dependence.

Perspectives

$$
x \text { Apply the derived equations to obtain properties of the quantum gases on curved manifolds. }
$$

$$
x \text { Derive the full consistency equations by including angular derivatives of } l \text {. }
$$

References

[1] L. Salasnich, A. Parole, and L. Reatto, Phys. Rev. A 65, 043614 (2002) ${ }^{[2]}$ N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). [3] P. Hohenberg, Phys. Rev. 158, 383 (1967).

