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Abstract

Ultracold bosonic atoms in potentials with quenched disorder represent a notoriously difficult problem due to the competition of localization and superfluidity. Whereas some initial promising results
are known for weak disorder within a Bogoliubov theory of dirty bosons [1,2], the case of strong disorder is still quite elusive [3]. Here we work out a non-perturbative approach towards the dirty boson
problem at zero temperature which is based on a Gaussian approximation for correlation functions of the disorder potential and the condensate wave function solving the Gross-Pitaevskii equation.
For contact interaction we find that the case of delta-correlated disorder can be treated analytically, whereas the case of a Lorentzian disorder correlation necessitates a numerical solution of a set of
self-consistency equations. For weak disorder we reproduce the condensate depletion of Huang and Meng and for strong disorder we yield a quantum phase transition to a Bose-glass phase.

Model

•Disorder

–Disorder Ensemble Average

• =

∫

DV • P [V ] ,

∫

DVP [U ] = 1

–Assumptions

V (x1) = 0, V (x1)V (x2) = R(x1 − x2)

•Gross-Pitaevskii equation:

[

− ~
2

2m
∇2 + V (x)− µ + gψ2(x)

]

ψ(x) = 0

=⇒ stochastic nonlinear partial differential equation [3]

Gaussian factorization of correlation functions

•Gaussian assumption: cumulants of 3rd and higher order are zero

• Second cumulant in homogeneous systems is

GψV (x1 − x2) = ψ(x1)V (x2)− ψ(x1) V (x2)

• Example of expansion (with V (x) = 0)

ψ(x1)ψ(x2)V (x3) = ψ(x1)GψV (x2 − x3) + ψ(x2)GψV (x1 − x3)

Self-consistency equations

•Derivation:

GP : GψV (0)− µψ + gnψ + 2gGψψ(0)ψ = 0

GP V (x) :

(

~
2k2

2m
− µ + 3ng

)

GψV (k) = −ψR(k)

GP ψ(x) :

(

~
2k2

2m
− µ + 3ng

)

Gψψ(k) = −ψGV ψ(k)

•Closed system:

ψ2 =
n

1 + Iψψ
, Iψψ =

∫

d3k

(2π)3
R(k)

(

~2k2

2m − µ + 3ng
)2

IψV + µ = gn
1 + 3Iψψ
1 + Iψψ

, IψV =

∫

d3k

(2π)3
R(k)

~2k2

2m − µ + 3ng

=⇒ Lorentz correlation R(k) = R
1+σ2k2 yields algebraically solvable equations

•Bose glass: ψb = 0, Ibψψ = ∞, µb = 3ng

following from renormalization procedure

0 = IbψV =

∫

d3k

(2π)3
R(k)
~2k2

2m

∼ 1

σ
; σ : correlation length

Perturbative results

• Self-consistency equations: homogeneous case and R(k) = R

n = n0 +
√
πR
( m

2π~2

)3/2 n0√
3gn− µ

3gn− µ = 2gn0 − 2
√
πR
( m

2π~2

)3/2√
3gn− µ

•Condensate depletion in leading order:

n0 + n−
√

πn

2g
R
( m

2π~2

)3/2
+ . . .

•Equation of state in leading order:

µ = gn + 3
√

2πgnR
( m

2π~2

)3/2
+ . . .

=⇒ Results of Bogoliubov theory of dirty bosons [1, 2]

Non-perturbative results

•Condensate density and chemical potential:
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correlation lengths: σ
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=⇒ border of first/second order transition: R1−2σ1−2 =
π~4

m2

•Density and condensate density versus chemical potential:
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black and red lines show Bose glass phase and first-order phase transition, respectively.

•Local Density Approximation:
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Conclusions and outlook

•Density dependence of condensate and cloud radii confirmed by non-perturbative replica method [4]

•Numerical solution of Gross-Pitaevskii equation with disorder potential necessary [5]

•Trap calculation for finite correlation length

•Time-dependent generalization

•Generalization of preliminary results for dipolar Bose-Einstein condensates to strong disorder [6, 7]
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