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Abstract

Ultracold bosonic atoms in potentials with quenched disorder represent a notoriously dificult problem due to the competition of localization and superfluidity. Whereas some initial promising results
are known for weak disorder within a Bogoliubov theory of dirty bosons [1,2], the case of strong disorder is still quite elusive [3]. Here we work out a non-perturbative approach towards the dirty boson
problem at zero temperature which is based on a Gaussian approximation for correlation functions of the disorder potential and the condensate wave function solving the Gross-Pitaevskii equation.
For contact interaction we find that the case of delta-correlated disorder can be treated analytically, whereas the case of a Lorentzian disorder correlation necessitates a numerical solution of a set of
self-consistency equations. For weak disorder we reproduce the condensate depletion of Huang and Meng and for strong disorder we yield a quantum phase transition to a Bose-glass phase.

Model Non-perturbative results

e Disorder e Condensate density and chemical potential:
— Disorder Ensemble Average
?—/DV-P[V}, /DVP[U]— i: | i@é‘
— Assumptions % | %
o) +~
Vi(x1) =0, V(x1)V(x2) = R(x1 — x2) o 2 -
e Gross-Pitaevskii equation: § ] E‘?
_ _ 3 :
ﬁ2 ; ) % ] =
—5 -V VI(x) —pt gPix)| d(x) =0 - ~

- - 0 5! 10 15 20 29 0 5! 10 15 2() 25

—> stochastic nonlinear partial differential equation |3] Ditsorigler sinenigh R( 9)2 Driseridien glvamagila e oo 9)2

2mng

correlation lengths: o . 0,—,—-,1,2 and 4
Gaussian factorization of correlation functions )
o mh

—> border of first/second order transition:  Ri_201_9 = —%

1 —
DO | —

2
m
e Gaussian assumption: cumulants of 3rd and higher order are zero e Density and condensate density versus chemical potential:
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Conclusions and outlook

e Bose glass: ¢b =0, ]fzw = 00, ,ub = 3ng

following from renormalization procedure e Density dependence of condensate and cloud radii confirmed by non-perturbative replica method |4]
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e Time-dependent generalization

e Generalization of preliminary results for dipolar Bose-Einstein condensates to strong disorder |6, 7]

Perturbative results

e Self-consistency equations: homogeneous case and R(k) = R
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